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ABSTRACT
 
We have analyzed wind-generated pressure noise at infrasound stations to better understand the mechanisms of 
noise generation and possible strategies for mitigating the effects of this noise. Wind and microbaroms are the 
dominant sources of noise on infrasound stations. Both can cause false signal detections as well as obscure real 
signals. We have investigated in detail the observed wind and pressure characteristics at International Monitoring 
System infrasound stations. By understanding better the relationship of wind and pressure, we can design signal 
detection algorithms which mitigate the impact of wind-generated noise. 

We analyzed variations in wind speed and pressure noise over long periods of time (up to two years). The goal of 
this analysis is to better understand seasonal, diurnal, or other variations in these quantities so that we may better 
understand their relationship. We see that the ambient pressure noise is highly variable by season, time of day, 
station and site type. The pressure noise is correlated to horizontal wind speed above a threshold value, and this 
threshold varies by station and is often between 0.5-1.5 m/s.  

We have computed pressure spectra for time periods with different average wind speeds and see relatively consistent 
spectra, particularly when these spectra are displayed as a function of frequency normalized by wind speed. Wind 
speed spectra calculated for time periods of relatively high wind speeds often have slopes around -5/3, a 
characteristic of so called Kolmogorov turbulence. Wind turbulence can vary substantially at the stations, with 
periods of low winds often having the highest turbulence. Individual stations show substantial variations in wind 
turbulence as a function of wind direction, which may be related to the terrain and vegetation at the infrasound 
station. 

We have considered two primary approaches to characterizing the relationship between wind and pressure 
variations. First, we develop an empirical model for pressure noise as a function of wind speed.  We find a clear 
relationship between wind speed and pressure, which varies by station and frequency band. The empirical model is 
characterized by the slope of the pressure-wind relationship and shows a clear distinction (change in slope) between 
low- and high-wind regimes, though the wind speed at which this change occurs varies by station.  We assess the 
ability of this model to predict root-mean-square (RMS) pressure variations based on observations of wind. For test 
cases the standard error of predictions was 3db or less for frequency bands above 0.5 Hz and wind speeds above 1.5 
m/s. A key variable is the time varying nature of the empirical model. We also seek to understand how long it takes 
to characterize the wind speed-to-pressure relationship and to determine how frequently it must be updated.  

We have used a statistical framework for our second approach to characterizing the wind speed-pressure 
relationship.  We analyze extreme values of wind and noise (i.e. the tails of the distributions of these observations) 
via copula functions. The copula function analysis lets us characterize the joint probability distribution of wind and 
pressure variations. By understanding this relationship, we can estimate the probability that large values of pressure 
are due to wind. This relationship can ultimately be used to design signal detectors with a constant false alarm rate 
(for wind-induced false alarms) by dynamically adjusting detection thresholds based on wind speed. 
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OBJECTIVES 
 
Our objective has been to improve our understanding of the underlying physical processes responsible for noise at 
infrasound stations, particularly wind-generated noise. We then leverage this understanding to develop noise 
mitigation strategies. 
 
RESEARCH ACCOMPLISHED 
 
Data 
 
We have used data from virtually all current infrasound stations (Figure 1). All of these stations are arrays consisting 
of 4 to 9 elements. Twenty-nine stations are part of the International Monitoring System (IMS) network, and five are 
experimental stations. The stations contain different combinations of microbarometer, digitizer, and wind filter 
design, as well as different array geometries. Data are obtained from the data archive operated by the Research and 
Development Support Services (RDSS) project of the US Army Space and Missile Defense Command’s Monitoring 
Research Program (MRP) 

 
  Figure 1. Map showing a superset of the infrasound stations used in our analyses. 
 
Infrasound Noise 
 
In order to characterize the ambient noise, power spectral density was measured at 28 stations (Figure 1) using the 
approach of Bowman et al. (2004a, b, 2005a, b). Data were analyzed from January 20, 2003 through December 31, 
2004, from 21 consecutive 3-minute segments of data taken four times daily, beginning at 06:00, 12:00, 18:00, and 
24:00 local time, resulting in 1,476,309 spectral estimates. Three-minute windows were used to minimize smoothing 
of the amplitude distributions, while permitting estimation of the longest periods of interest. Spectra were calculated 
using geotool (Coyne and Henson, 1995) and the method of overlapping fast Fourier transforms. A Hanning taper 
was applied to the outer 10% of each data window. Spectra were corrected by geotool for instrument responses in 
the RDSS data archive database. 
 
