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ABSTRACT
 
While many studies aimed to reduce location bias by introducing improved travel-time corrections, little effort was 
devoted to the complete estimation of location uncertainties, despite the fact that formal error ellipses are often 
overly optimistic. Since most location algorithms assume that the observations are independent, correlated 
systematic errors due to similar ray paths inevitably result in underestimated location uncertainties. Furthermore, the 
tails of real seismic data distributions are heavier than Gaussian. The main objectives of this project are to develop, 
test and validate methodologies to estimate location uncertainties in the presence of correlated, systematic and non-
Gaussian errors. Particular attention will be paid to robust and transportable models of a travel-time covariance 
matrix.  
 
The characterization of the full covariance matrix will separate and estimate non-Gaussian, heavy-tailed 
distributions of measurement and model errors and take into account the correlation due to systematic errors. We 
will characterize measurement errors as a function of signal parameters, such as phase, distance and amplitude. To 
achieve this goal we will perform fully controlled experiments by using known signals, scaled down to several 
magnitude levels and embedded in clean noise (Kohl et al., 2004). We will estimate the correlation structure in the 
data using various variogram models. To estimate non-linear dependence structures in the data that are not captured 
by the full covariance matrix, we will apply the theory of copulas, a quickly growing field of statistics to describe 
tail dependence. Based on the copula theory we will develop a hypothesis test, independent of formal uncertainties, 
to assess the reliability of the error ellipses obtained from the classical approach using the full covariance matrix. 
 
During the first year of the project preliminary methodologies will be developed, tested and demonstrated on a 
limited set of event clusters. For validation purposes we use event clusters with GT0-2 events. Our primary choice is 
therefore the Nevada Test Site (NTS) where an abundance of GT0 nuclear explosions, well-recorded in all distance 
ranges, is available. The NTS cluster allows us to simulate sparse, unbalanced networks by using subsets of stations. 
We will also use the Lop Nor, China nuclear explosions (well-recorded teleseismically but with sparse regional 
networks) and the Lubin, Poland mining explosions (recorded by dense but unbalanced regional networks) to 
demonstrate the applicability of our methodologies. 
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OBJECTIVES 

The objectives of this project are to develop methodologies to estimate location uncertainties in the presence of 
correlated, systematic model errors; to characterize measurement errors as a function of signal parameters such as 
phase and signal-to-noise ratio; and to describe the total error budget in the case of non-linear, non-Gaussian 
dependence structure. The improved understanding of the complete error budget will be applied to non-linear 
location estimators to make location programs more robust in the presence of correlated errors and outliers. The 
resulting error budgets will lead to more robust estimates of location uncertainty. A hypothesis test (independent of 
formal uncertainty estimates) will be developed to assess the reliability of location uncertainty estimates. 
 
RESEARCH ACCOMPLISHED 

The assumption of independent error processes prevails in most modern location algorithms, despite the fact that the 
problem arising from inadequate representation of systematic bias has been known to seismologists since the advent 
of modern instrumental seismology. A classic example is the Longshot nuclear explosion (29 October 1965, 
Amchitka). Herrin and Taggart (1968) showed that a large number of arrivals traveling along similar ray paths 
through an unmodeled oceanic subducting slab introduced location bias. If unrecognized, correlated systematic 
errors result in unrealistic error ellipses with degraded coverage (true locations do not lie within the ellipses) and 
introduce location bias. To further illustrate our motivation to consider the correlation structure in the data, we 
performed a constrained bootstrapping (Yang et al., 2004) experiment on the 7 October 1994 Lop Nor, China 
nuclear explosion. The explosion is considered GT1 (Fisk, 2002) and recorded by some 600 stations at teleseismic 
distances. As Figure 1a indicates, the station distribution is far from azimuthally uniform; and is dominated by the 
networks in California, Japan and Europe. Figure 1b shows the trajectory of the mislocation vector with increasing 
number of stations. As more and more stations contribute to the solution the location is driven away from the GT1 
location. Since the location algorithm does not account for correlated travel-times along similar ray paths, the 
relative importance of the Californian and European stations steadily increases, resulting in ever more increasing 
location bias. As the information carried by the network geometry is exhausted relatively early, adding more stations 
merely increases data redundancy and increases bias. Furthermore, as shown in Figure 1c, the area of the 90% 
coverage ellipse monotonically decreases with increasing number of stations. This is because the off-diagonal 
elements of the covariance matrix are ignored assuming independent errors. Hence, it is guaranteed that the error 
ellipse will not cover the true location once a sufficiently large number of correlated systematic errors contribute to 
the solution. 
 

   

c) 
a) b) nsta=400 

nsta=10 

Figure 1. a) Teleseismic station distribution for the 7 October 1994 Lop Nor, China nuclear explosion. b) 
Trajectory of location bias from 10-station subnetworks (open circle) to 400-station subnetworks (full 
circle). The star denotes the GT1 location of the nuclear explosion. c) Area of error ellipse (top) and 
actual ellipse coverage (bottom) with respect the number of stations. If the coverage parameter is 
larger than one, the true location falls outside the error ellipse. 

In this project we focus on the treatment of correlated errors, with non-Gaussian, non-zero-mean, heavy-tailed 
skewed distributions of reading errors. We will employ variogram analysis of observed residuals to estimate the 
correlation structure in the data. We will estimate the full covariance matrix by fitting variogram models to 
empirical station-station variograms using fixed ground truth events and event clusters, as well as event-event 
variograms for fixed stations. Note that estimating the correlation structure through variogram analysis is essentially 
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the same process that is used to construct empirical travel-time correction surfaces by kriging (Schultz and Myers, 
1998; Myers and Schultz, 2000; Rodi, 2003). We will retain the information derived for the correlation structure 
offered by the variogram analysis to construct a full covariance matrix. 
 
Chang et al (1983) have shown that incorporating the full covariance matrix in the location algorithm is 

 This can be 

 of 

ata sets

straightforward. The correlation structure implies that linear combinations of station residuals may exist.
taken into account by diagonalizing the covariance matrix, thus reducing the dimensionality of the problem. The 
estimated location error ellipses then necessarily become larger, reflecting the reduction in the equivalent number
uncorrelated observations. We apply a methodology developed by McLaughlin et al. (1988) that transforms the 
empirical correlation matrix, derived from variogram analysis, so that it becomes positive definite, with positive 
eigenvalues and unit diagonal elements. 
 
D  

To validate the methodologies developed during the course of the project we will rely on high quality, GT0-2 event 
clusters. Our primary choice is the Nevada Test Site (NTS) data set (Figure 2), which contains a large number of 
GT0 events, well recorded in all distance ranges. The NTS data set will allow us to perform Monte Carlo and 
bootstrap experiments using subsets of events and stations to investigate the effect of systematic errors due to 
unbalanced networks. 

            

Figure 2. Nevada Test Site (NTS) data set. a) 401 GT0 u ound nuclear explosions at Pa te Mesa and 

The second data set we identified is the GT1-2 underground nuclear explosions at the Lop Nor Test Site (Figure 3). 

ndergr hu
Yucca Flat. b) Station distribution in the 0-90° distance range.  

These events are well-recorded at teleseismic distances, but by only a sparse regional network. 

        

Figure 3. Lop Nor Test Site data set. a) 17 GT1-2 undergroun uclear explosions. b) Station distribution in 
the 0-90° distance range.  

Our third data set constitutes the Lubin, Poland GT1-2 mine events (Figure 4). These are recorded by a sparse 
teleseismic network, and with a dense, but heavily unbalanced, regional network. 

a) b) 

a) b) 

d n
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Figure 4. Lubin, Poland data set. a) 12 GT1-2 mine events. b) Station distribution in the 0-90° distance range.  

Preliminary analysis of measurement errors 

Errors of arrival times are usually assumed to be Gaussian mic event location algorithms. It has long been 
realized, however, that distributions of picking errors are s ; for example, errors in arrival times of weak 

improved travel time models being developed, accurate descriptions of picking error distributions and their 
R and dominant frequency, become more important for location 

 
 

periments as a basis for 

lean onsets fade away with decreasing signal-to-noise ratio.  

 in seis
kewed

signals, picked by both seismic analysts and automatic algorithms, are frequently biased late (Buland, 1986). With 

dependence on signal characteristics, such as SN
error estimates. Douglas et al. (2005) emphasize the effect of SNR on measurement errors. 
 
The lack of "true" onset times makes the estimation of the error distribution difficult. Consistency of independent 
readings of seismic analysts is sometimes used as a baseline or “true” onset. However, such "true" onset times based
on analyst consistency cannot escape the element of subjectivity in manual readings. Moreover, standard errors of
manual picks of about 0.2 s for impulsive phases have been reported (Leonard, 2000). In this project we will use 
seismic events with ground truth (GT0-2) locations and origin times as well as controlled ex
estimating statistical characteristics of picking errors.  
 
An example of using ground truth information is shown by the box plot in Figure 5, which shows the errors in Pn 
arrival time picks at the station PRI (Priest, CA) from GT0 underground nuclear explosions at the Yucca Flat, 
Nevada Test Site. The bias in the picking errors gradually increases with decreasing magnitudes and becomes 1s or 
larger below mb=4.5. Notice also the increased scatter in the errors as the magnitudes become smaller, which 
indicates the increasing uncertainty in analyst picks as c

 

Figure 5.  Picking errors of Pn arrival times at the station PRI from GT0 underground nuclear explosions at 
Yucca Flat, Nevada Test Site as a function of magnitude. Residuals are calculated relative to the 
IASPEI91 predictions from the known origin times. 

Unfortunately, GT0 event clusters are not always at our disposal to investigate the effect of decreasing SNR on 
arrival time picks. To overcome this problem, we follow the methodology of Kohl et al (2004, 2005) which uses 

b) a) 
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known signals scaled to various magnitude levels and embedded in clean background noise. Since we know exactly 
e embedded signals are and that they are not contaminated by other signals (hence the notion of clean 
he procedure allows us to design controlled experiments. 

where th
noise), t  
 

als 

ustrated in Figure 5. The QQ plot (quantiles of 
bserved picking errors plotted against Gaussian quantiles) in Figure 6b indicates that picking errors of signals at 

 even 

An example of using signals embedded at known times in clean background noise for estimating picking error 
characteristics is given in Figure 6. The example shows picking errors of an automatic algorithm (DFX) for P sign
at FINES from large underground nuclear explosions at the Lop Nor Test Site, scaled down to varying sizes and 
embedded in clean noise. Figure 6a shows how the bias or lateness of the picks sets in for SNR around 6-7 and 
continues to increase with decreasing SNR, much like the effect ill
o
various SNR ranges exhibit varying means and variances (Rodi, 2004) and deviate from the normal distribution
at high SNR levels. 
 

   

b) a) 

Figure 6. Picking errors of an automatic algorithm obtained for signals, scaled down to various amplitudes 
and embedded in clean background noise, at the FINES array. a) Reading errors become biased as 
SNR decreases. b) Reading errors at various SNR levels. If the errors were Gaussian, the observed 
picking errors (symbols) would align with the normal quantiles (lines).  

We will use the methodology outlined above to obtain impr ed models of observational errors with respect to 

matrix. 
 
Non-line

ov
phase and to account for the effect of signal-to-noise ratio on the residuals when constructing the full covariance 

ar dependence structure 

Estimating the full covariance matrix will allow us to account for correlated systematic errors in regions where th
bias is unknown (uncalibrated). However, the linear Gaussian approach has its limitations. The full covariance 
matrix a

e 

pproach implies that the observations are described by a multivariate Gaussian distribution, which can only 
count for linear correlation structures. Non-linear dependence structures may exist in the data that are not captured 

tion algorithm, either linearized or non-linear, minimizes a misfit function, 
which is typically expressed as the sum of powers of weighted residuals. The inherent assumption is that the 

ery 

 a unique copula function C such that 
u F x x

s. 

ac
by the correlation matrix. Every loca

likelihood function can be written as the product of individual probability density functions of the observations – 
that is, the observations are independent. If the observations are dependent, the joint distribution is no longer the 
mere product of the marginal distributions; and the negative logarithm of the likelihood function can no longer be 
written as the simple sum of powers of weighted residuals. 
 
Constructing the likelihood (i.e. the joint probability density) function in the general case often proves to be v
difficult, and this is exactly why location algorithms make the somewhat unsupported assumption of independent 
error processes. Sklar’s theorem (1959) offers a way to construct the joint distribution function of continuous 
multivariate random variables. The theorem states that if H is an n-dimensional joint distribution function with 
marginal cumulative distributions F1,…,Fn, then there exists

))(,),((),,( 111 nnn , where xFxFCxxH KK = i = i( i) denotes the probability integral transformations of i. Thus, 
the copula is the joint cumulative distribution function of the order statistics of the univariate marginal distribution
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The converse of Sklar’s theorem is also true, and it implies that we can link together univariate distributions of
type with any copula in order to get a valid multivariate distribution. If Fi

 any 
−1 denotes the inverse of the marginal 

distribution functions, then there exists a  unique copula such that ))(,),((),,( 1
1

11 nnn uFuFHuuC −= KK . The 
separation of the dependence structure from the marginals is apparent in the form of the likelihood function:  

∏=
i

iinnn pxfxFxFcpxxL );());(,),(();,,( 111 ϑKK , where 

1−

n

n
n

uu
uuCuuc

∂∂
ϑ∂ϑ

K

K
K

1

1
1

);,,();,,( =  denotes the 

copula density function; p and 

n

ϑ stand for the model and copula pa s a 
function that joins or ‘couples’ a multivariate distribution function to its one-dimensional marginal distribution 
functions. For a detailed discussion of copulas see Joe, (1997) and Nelsen (1999). The basic idea behind the co

rameters, respectively. Hence, a copula i

pula 
formalism is to separate dependence and marginal beh een elements of multivariate rand
 

 c

avior betw om vectors. 

Using Sklar’s theorem, one can onstruct multivariate distributions with arbitrary margins. For simplicity, we 
consider bivariate distributions. A great many examples of copulas can be found in the literature and most of the 
copulas are members of families with one or more real parameters. When the joint multivariate distribution is 
Gaussian with a covariance matrix Σ, the likelihood function can be written as 

∏ΣΦΦ=
Σ

=
i

iinn
G

nn pxfxxcepxxL );());(,),((
det)2(

);,,( 11
2

2/1 KK
π

 

Hence, the copula formalism offers a way to develop a hypothesis test: if the best fitting copula to the data is the 
Gaussian copula, then the full covariance matrix adequately describes the dependence structure and provides a
reliable estimate for the location uncertainty. 

−Σ−− −T1 )()( 1 μμ xx

 

 
Variogram models with copulas 

1

 

 
ecreasing function with domain (0,1] and range [0,∞) such that ϕ(1) = 0. The function ϕ is called the generator 

s an Archimedean copula. Table 1 lists the most frequently used one-parameter 

imedean copulas 

To illustrate the power of the copula approach, we apply the copula formalism to derive variograms for the NTS 
data set. Copulas of the form ))()((),( 1 vuvuC ϕϕϕ += −  are called Archimedean copulas, where ϕ is a convex,
d
function, which uniquely determine
Archimedean copulas. For a more complete set of Archimedean copulas see Nelsen (1999).  
 
Table 1.  One-parameter Arch

Copula C(u,v) ϕ(t) α Limits Kendall’s τ 
Clayton max u −α + v −α − 1[ ]−1/α

,0⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  (t−α − 1)

α
 (0,∞)  

C0 = Π
C∞ = M

 α  
α + 2

Ali-Mikhai-Haq 
uv

1−α(1− u)(1− v)
 ln 1−α(1− t)

t
 [−1,1) C0 = Π 3α − 2

3α
−

2(1−α )2

3α 2 ln(1−α )  

Gumbel exp − (− ln[ u)α + (− lnv)α ]1/α⎛ 
⎝ 
⎜ 
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⎟  (− ln t)α  [1,∞) 

C1 = Π
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α
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1
α

ln 1+
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eα − ln e−αt − 1
e−α − 1

 (−∞,∞) \{0} 
C−∞ = W
C0 = Π
C∞ = M
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Joe 1− (1− u)α + (1− v)α − (1− u)α (1− v)α[ ]1/α
 − t)α− ln 1− (1 ] [1,∞) 

C1 = Π
C∞ = M

 [ No closed form 

 
ϕ is a function of the copula param ter α, identifying ϕ is equivalent to i entifying e Archimedean copula 

itself. Genest and Rivest (1993) described a procedure to identify the form of ϕ from a sample of bivariate 
ations. The procedure is based on generatin e intermediate (unobserved) random v xi, yi) that 

 distribution function K(t) = P(ωi ≤ t). Thus, t) is the cumu tive d tion func on
bservations ωi, or in other words, the multivariate probability integral transformation of F(x,y) (Genest and Rivest, 

Since e d  th

observ
has a

g th
K(

ariable ωi = F(
 of the pseudo-la istribu ti

o
2001; Genest et al., 2002; Nelsen et al., 2003). This distribution function is related to the generator of an 
Archimedean copula through the expression )(/)()( ttttK ϕϕ ′−= . 
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Thus, to identify the best fitting copula, we 
1. Estimate Kendall’s τ from the sample by the non-parametric estimate 

( )∑
<

j

K(t) 

−−
−

=
ji

ijin yyxxsign
nn

))((
)1(

2τ  

2. Construct a non-parametric estimate of 

a. nij ijij
i ,,1,

)
K==ω  

yyxx ,(1 <<∑
n 1−

b. 10,
)(1

)( <<
≤

=
∑ t

nn
t

tK i iω
 

3. Construct a parametric estimate of Kϕ(t) 
Use τn  to get an initial estimate of αn  

b. Use αn  to estimate ϕn(t) 
Use ϕn(t) to estimate Kϕ(t) using the relationship 

a. 

)(/)()( ttttK ϕϕϕ ′−=  c. 

∑d. Refine α so that it minimizes − )()( tKtK n ϕ  

Repeat step 3 fitting copula. 

The copula f a onal probability distrib tions and derive quantile 
regression cur d quantile regression curve is defined as 

vFy −= ation 

 for several choices of ϕ and select the best 

orm lism offers an elegant way to construct the conditi u
ves of y subject x (Frees an Valdez, 1998). The p-th 

p
u

vuC
uvC p)  where v  is the solution of the equ(1

2 pp p p ∂
==

∂ ),(
)|( . Setting p to 0.5 yields the 

median regression curve of y subject to x.  

ynnes 
and Lay, 1988) we treat Pahute Mesa and Yucca Flat separately. We use robust statistics (smad) to estimate the 
variance of res n for fixed events  

ls of variograms, (i.e. we are not forcing any a priori models, such as 
l models), which still yield closed formulas. We define the variogram as 

 

Because of the well-known local upper-mantle velocity heterogeneity at the NTS site (e.g. Cormier, 1987; L

idual differences as a function of station separatio . Using the copula framework
allows us to derive strictly data-driven mode
the commonly used exponential or spherica
the median regression curve of smad with respect to station separation, and we derive the median regression from 
the best fitting copula.  
 
Figure 7 shows the Pn median regression curves for Pahute Mesa and Yucca Flat. Note that in both cases the best 
fitting copula is identified as the Clayton copula, with a slightly different parameter: 0.56 and 0.35, respectively. The
difference in the copula parameters for Pahute Mesa and Yucca Flat may also account for the SNR dependence in 
the residuals, as signals from Yucca Flat explosions have typically lower SNR than those from Pahute Mesa.  
 

For the Clayton copula, solving ( ) pvuuuvC pp =−+=
+−−−−− ααααα /)1(1 1)|(  for vp we obtain  

( ) αααα /1)1/( )1(1
−+−− −+= puv p .  

The Clayton copula exhibits lower tail dependence, conveniently describing the fact that with decreasing station 
paration the residual differences become increasingly correlated. se
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b) a) 

Figure 7. Variogram estimation for Pn phases at Pahute Mesa (a) and Yucca Flat (b). The thick blue line 
connects the median smad values at every 5-percentile worth of data; the red line shows the median 
regression curve derived from the best fitting copula. 

 
CONCLUSIONS AND RECOMMENDATIONS 

We have identified the data sets we will use to test and validate the methodologies developed in the course of the 
project. These include the NTS GT0 and Lop Nor GT1-2 underground nuclear explosions, as well as the GT2 
mining events in Lubin, Poland. 

We have developed preliminary methodologies to obtain improved models of reading errors and deriving the full 
covariance matrix from variograms. We have also developed a method to transform the empirical covariance matrix 
so that it becomes a positive definite matrix. 

We have developed a data-driven methodology, based on copula theory, to obtain robust estimates of variogram 
models. 

During the first year of the project we concentrate our efforts to develop, test and validate methodologies, and 
demonstrate their applicability on a limited set of event clusters. 
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