Tree-ring based drought reconstruction for the central Tien Shan area in northwest China

Jinbao Li, Xiaohua Gou, Edward R. Cook, and Fahu Chen

Received 19 January 2006; revised 27 February 2006; accepted 6 March 2006; published 12 April 2006.

[1] A robust ring-width chronology developed from two sites of *Picea schrenkiana* in the central Tien Shan area of northwest China was employed to study regional drought variability. Our analyses demonstrate both temperature and precipitation have significant effects on tree growth, thus both should be considered for climate reconstruction. Regional drought history (1675–2002 A.D.) was therefore reconstructed by calibrating with the Palmer Drought Severity Index (PDSI). Our reconstruction not only captured well those extreme drought events recorded in local historical archives, but also revealed the long-term pattern of drought variability, especially the trend of increasing moisture during the 20th century. Multi-taper method spectral analysis indicates the existence of some low- and high-frequency cycles (146–171, 11.5, 10.6, 9.7, 6.1, 3.9, 3.4, 3.2, 2.4 and 2.1 yr). Overall, our study indicates the feasibility of combining tree-rings and the PDSI to reconstruct large-scale drought patterns over this area. Citation: Li, J., X. Gou, E. R. Cook, and F. Chen (2006), Tree-ring based drought reconstruction for the central Tien Shan area in northwest China, Geophys. Res. Lett., 33, L07715, doi:10.1029/2006GL025803.

1. Introduction

[2] The occurrence of drought remains a serious concern around the world, especially in arid and semi-arid regions [Cook et al., 1999; Qian and Zhu, 2001]. Recently this concern was heightened as the increasing intensity of global warming may contribute to potential development of more frequent and persistent droughts [Cook et al., 2004; Dai et al., 2004]. It is thus of critical importance to understand the drought patterns as well as their potential forcing mechanisms, which are essential to establish the fundamentals for drought forecasting.

[3] Quantitative information about long-term drought variability is particularly valuable in drought study. Direct measurements of meteorological parameters, however, are often limited in both time and space. It is therefore necessary to recover long-term drought history from proxy records. Among them tree-ring analysis is highly valued due to its precise dating, extensive spatial availability, and high climatological sensitivity [Fritts, 1976]. The fidelity of tree-ring records to drought reconstructions has been well demonstrated by numerous studies [see, e.g., Stahle et al., 1985; Cook et al., 1999].

[4] Common to all types of drought is the fact that they all result from the accumulated effect of precipitation deficit over some time period [Wilhite and Glantz, 1985]. Thus the meteorological drought attracts more attention in current research. And to this end, the Palmer Drought Severity Index [Palmer, 1965] is perhaps the most well-known and widely used drought index across the United States [Heim, 2002]. The PDSI can detect the existence of dry and wet spells and further allow them to be quantified for direct comparisons across regions and time [Alley, 1984]. It has therefore been widely used for a variety of applications over the United States [Alley, 1984; Heim, 2002]. Recent studies have also employed the PDSI to study droughts beyond the United States [Ntale and Gan, 2003; Dai et al., 2004], indicating its potential for global applications.

[5] Combining tree-rings and the PDSI together for the purpose of drought reconstruction has been achieved in many areas [Briffa et al., 1994; Cook et al., 1999, 2004]. Unfortunately, this method has not been widely used for the drought reconstructions over Asia. Here we describe a case study to showing its feasibility for the drought reconstruction in northwest China, and seeking to understand long-term drought variability in the study area.

2. Data and Methods

[6] Standard dendrochronological techniques were employed in this research. Tree-ring samples were taken from two sites in central Tien Shan Mountain (Figure 1). One site (MIQA) is located at (43°46′N, 87°55′E), at an elevation of 1970 m, and another site (MIQB) at (43°48′N, 88°01′E), at an elevation of 2080 m. Both sites are near to the lower forest limits, where tree growth is supposed to be mainly controlled by the moisture availability [Fritts, 1976]. Increment cores were taken from the same tree species (*Picea schrenkiana*) at both sites. In total 52 (60) cores from 27 (31) trees were retrieved at the site of MIQA (MIQB), respectively.