Power Spectral Density (PSD) for noise in four seasons and at four times of day are shown in Figure 2 for station 
I57US at Piñon Flat, California. All spectra calculated for each time and season interval are plotted as yellow lines, 
the median for each interval as a black line, and the 5th and 95th percentiles of the distribution as red lines. Green 
lines show the median of all spectra for all times and seasons for 15 stations having a complete year of data, and thus 
serve as references for comparison among time and season intervals and among stations. At any time, season and 
frequency the PSD varies by four to five orders of magnitude. Seasonal and diurnal variations are evident among the 
subplots. For example, the median noise level is similar to the network median at 6 AM in spring, but is almost an 
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order of magnitude lower at the same time in summer, and is an order of magnitude higher in the same season at 
noon. Plots similar to those in Figure 2 are provided for nearly all current infrasound stations (28 in all) in Bowman 
et al. (2005b). 
 
Relationship of Micropressure and 
Wind 
 
It is well known that infrasound noise 
increases as wind speed near the sensor 
increases. For example, Figure 3 
illustrates wind-induced noise due to 
diurnal variations at I08BO, Bolivia. 
The large amplitudes on the 
micropressure channels due to wind can 
cause false signal detections. 
Conversely, the wind-generated noise 
can reduce signal coherence across the 
array and result in no detections at all, 
particularly for detection algorithms 
which exploit the across-array 
coherence of signals. 
 
We have characterized the gross 
relationship between noise and 
horizontal wind speed at all stations 
having wind speed data. Wind speeds 
are calculated for the same time 
intervals used for the ambient noise 
analysis reported above (Bowman, 
2005a, b). This provides nearly a 
million simultaneous micropressure and 
wind speed observations. 
 
Figure 4 shows a comparison of noise 
at 0.2 Hz versus wind speed for several 
stations. Similar plots for a larger set of 
22 stations which have wind speed data 
are provided in Bowman et al. (2005b). 
Examining the noise versus wind speed 
observations for all 22 stations indicates there is wide variability in the range of wind speeds and the range of 
associated micropressure fluctuations. The most basic observation from this analysis is that noise at most stations 

Figure 2. Power Spectral Density for I57US (I57US), Piñon Flat, 
California. The number of spectra in each plot is shown in 
the upper right. The rows group plots by time intervals, the 
columns group plots by seasons.  

 

 
Figure 3. Micropressure data (top trace) and wind speed (bottom trace) at I08BO between May 1 and 8, 2005. 

Note how the micropressure noise levels increase with increasing wind speed. 
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increases gradually up to some wind threshold, and then increases more rapidly at higher wind speeds. Note that at 
stations I55US (shown in Figure 4) and I27DE (not shown) in Antarctica this wind threshold is at a higher value, 
possibly due to the fact that the wind filters at these stations are buried in snow at least part of the year. The 
relationship between infrasound noise at 1 Hz and wind speed is similar to that at 0.2 Hz (Bowman et al., 2005b). 
 

  
Figure 4. Relationship between ambient infrasound noise at 0.2 Hz and horizontal wind 

speed, on log-log scales. The blue reference lines are spaced in decade intervals in 
wind speed and aid in comparison among plots. Vertical groupings of data points 
for I55 are the result of truncation of wind speed to integer values (in m/s) for part 
of the observation period. 

 
Wind and Micropressure Power Spectra 
 
We have investigated the micropressure and wind speed power spectra in greater detail using a representative subset 
of IMS stations: I08BO, I17CI, I18DK, I22FR, I24FR, I31KZ, I33MG, I34MN, and I35NA (Israelsson and 
McLaughlin, 2005). For these analyses we used a data window of 3 min. for consistency with ambient noise spectral 
calculations reported above (Bowman et al., 2005a).  
 

 
Figure 5. Comparison of power spectra for wind speed 

fluctuations at different wind speeds (3-7 m/s) at 
station I08BO as a function of frequency (top) 
and as a function of wave-number (bottom). The 
heavy dashed lines have a slope of -5/3  

Figure 5 (top) shows averaged wind speed spectra 
at I08BO at wind speeds between 3-7 m/s. The 
drop off rate of the scaled spectra for I08BO have a 
slope of approximately -5/3 (heavy dashed lines in 
the diagrams) predicted for Kolmogorov turbulence 
of the inertial regime. Further, the spectra for 
different wind speeds, when scaled by wave-
number (frequency/wind speed), collapse into a 
narrow spectral density range (Figure 5, bottom). 
Similar results were obtained for stations I24FR 
and I35NA, while the slopes of spectra for I31KZ 
and I34MN clearly deviated from -5/3 throughout 
the wave-number range. The wave-number 
intervals with slopes ~ -5/3 correspond to 
wavelengths between 10-100 m. 
 
The IMS stations analyzed here are equipped with 
two types of wind sensors, cup anemometers 
(Campbell) and ultrasonic sensors (Gill). The 
overall shape of average wind spectra at the five 
stations with cup anemometers are similar, whereas 
there is more variation in shapes among average 
spectra at the four stations using ultrasonic sensors. 
The power spectra for stations with cup instruments 
tend to flatten out at high frequencies for low wind 
speeds less than about 2 m/s, which might be 
caused by inertia of the instruments. 
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Power spectra of micropressure are binned by mean 
wind speed, followed by stacking of spectra in each bin 
on a daily basis. The stacking reduces the scatter in the 
data and was motivated by the pronounced diurnal 
variation of the wind speed at most of the stations. 
Figure 6 shows averaged micropressure power spectra, 
as a function of frequency (top) and as a function of 
frequency/wind speed, (bottom), for wind speeds 
between 3 to7 m/s. The dashed lines in the lower panel 
of Figure 6 has a slope of -7/3, which is expected in the 
inertial range of turbulence from dimensional analysis, 
although this drop off in power with wave-number is 
not generally agreed upon (Shields, 2005). When 
plotted as a function of wave-number the spectra lie 
closer together at low wave-numbers between about 
0.01-0.04 m-1, where the spectra drop off with a slope 
of approximately -7/3. Similar results were obtained for 
I18DK, I34MN, and I35NA. Wave-numbers between 
0.01 and 0.04 m-1 correspond to wavelengths between 
25-100 m, in which range wind spectra for I08BO drop 
off with a slope around -5/3. This suggests that the 
I08BO spectra at low wave-numbers, for both wind and 
micropressure, are in qualitative agreement with 
standard models for the inertial subrange of turbulence 
for the two stations. 
 
Prediction Using Empirical Relationship of 
Micropressure and Wind 
 
As noted earlier, sudden large amplitudes on 
micropressure recordings can be due to signals or noise 
from wind gusts. In this section we attempt to exploit 
the high correlation between micropressure and wind 
speed to predict micropressure amplitudes from wind 
speed. Such predictions would allow us to identify 
features in the micropressure record that are explained by wind (potential false alarms) and features that cannot be 
explained by the wind (potential signals). 

 
Figure 6. Comparison of power spectra for 

micropressure for different wind speeds (3-7 
m/s) at station I08BO as a function of 
frequency (top) and as a function of wave-
number (bottom). The heavy dashed line is 
provided for reference and has a slope of -
7/3.  

 
For these predictions we calculated RMS amplitudes of micropressure recordings in six non-overlapping one octave 
frequency bands (0.01-0.05, 0.05-0.10, 0.10-0.5, 0.5-1.0, 1-2, and 2-4 Hz) using a data window of 600 s with a 50% 
overlap between consecutive windows. In addition, the mean 
wind speed and its NS and EW components were calculated 
along with the RMS of the wind speed fluctuations for the 
same data windows. Figure 7 shows the logarithm of RMS 
micropressure as a function of the logarithm of average wind 
speed, for station I08BO. The logarithmic transformation 
enhances resolution at low wind speeds. We use locally 
robust regression to estimate the relationship between RMS 
micropressure and wind, and this is shown by the dashed line 
in Figure 7. 

 
Figure 7. RMS micropressure (1-2 Hz band) as 

a function of average wind speed at 
I08BO. The data points represent the 
logarithms of RMS micropressure and 
wind measurements. 

 
A comparison of the estimated RMS (1-2 Hz) micropressure 
and mean wind speed relationships for nine different stations 
are shown in Figure 8. The estimates have similar slopes at 
high wind speeds, and large variation at low wind speeds 
where the levels are affected by the microbarom levels. 
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In prediction experiments we used data for the first half of the 
month to estimate relations between micropressure and wind. The 
estimates were then used to predict RMS micropressure 
amplitudes during the second half of the month. Figure 9 shows 
an example of time domain micropressure predictions. Predicted 
RMS amplitudes in the frequency band 1-2 Hz at I08BO during 
the second half of October 2004 are compared with the actual 
amplitudes and the mean wind speed. The predictions were based 
on a relation between RMS amplitudes and mean wind speed 
estimated with locally robust regression from observations during 
the first half of October 2004. The traces for mean wind speed, 
observed and predicted RMS amplitudes (three bottom traces) are 
quite similar with a clear diurnal variation. The ratio of the 
predicted-to-observed pressures (in dB) is plotted in the top trace 
and the difference (predicted – observed) in the trace below. The 
±3dB error levels are marked as dashed lines on the top trace. The 
errors, just like the wind speed and RMS amplitudes, show a 
diurnal variation. The relative errors (see top trace) are generally 
larger during periods of low wind speeds during local night time 
than during local day time with high wind speeds. The magnitude 
of the errors (e.g. second trace from top) is greatest in the day 
time. 

 

Figure 8. Estimated relations between RMS 
micropressure (1-2 Hz) and mean 
wind speed for October 2004.  

 
Figure 9. Comparison of observed and predicted RMS amplitudes (1-2 Hz) at I08BO during Oct 16-31, 2004. 

The traces for mean wind speed (bottom trace), observed RMS amplitudes (2nd trace from bottom), 
and predicted amplitudes (3rd trace from bottom) are quite similar. A clear diurnal variation is 
obvious in the ratios of predicted/observed amplitudes (top trace) and amplitudes errors, observed-
predicted, (2nd trace from top). 

 
The dependence of prediction error on wind speed indicates that the estimated standard errors are generally larger at 
lower wind speeds where the relation between wind and micropressure is less well defined and is subject to changes 
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in the microbarom level. For the same reason errors near the microbarom peak are also larger. Further discussion of 
these results, as well as polynomical-based regression results, can be found in Israelsson and McLaughlin (2005). 
 
Prediction Using Statistical Relationship of Micropressure and Wind 
 
As the above discussion makes clear, the relation between wind and micropressure is non-linear – at low wind 
speeds micropressure variations are less dependent on the wind, while at higher wind speeds the micropressure 
variations are dominated by wind-induced effects. In other words, the wind-micropressure relation exhibits tail-
dependence structure. A weakness of standard regression analysis, as used in the preceding section, is that it cannot 
cope well with tail-dependence structures. As an alternative, we apply copula theory, a non-linear statistical 
framework to study non-Gaussian, non-linear dependence structures. Copula theory allows us to form the joint 
probability distribution of wind and micropressure, from which we can derive non-linear regression curves at any 
given percentile level. The quantile regression curves could eventually serve as design curves for a constant false 
alarm rate (CFAR) detector. 
 
A copula is a function that joins or ‘couples’ a multivariate distribution function to its one-dimensional marginal 
distribution functions. For a formal framework of copulas see Joe (1997), Nelsen (1999), and Drouet-Mari and Kotz 
(2001). The basic idea behind the copula formalism is to separate dependence and marginal behavior between 
elements of multivariate random vectors. For simplicity, we consider bivariate copulas. A great many examples of 
copulas can be found in the literature and most of the copulas are members of families with one or more real 
parameters. One important class of copulas is the normal or Gaussian copula. Another important class of copulas is 
the Archimedean copulas. We discuss the various copulas in much greater detail in Bondár (2005), and confine our 
discussion here to the use of the Gumbel copula, in the Archimedean class. Note that the Gumbel copula is also an 
extreme value copula, and exhibits positive upper tail dependence. 
 
We have determined the 50% and 95% quantile regression for the micropressure channel at I08H1 versus a variety 
of wind, or wind derived quantities, including wind speed, longitudinal wind speed, mean wind speed, and the 
Bernoulli trace. We generate the ‘Bernoulli’ trace from the average wind speed and the radial (longitudinal) wind 
component as wavg * (wr – wavg). This formula follows from Bernoulli’s principle, which states that for a laminar 
flow, small variations in air pressure are proportional to the full derivative of wind speed: dp ~ w*dw where dw 
denotes the wind fluctuation. While Bernoulli’s principle ignores turbulence, it might still serve as a good 
approximation for the micropressure variations. 
 
In our regressions we used data for each day in the 
data set shown in Figure 3 and considered a range of 
copulas. Using the Gumbel copula we obtain good 
quantile regression fits to the micropressure and 
Bernoulli data, so we limit the following discussion 
to these particular results. Furthermore, to facilitate 
the copula formalism, we work with the envelopes 
of the various traces. 

 
Figure 10. Median and 95% quantile regression curves 

(lower and upper curves, respectively) of 
absolute micropressure variations subject to 
Bernoulli trace at I08BO between May 1 and 8, 
2005 derived from the Gumbel copula. 

 
Figure 10 shows the corresponding quantile 
regression curves obtained from the Gumbel copula 
and the micropressure and Bernoulli trace data. The 
value of copula parameter α and the misfit between 
the empirical and theoretical K(t) distributions are 
given in the legends. In some cases (e.g. May 7) the 
copula fitting procedure suggested that 
micropressure variations are independent from the 
wind. This is most likely related to data problems 
due to the inertia of anemometers at low wind 
speeds (calms), and to the insufficient sampling of 
the distribution tails. In order to measure tail 
dependence, the data set should be large enough to 
provide a representative sample from the tails of the 
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marginal distributions. Furthermore, true signals may contribute to the tails; hence the data set used to derive the 
regression curves subject to wind should avoid periods with infrasonic signals. 
We used the quantile 
regression curves obtained for 
I08BO on May 1, 2005 to 
predict absolute micropressure 
variations for the rest of the 
days. Figure 11 shows the 
absolute micropressure and the 
Bernoulli traces for May 1, 
2005. The green lines in 
Figure 11 are detections 
reported by the International 
Data Centre (IDC), based on 
use of the Progressive Multi-
Channel Correlation (PMCC) 
algorithm (Cansi, 1995). 
Unlabeled PMCC detections indicate noise detections. This day should be suitable dfor deriving regression curves, 
since PMCC made only two signal detections (labeled green lines) on this day. 

Figure 11. Absolute micropressure (top) and Bernoulli traces (bottom) at 
I08H1 on May 1, 2005. Green lines denote PMCC detections; 
unlabeled detections are noise detections. 

 
Figure 12 shows the absolute micropressure variations and the predictions, based on the Bernoulli trace, for May 2-
8, 2005 at I08H1, predicted from the corresponding Gumbel quantile regression curves from May 1, 2005. Note that 
the 95% quantile regression is interpreted such that 95% of the times the absolute micropressure variation is below 
the 95% quantile regression. If the micropressure variation exceeds this threshold, then it is not explained by the 
wind.  

 

 
Figure 12. Absolute micropressure (blue) at I08H1 for May 2 to 8, 2005 (bottom to top), with predictions 

from  the Gumbel median (light red) and 95% (dark red) quantile regressions. Regressions based 
on the micropressure and Bernoulli traces on May 1, 2005. Green lines indicate PMCC detections 
reported by the IDC. 

We are only able to characterize the low frequency micropressure versus wind relations due to the low sample rates 
used for the wind sensors at IMS stations. Thus, during calm periods, although for most cases the micropressure 
variations appear to be explained by the wind, the coherence across the array may be carried in higher frequency 
bands, allowing PMCC to make detections. Similarly, the peaks above the 95% quantile curves could indicate data 
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problems and may not be coherent in the whole infrasonic frequency band. Nevertheless, there are instances when 
the micropressure fluctuations persistently exceed the 95% quantile curves without producing PMCC detections. 
These may indicate missed signals. A more comprehensive discussion of these results, as well as our overall 
application of a statistical approach to predicting micropressure variations from wind observations, can be found in 
Bondár (2005). 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
In this study we focused on developing and validating the methodology to characterize the relations between wind 
and micropressure. We have demonstrated the practical value of wind measurements for understanding the structure 
of infrasonic noise. 
 
We applied a common methodology to estimate the ambient infrasound noise. This investigation took advantage of 
the availability of infrasound data on the rapid-access RDSS data archive. These analyses indicate that the median 
noise amplitude at a given station and frequency may vary by two orders of magnitude depending on time of day or 
season and may vary among the stations by a factor of about 15 at 0.2 Hz and about 40 at 1 Hz. Ambient noise 
clearly increases with horizontal wind speed, particularly above a threshold wind speed (which varies among 
stations). To ensure that the full range of inter-station variability in the noise-wind relationship is captured we 
recommend that ambient noise at new stations be estimated as data become available. Further, all of the results 
described here are critically dependent on accurate station parametric (e.g. amplitude and phase response) and 
environmental (e.g. vegetation at site) metadata. We recommend continued efforts to compile and maintain these 
metadata. 
 
We found that the overall dependence of micropressure on the mean wind speed is similar for all frequencies and 
mean wind speeds. At low wind speeds, less than about 1 m/s, there is only a moderate increase in micropressure as 
the wind speed increases. At high wind speeds, above 2 m/s or so, the micropressure increases rapidly with 
increasing wind speed. For wind speeds above about 2 m/s the effect of the wind on the micropressure is much 
larger than that of microbaroms at the stations studied here.  
 
The close correlation between micropressure power spectra and wind speed motivated experiments to predict 
micropressure amplitudes in the time domain from the mean wind speed. Such predictions can serve to assess the 
probability that high amplitude micropressure signals are generated by wind gusts or by other sources. We presented 
two methods for making predictions based on independent estimates of micropressure and wind speed relations. In 
the first method, we used locally robust regression to model the relationship of mean speed to micropressure based 
on data from a two week period. We then applied this relationship to data during the subsequent two weeks. The 
micropressure predictions based on the regression estimates gave similar results for micropressure during wind 
speeds above 1.5 m/s, with standard errors of less than 3dB for RMS amplitudes in six frequency bands covering 
frequencies between 0.05 – 4 Hz.  
 
In our second method for making estimates of micropressure from wind speed observations we used a statistical 
methodology, based on copula theory.  We found that the dependence structure of micropressure variations is best 
described by the Gumbel copula that belongs to the family of Archimedean copulas. The tail-dependence structure 
described by the Gumbel copula fits the observations well. That is, infrasonic noise becomes dominated by local 
winds when wind speeds exceed a threshold level. The copula formalism allows us to construct the conditional 
probability distribution of absolute micropressure subject to wind statistics, and derive quantile regression curves at 
any given percentile level. The quantile regression curves can serve as design curves for a constant false alarm rate 
detector, as well as quantify the probability of a detection being a real signal.  
 
In order to derive a robust estimate of the quantile regression curves, the data set must be large enough, preferably 
void of true signals, to provide sufficient sampling of the tails of the marginal distributions. Our experience shows 
that at least one day of data is required to get reasonable estimates. The quantile regression curves can then be used 
to predict micropressure fluctuations for other periods. We found that among the wind statistics we investigated 
(horizontal wind speed, longitudinal wind speed, average wind speed and Bernoulli trace) the Bernoulli trace offers 
the most conservative predictions. 
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The promising results for predicting micropressure from wind speed, as reported here, should be pursued further. 
For example, we can take azimuth and temporal variations into account, and consider refinements of the regression 
and statistical models. Issues to consider include investigating the coherence structure of the wind field propagating 
across the array, investigating the pressure-wind dependence structure at frequencies above 1 Hz, and considering 
the longitudinal/transverse component of the wind. The systematic application of the regression and copula 
methodologies to all IMS infrasound stations was beyond the scope of this work. A more comprehensive analysis 
will be particularly enlightening, given that the IMS infrasound stations are deployed in widely varying 
environments, with different types of spatial filters.  
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