[7] After air drying and sanding, all the samples were cross-dated with skeleton plot and subsequently measured to ±0.001 mm precision. The quality of visual cross-dating was further checked by COFECHA program [Holmes, 1983]. These methods will ensure exact dating for each annual ring-width.

[8] The linear correlation between the raw measurements of the two sites is 0.69 (p < 0.001), and the first principal component explains 85.35% of their total variance. Further considering the close locations of the two sites and their
high environmental homogeneity, we put all the measurements together to develop one ring-width chronology to indicate a regional climate signal. The chronology was developed by ARSTAN program [Cook, 1985] with conservative methods by fitting a negative exponential curve or a straight line of any slope. A cubic spline with a 50% frequency-response cutoff equal to 67% of the series length was also used in a few cases (8 out of the 96 cores) when anomalous growth trends occurred. As generally the sample size declines in the early portion of a tree-ring chronology, we used the subsample signal strength (SSS) [Wigley et al., 1984] with a threshold value of 0.85 to evaluate the most reliable time span of the chronology. To reduce the potential influence due to the changing sample size, the chronology was further put through a process of variance stabilization prior to regression analysis [Meko et al., 1993]. Based on these techniques we consider our ring-width chronology to be valid for dendroclimatic study. The final chronology extends from 1675 to 2002, is composed of data from 96 cores of 51 trees, and has a mean segment length of 263 years.

The climate data used in this study include local monthly temperature and precipitation records as well as the monthly PDSI data developed by Dai et al. [2004] (Figure 1). The instrumental data, spanning 1959–1998, were obtained from the nearest meteorological station TCH (43°53’N, 88°07’E; 1935 m). The PDSI grid point used in this study is located at (43.75°N, 88.75°E), which is the nearest one to the sampling sites and has a mean segment length of 263 years.

3. Results

Climate-growth responses were analyzed for the common period when both meteorological records and tree-ring data are available (i.e., 1959–1998). The analyses were undertaken for the period of a biological year (i.e., last October to current September). As shown in Figure 2a, the significant correlations between temperature and tree-ring data were found in April ($r = -0.36$), May ($r = -0.44$), June ($r = -0.40$) and July ($r = -0.35$), based on the 95% confidence level. Meanwhile, the significant correlations between precipitation and tree-ring data were found in January ($r = 0.32$), April ($r = 0.47$), May ($r = 0.42$) and July ($r = 0.31$). As discussed below, neither temperature nor precipitation alone is an appropriate single climate parameter to be reconstructed, and the reconstruction should take both into consideration.

The correlations between tree-rings and the monthly PDSI data were further analyzed for their common period of 1941–2002. As the PDSI is a direct measure of soil moisture availability, we analyzed their correlations for the period of current growth season (i.e., March–October). As shown in Figure 2b, all the correlations are at or over the 95% confidence level, with peak correlation found in May ($r = 0.60$). As seasonally averaged PDSI is more representative of moisture condition than just one single month, we further explored the appropriate season for reconstruction. The highest correlation between tree-rings and the seasonalized PDSI was found in April–June ($r = 0.57$); therefore April–June was used as the reconstruction season.

A linear regression model [Cook and Kairiukstis, 1990] was employed in our study to perform the reconstruction, and the statistical fidelity of this model was examined by the split sample calibration-verification tests [Meko and Graybill, 1995]. As shown in Table 1, the values of two most rigorous tests for model validation, the reduction of error (RE) and the coefficient of efficiency (CE), are both positive. The results of sign test for 1972–2002 are all at the 0.01 confidence level, while for 1941–1971 the results are slightly weak, which is possibly due to the large amplitude of moisture variation during 1941–
1960 (Figure 3). At any rate, the overall test results sufficiently proved the validity of our regression model. The reconstruction accounts for 33.0% of the actual PDSI variance during 1941–2002, which is not very strong but significant (Figure 3). Based on this model, the drought history for central Tien Shan area was reconstructed, which spans 1675–2002 A.D. (Figure 4).

Multi-taper method (MTM) spectral analysis [Mann and Lees, 1996] was employed to examine the characteristics of drought variability in frequency domain. The analysis over the full range of our reconstruction revealed some low- and high-frequency cycles (Figure 5). Low-frequency peaks were found at 146–171 yrs (99% level), 11.5-yr (90%), 10.6-yr (near 90%) and 9.7-yr (90%). Other significant peaks were found at 6.1-yr (90%), 3.9-yr (99%), 3.4- and 3.2-yr (95%), 2.4-yr (95%) and 2.1-yr (99%).

4. Discussion and Conclusions

As shown in Figure 2a, significant positive correlations exist between tree growth and the precipitations in January, April, May and July. Tree growth benefits from former winter’s precipitation, as the latter works to enrich soil moisture storage, which is crucial for the coming year tree growth. The precipitation in the current growth season works to directly increase the soil moisture availability, and thus compensates for the soil water loss due to evapotranspiration. High temperature during current growth season tends to enhance evapotranspiration and thus decrease the soil moisture availability. This is why negative correlations between tree growth and the temperatures of April, May, June and July were found. Clearly both temperature and precipitation have strong effects on tree growth, thus neither of them alone is an appropriate climate parameter to be reconstructed.

Our reconstruction using the PDSI quantitatively extends the drought history of central Tien Shan area back to 1675 A.D., providing a longer background to evaluate local drought variability (Figure 4). The mean PDSI value of our reconstruction is −1.19, which is significantly lower than the defined normal moisture status (PDSI = 0.0 ± 0.5) [Palmer, 1965]. As the classification scale of moisture conditions according to the PDSI was arbitrarily defined by Palmer [1965] based on his research in the central and western Great Plains, it may be not appropriate for the moisture conditions in northwest China. We therefore used the PDSI values of (−1.0 ± 0.5) to represent the normal moisture condition and the values of (≤−4.0 or ≥2.0) to represent the extremely dry or wet conditions in the study area.

The moisture condition of late 17th century (i.e., 1675–1699) is at near normal state, except for an extremely dry event in 1690. After that, three distinct stages can be identified in our reconstruction: a comparatively wet 18th century, a dry 19th century and a consistent moisture increase during the 20th century.

The 18th century is comparatively wet, especially from 1740s to 1780s. 1784 is the most extremely wet year in our reconstruction. Lichens on the moraine sediments indicated a strong glacier advance of the No. 1 Glacier in central Tien Shan around 1777 ± 20 [Chen, 1988], which corresponds to this wet period. This wet period was also evidenced by the drought reconstructions in northeastern and west central Mongolia [Pederson et al., 2001; Davi et
Acknowledgments. The authors thank Gordon Jacoby, Rosanne D’Arrigo, Kevin L. Griffin, Paul J. Krusic, Neil Pederson and Yujiang Yuan. This research was funded by Special NSFC Project (90502008), NSFC Innovation Team Project (40421101) and NSFC Project (40201049 and 40125001). This is LDEO contribution 6894.

References

Figure 5. MTM spectral density of the drought reconstruction. The bold line indicates the null hypothesis; the dash, dash-dot and dotted lines indicate the 90%, 95% and 99% significance level, respectively.

———

F. Chen and X. Gou, Center for Arid Environment and Paleoclimate Research (CAEP), MOE Key Laboratory of West China’s Environmental System, Chinese Academy of Engineering Physics (CAEP), Lanzhou University, Lanzhou 730000, China. (xhgou@lzu.edu.cn)

E. R. Cook and J. Li, Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA.