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ABSTRACT 
 
Practical implementations of new or improved monitoring technologies, such as signal detectors, network phase 
association algorithms, location and event identification methods, rely on quantitative assessments of performance 
such as detection probabilities and false alarm rates. These types of performance metrics are typically obtained 
through experiments using data sets constructed from archival data records. However, such experimental data sets 
implicitly contain signal and event recordings from numerous unknown sources (e.g., small earthquakes not reported 
in published local, regional, or teleseismic bulletins) potentially contaminating the data set and complicating the 
interpretation of processing results. Furthermore, they are only representative of events and station network 
characteristics contained during the time interval of the archival data. Our objective is to develop an experimental 
network data set in which all the target signal and event detections are known and ultimately to extend those results 
to represent expected network data from potential surrogate events and stations, which may not be included in the 
historical archive. To achieve this objective, we have been developing the framework for synthesizing a database 
including continuous waveform data for a network of seismic and infrasound stations relevant to nuclear explosion 
monitoring which contains signals from actual events, scaled to various sizes, and embedded in a variety of 
background noise. 
 
Our initial focus for this study has been a large region in southern Asia (15°-45°N 50°-115°E). We have identified a 
network of 51 core seismic and infrasound stations, most useful for monitoring this region; and we have been 
collecting waveform data from those stations to represent background noise and signals from historical nuclear 
explosions as well as earthquakes and seismo-acoustic sources. In constructing the data for background noise, we 
are seeking to form long, continuous waveforms of detection-free clean noise spanning several days into which we 
can then embed real event signals and signals which have been scaled down on the basis of source scaling 
predictions to magnitudes representing lower levels. Formation of clean noise waveforms has required meticulous 
analysis to exclude time-windows with phase arrivals predicted from global and regional seismic bulletins as well as 
phases picked by standard signal detectors. Resulting noise segments have been carefully merged together to 
produce several days of continuous clean noise waveforms while maintaining basic noise attributes with respect to 
overall level and seasonal, weekly, and diurnal variations. From our effort to date, we have generated clean noise 
waveforms of two-days duration, as well as reversed noise waveforms of similar duration, for 42 of the seismic 
stations. 
 
We have assembled the seismic signal waveforms from 6 underground nuclear explosions and approximately 100 
well-recorded earthquakes with high signal-to-noise ratio (SNR) which occurred in southern Asia along with 
seismo-acoustic signals from 23 mine blasts and one bolide recorded by infrasound stations in Mongolia and 
Kazakhstan. We have been testing and employing frequency-dependent explosion (e.g., Mueller/Murphy) and 
earthquake (e.g. Brune with both inverse cube- and quad-root corner frequency dependence on moment) source 
scaling models to scale down the large, high-SNR events to small events covering a range of yields/magnitudes 
approaching the monitoring thresholds. In addition to describing target events for analyzing monitoring 
performance, the scaling/embedding process is also being used to represent potential sources of regional and 
teleseismic clutter signals, which increases processing complexity (while continuing to maintain control of the 
contributing sources) and provides a more realistic background condition than the clean noise scenario. Preliminary 
event detection experiments are quantifying the systematic time, amplitude and azimuth measurement biases that 
can be expected from low-SNR detections. Methodologies for analyzing the performance of the infrasound stations 
for monitoring seismo-acoustic events from the southern Asia source region are also being assessed. 
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OBJECTIVES 

Our objective is to develop an experimental network data set in which target signal and event detections are known, 
as well as having realistic distributions of false or “clutter” detections and background noise characteristics. We are 
utilizing a variety of actual nuclear explosion, earthquake, mine blast and infrasonic event recordings and 
developing scaling and embedding algorithms to yield continuous waveforms with numerous target events at or near 
the detection threshold in southern Asia. This will allow for detection, location and identification experiments 
utilizing the known characteristics of small events under realistic background noise and seismicity conditions. The 
background noise, scaled signals, embedded waveforms and relevant meta-data from this effort are available to the 
monitoring research community via the mechanisms of the Research and Development Support Services (RDSS) 
web site (http://www.rdss.info/, Woodward et al. 2005). 
 
RESEARCH ACCOMPLISHED 

The basic framework for the comprehensive network data set was developed previously (Kohl et al., 2004) and is 
depicted in Figure 1. It involves taking well-recorded, high signal-to-noise ratio (SNR) signals, scaling them down 
to various sizes based on source theory and embedding them in a variety of background noise conditions. We are 
scaling and embedding nuclear explosion, earthquake, seismo-acoustic (e.g., mine blast) and infrasonic event 
recordings at levels spanning the detection threshold. 
 
We assembled a background noise library of two days of continuous detection-free clean noise, two days of reversed 
clean noise and fours days of whole background noise for a core network of 42 stations. We constructed a signal 
library from 6 nuclear explosions, over 100 earthquakes, 23 mine blasts and one bolide. We developed source 
scaling models for nuclear explosions and earthquakes and scaled the nuclear explosion records and earthquakes to 
equivalent mb ranging from 1.8 to 4.5. We embedded the scaled signals several hundred times in varying noise 
conditions and conducted a number of signal detection experiments yielding Receiver Operating Characteristic 
(ROC) curves and quantitative assessments of arrival time, azimuth and amplitude biases as a function of SNR for 
selected stations. We continue to develop scaling models for infrasound signals and plan on conducting experiments 
to demonstrate the utility of this approach to assess network processing performance. 
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Figure 1.  Basic framework for constructing a network data set for systematic testing and evaluation of new 

or improved monitoring technologies. Scaled signals from a variety of sources are embedded in a 
variety of noise conditions to construct a data set in which target detections have been characterized. 
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Noise and Signal Library 

In the past year we completed the construction of three 
background noise datasets for a network of 42 stations 
useful for building experimental data sets for testing 
monitoring capabilities in southern Asia (15°-45°N 50°-
115°E). The first of these data sets (clean-noise, two days) 
was constructed by stitching together detection free 
segments. To insure that the stitched clean-noise 
realistically represented actual noise, including known 
seasonal and diurnal variability, we first assembled a set of 
reference spectra for each station and channel spanning the 
range of variability for each station (Figure 2). For example, 
for stations that exhibited strong diurnal variability in the 
noise levels, we computed a separate reference spectrum for every hour of the day. Only those detection-free 
segments derived from the same hourly span, and whose spectra matched the reference spectra were used. To 
minimize the effects of the merging process we used 10 to 120 second tapers at the ends and overlapped neighboring 
segments. All the channels of stations and arrays were merged consistently in time to retain the noise coherency 
characteristics originally present in the data.  

 
Figure 2.  Example reference spectra for hours 0 

and 3 for the CM16 element of CMAR. 

 
The second noise dataset (reversed, two days) was constructed by simply time-reversing the clean background noise, 
thus also yielding two days of continuous noise. The third noise dataset (whole-background) was constructed by 
simply extracting four days of raw continuous data (June 1998). This third dataset is analogous to what is normally 
used in signal processing experiments. As a quality control measure, and to establish a baseline background 
detection rate, we ran standard signal processing (DFX) against the clean noise. Despite the fact that the clean noise 
was constructed from detection-free segments, low-level detections were still made against the clean and reversed 
noise. On average the detection rate against the clean-noise was 20% of that against whole-background noise and 
reversed noise had a detection rate of about 30% of the whole-background noise. Figure 3 shows the waveform and 
the spectrogram of a waveform stitched from detection-free segments. 
 
In the past year we assembled a signal library from the waveforms of 6 historical nuclear explosions, more than 100 
earthquakes, 23 mine blasts and one bolide that occurred in central and southern Asia. We are computing a wide 
variety of signal characteristics (e.g. Figure 4) on the original event records, and the scaled signals. 
 
 

       

 

Signal Spectrum

flow fhigh

fpeak

Pre-Signal Noise Spectrum

 
Figure 4.  Schematic showing the signal bandwidth 

and peak-frequency measurements 
routinely computed for the signal library. 

Figure 3.  Spectrogram of merged clean-noise 
around a stitching boundary (marked start 
– “T” and end – “e” markers). 
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Explosion and Earthquake Scaling 

One of the principal objectives of this project is to provide realistic assessments of monitoring performance for 
smaller events for which the signal detections from station networks are often incomplete. To better understand the 
factors affecting this performance for our southern Asia study area, we have been using source scaling theory to 
scale the signals from larger events. This scaling introduces a frequency-dependent change in signal amplitudes. 
 
For explosion scaling we have been using the Mueller-Murphy (MM) model which has been validated over the years 
for a range of explosion observations (Mueller and Murphy, 1971; Murphy 1977). Alternative models (e.g., 
vonSeggern and Blandford, 1972) would be expected to produce very similar predicted behavior. The MM model is 
formulated in terms of explosion yield (W) and provides an expression of the P-wave spectrum as a function of 
source media properties, explosion yield, depth, and empirical constants corresponding to different geologic 
emplacement media. For southern Asia we use the explosion scaling relations for granite, which worked well for 
nuclear explosions at Semipalatinsk and Lop Nor test sites. For scaling the explosions in terms of body-wave 
magnitude mb, we use the relation mb = 4.45 + 0.75 logW, which has been previously validated for these test sites, to 
convert to yields. Our MM model results were verified by comparing observations of Pn spectral ratios from nearly 
co-located nuclear explosions with the predictions based on the source scaling theory. Some of these comparisons 
showed very good matches, although in other cases there appeared to be corner frequency differences, which may 
require future modifications to some of the model parameters. 
 
To test the explosion scaling model, we applied the MM scaling procedures to scale the signals recorded on a 
network of regional and teleseismic stations from 6 southern Asia underground nuclear explosions, down from their 
original magnitudes (4.5 ≤ mb(REB) ≤ 6.0) to a range of lower magnitudes (mb(REB) = 4.5 and in 0.1 magnitude 
unit steps from 4.0 mb(REB) to 1.8 mb(REB)). We then applied standard IDC processing to the scaled signals to 
measure initial P amplitudes and associated periods, which would be used for computing station magnitudes. The 
results are presented in Figure 5a, in which we plot the observed magnitude differences at each stations, 
logAi/Ti(original unscaled) – logAi/Ti(scaled) where i is a station index, versus the target mb difference, mb(original 
for the network) – mb(target for the network). Obviously the ideal result would be for the observed magnitude 
difference at each station to equal the target magnitude difference, and this is achieved quite well in the explosion 
scaling measurements in Figure 5a. The observations are scattered around a line with a slope approximately equal to 
1.0. With the exception of a few outliers related to data quality issues, the scatter in the observations is less than half 
of a magnitude unit, and the least-squares linear fit to the observations is 1.02 with only a slight bias indicated at the 
largest target magnitude differences. Thus we conclude that the MM explosion scaling procedure appears to be 
performing as expected over a fairly large range of magnitudes. 
 
For earthquake scaling, we began with a Brune ω2-source model. For this model the corner frequency is proportional 
to velocity of the source medium and inversely proportional to a source dimension term, which scales with moment. 
In scaling the earthquake signals, we consider both cube-root (as indicated in original models by Brune 1970, Hanks 
and Bakun 2002) and quad-root (as suggested by Mayeda and Walter 1996 amongst others) for  
 
 Explosions Earthquakes 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

mb difference (event mb - target mb)

m
b
 d

if
fe

re
n
ce

 (
m

ea
su

re
d
)  

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

mb difference (event mb - target mb)

m
b
 d

if
fe

re
n
ce

 (
m

ea
su

re
d
)

 

y = 0.99 x + 0.02 

y = 1.0 x 

(b)(a)

y = 1.0 x 

y = 1.02 x + 0.02 

Figure 5.  Results of magnitude differences for P and Pn signals measured from routine processing of the 
observations from 6 southern Asia nuclear explosions scaled using MM explosion source scaling (a) 
and from 17 southern Asia earthquakes scaled using our preferred cube-root earthquake model (b). 
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corner frequency dependence on seismic moment. Our 
analyses to date focus on the model with cube-root corner 
frequency dependence. In the earthquake model we 
followed the approach of Hanks and Bakun (2002), using 
the definition of moment magnitude, Mw, to establish the 
relationship to source moment – i.e., logM0 ≡ 1.5 Mw + 
16.05. We began with a simple linear model for relating Mw 
to mb. We drew upon observations from the global EHB 
(Engdahl et al. 1998) earthquake sample for large events 
(mb(REB) > 4) along with observations from smaller events 
for selected areas reported by Patton (2001), which were 
adjusted to equivalent REB mb’s (assuming mb ≈ mb(REB) 
+ 0.3). Although the data scatter (Figure 6) would appear to 
permit a linear Mw-vs-mb model (i.e. essentially a straight-
line relationship between logM0 and mb), the implied effects 
on spectral behavior are not realistic. In particular, for small 
events with magnitudes measured from signals with 
frequencies below the corner frequency, a one unit change 
in mb should correspond to a factor of ten change in M0. To 
meet this objective we would need to have Mw ∝ 2/3mb – 
i.e. logM0 ∝ 1.0mb. The observations in Figure 6 cannot 
support such a slope over magnitudes 3 ≤ mb(REB) ≤ 6. We, 

therefore, decided to investigate a model for which the Mw-vs-mb relationship is nonlinear; Taylor et al. (2002) 
reached a similar conclusion and developed a model only slightly different from those described below. In 
particular, we sought to determine an earthquake model for which logM0 scales directly as the mb difference for 
small events, produces Mw ≈ mb over some intermediate range in magnitude, and has Mw greater than mb for larger 
events (where we know mb is saturated). 

 
Figure 6.  Log M0 versus mb(REB) for a large 

global earthquake sample reported by 
EHB and elsewhere. 

 
As a preliminary validation test to further constrain our earthquake model, the earthquake scaling relations were 
used to scale down the signals from selected samples of large southern Asia earthquakes which were well recorded 
at regional and teleseismic stations. Just as for the scaled explosion signals above, we compared the A/T 
measurements from the scaled P and Pn signals to the target values for the earthquakes, mb(REB) = 2.5 – 4.5. When 
this scaling model was applied to the signals from 17 
southern Asia earthquakes, the A/T measurements were 
in very good agreement with the expectation (Figure 
5b). There appears to be very little indication of bias in 
the results; the slope of the least-squares straight line fit 
to the observations is 0.99 and the intercept is 0.02. 
Scatter about the line is about 0.7 magnitude units, only 
slightly greater than the scatter seen in the 
corresponding explosion measurements. We conclude 
that the cube-root model combined with our logM0 – mb 
relation (Table 1), provides a reasonable procedure for 
scaling the southern Asia earthquakes. We are 
continuing to look at additional validation with spectral 
ratios (e.g., Figure 7) from nearly co-located events and 
to evaluate alternatives, including an earthquake model 
with quad-root corner frequency dependence. 

Table 1:  Preferred moment-vs-mb relationship 
LogM0 – mb relation for cube-root model 

log M0 = mb(REB) + 18.55 mb (REB) ≤ 3.8 

log M0 = 1.5 mb (REB) + 16.65 3.8 ≤ mb (REB) ≤ 4.8 

log M0 = 3.0 mb (REB) + 9.45 mb (REB) ≥ 4.8 

Mainshock

Aftershock

 
Figure 7.  Spectral ratio of a mainshock/aftershock 

pair in southern Asia, showing good 
agreement with the cube-root model (green). 
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Signal Processing Experiments 

Controlled experiments with the embedded data offer several opportunities for evaluating algorithms for station 
signal processing with regard to signal detection as well as estimation of signal parameters. We give examples 
below with results from initial seismic signal processing experiments. Test data sets were constructed from 
background noise and scaled signals for three stations: CMAR, FINES, NIL. Signals scaled to magnitudes between 
mb =1.8 - 4.5 in increments of 0.1 magnitude units (m.u.) from three large and similar (mb ~ 5.5) underground 
nuclear explosions at the Lop Nor test site were embedded in noise of different types – whole background, clean, 
and reversed clean. The test data sets were processed with DFX signal detection and parameter extraction programs 
with configurations currently employed at the IDC.  
 
Signal Detection Probabilities 

 Detection probabilities as a function of mb were calculated as the ratio of the number of detected signals/total 
number of embedded signals of magnitude mb. Figure 8 compares the probabilities for the three stations as a 
function of mb. The probability curves are in reasonable agreement with a Gaussian cumulative distribution 
functions with mean values corresponding to the 50% detection probability threshold, and the standard deviation is a 
measure of noise amplitude variation. The data in Figure 8 thus support the common assumption of network 
detection simulations that incremental detection probabilities as a function of mb can be approximated by cumulative 
Gaussian distribution functions (Kvaerna and Ringdal, 1999). 
 

False alarm rates 

Estimates of false alarm rates from the rates of 
unassociated detections become uncertain when based 
on observations of real data; such unassociated 
detections include detections of signals from events of 
unknown origin as well as detections triggered by 
signal coda. Clean noise, free of signals, can provide a 
more robust estimate of the false alarm rate, that is 
unbiased both due to signals of unknown origin and due 
to coda detections. 
 
In Table 2 we compare the false alarm rates of the three 
types of noise samples. The false alarm rates for clean 
and clean-reversed noise with no embedded signals 
represent genuine false alarms of the detector 
configuration, whereas for the real noise data some 
portion of the detections are from signals of seismic 
events. The number of detections of the whole 
background noise data that could be associated (using a 
4 second allowance for initial P) with seismic events in 
the ISC database was small (< 10%). The ISC reported 
close to 200 worldwide events/day for the time period 
analyzed here, but its event catalog is incomplete for 
small events. Furthermore, secondary phases or coda 
detections were not considered in the association, so 

total detection rates, with ISC associations subtracted, still overestimate the actual false alarm rate. The difference is 
most striking for NIL, for which the unassociated rate of the clean noise is about a factor of eight lower than that for 
the real data, while this factor is around 5 for FINES and a little more than 2 for CMAR. 

 
Figure 8.  Detection probabilities as a function of mb 

for the stations CMAR, FINES, and NIL. A 
Gaussian scaling is used for the detection 
probabilities on the vertical axis so that true 
Gaussian data would follow a straight line. 
The data points for the detection probabilities 
follow the fitted lines closely suggesting a that 
the detection probability as a function of mb 
can be approximated with a cumulative 
Gaussian distribution. 

Table 2.  Daily Unassociated Detection Rates for Different Noise Types 

Station Clean1 Reversed Clean Whole Background 
CMAR  190 | 37  160 | 29 411 
FINES  20 | 6  30 | 6 165 

NIL  62 | 7  85 | 3 507 
1. The two numbers represent the number of unassociated detections in clean noise with no embedded signals/number of additional unassociated 
detections when signals were embedded.  
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With signals embedded in the clean noise the false alarm or unassociated rate goes up slightly due to additional coda 
detections that normally would have been assumed to be false alarms. The rates of such additional unassociated 
detections are also given in Table 2. The median of this increase in false alarm or unassociated rates when signals 
are embedded for the clean and reversed clean noise is about 20%. 
 
ROC curves 

The performance of a signal detector is often defined by the so-called Receiver Operating Characteristic, ROC, 
which describe the trade-off between signal detection probability and false alarm probability (Van Trees, 1968). 
Using scaled signals embedded in clean noise affords the opportunity to construct ROC curves, which is difficult, if 
not impossible, to do from real data. An example of an ROC curve constructed from detection experiments with the 
array FINES is shown in Figure 9. The histograms to the left show the distributions of the logarithm of the short 
term/long term averages (sta/lta), or SNR, for noise (red) and for signals (plus noise) (in blue) of the same size 
(mb=3.30). Note that the histograms for the signals include data for signals that were not detected. SNR values for 
undetected signals could be calculated because of their known embedding times. Gaussian curves draped on the 
histograms show reasonable agreement with the empirical SNR distributions for both noise and signal data. The 
detector triggers if the SNR is above a preset threshold and the default threshold used in the processing experiment 
is marked as a vertical dashed line (green) to the right. A significant portion of the SNR distribution for the 
explosion signals is below the threshold and hence went undetected. If the threshold were lowered to, e.g., the mean 
of the SNR distribution (black dashed line to the left marked "NEW THRESHOLD"), the probability to detect an 
explosion signal would increase significantly (to 50%) without significantly increasing the probability of triggering 
on noise, or of a false alarm. 
 
In the right diagram the two Gaussian distributions for noise and signal detection probabilities were combined to a 
standard ROC curve. The “default” and the "new" thresholds are marked showing that by lowering the threshold the 
false alarm probability would not change much, whereas the detection probability would go up from less than 20% 
to 50%. It should be noted that the data in Figure 9 represent beam forming with steering of a single beam that is 
optimum for FINES and the Lop Nor test site. 
 

          
Figure 9.  The histograms in the left diagrams for SNR (log scale) of noise (red) and of signals (blue) are used 

to construct the ROC curve in the right diagram. The default threshold used in the detection 
experiment is marked as a green dashed line in the left diagram and as a filled dot in the ROC curve.  
The ROC curve shows that lowering the default threshold (marked as “NEW THRES” in the 
diagrams) has little effect on the probability of false alarm, but would increase the probability of 
detection from less than 20% to 50%. 

 
Estimation of Signal Parameters  

Apart from detection the processing algorithm that we use (DFX) estimates signal parameters that characterize a 
detection, such as time of arrival, SNR, amplitude, and for arrays, slowness vector. With the ground truth of the 
characteristics of embedded signals, the distributions of errors in parameter estimates can be estimated with 
accuracy. Figure 10 summarizes some statistics of estimation errors in amplitude/period ratios (to the left) and 
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azimuths of slowness vectors (to the right) for the DFX algorithm for experiments with FINES. The boxplot to the 
left shows that the automatically estimated amplitude/period ratio becomes increasingly positively biased with 
decreasing SNR of the detected signal. The bias at the threshold of the detector (log SNR=0.5) is, on average, about 
0.3 m.u. The bias is probably caused by low frequency noise that the automatic algorithm cannot account for as the 
amplitude/period ratios for the downscaled signals were unbiased prior to embedding in the noise (see Figure 5). 
The bias raises the question whether amplitude/period measurements at low SNR should be used uncorrected for 
magnitude estimation. 
 
The errors in azimuth estimates (right diagram in Figure 10) grow fast with decreasing SNR. A bias is not as clearly 
defined as for the amplitude/period ratios, but the scatter increases drastically as indicated by the widening of the 
boxes which represent 50% of the data around the median. The dashed red lines outline the 50% limits of the 
azimuth uncertainty (measurement errors) assigned by the automatic algorithm, which clearly underestimates the 
spread of the actual azimuth errors at low SNRs around 4 and below. An analysis of the empirical distributions of 
the amplitude and azimuths errors revealed that they are well represented by a Gaussian for all SNRs. 
 
 Amplitude Azimuth 

      
Figure 10.  Errors in amplitude/period ratios (left) and azimuth (right) of the automatic DFX algorithm for 

signals embedded in clean noise of the array FINES. The boxplots show the errors as a function of 
log SNR; the dashed lines for azimuth in the boxplot to the right outline the 50% limits of errors 
assigned by the automatic algorithm (measurement errors).  

 
Seismo-Acoustic Event Database and Scaling 

Detection of infrasound signals from seismo-acoustic events (e.g., mine blasts) can provide valuable insights into a 
variety of research topics, such as infrasound propagation, seismic vs. acoustic coupling and the effects of wind-
generated noise on infrasound detection. It is our objective to provide to the nuclear monitoring research community 
a controlled data set where scaled infrasound signals are embedded in a variety of noise conditions. This will be 
particularly useful for evaluations of detection algorithms. Currently evaluations with respect to variations in 
ambient noise are dependent on finding data sets where signals from known sources are detected in a variety of 
noise conditions. Given the current dearth of such infrasound ground truth, a comprehensive evaluation of 
infrasound detection capabilities using actual recordings is difficult. 
 
We are following the same basic methodology for infrasound that we used for seismic data (described above). 
Namely, we are building a background noise database from historical recordings, collecting high-SNR infrasound 
signals from known sources, applying a source scaling function to the recorded data, and embedding the scaled 
signals in the background noise. In contrast to nuclear explosion or earthquake source theory, general theoretical 
models cannot be used to predict the scaling of infrasound signals from mine blasts. This is in large measure due to 
the fact that differing mine practices, acoustic coupling and other local conditions vary immensely from mine to 
mine and region to region. Therefore we are following an empirical approach to assess the scaling of infrasound 
signals and limiting the scope of the scaled and embedded data. We are building the data set such that each 
scaled/embedded event represents effectively the same source and meteorological conditions as the original event, 
with only the signal amplitude (by no more than one order of magnitude) and the ambient noise conditions varying. 
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chinadaily.com.cn 

Figure 11.  Bolide near Lanzhou, China on December 11, 2004 recorded on the IMS infrasound array I34MN 
and reported in the local media. 

 
We obtained seismo-acoustic recordings (seismic and infrasonic signals from the same source) from 23 mine blasts 
(c) and 1 bolide (Figure 11) in central Asia for inclusion in our signal library. The mine-blast data offer an 
opportunity to look for evidence of non-linear source scaling in the infrasound data. b shows a section of 9 
infrasound signals recorded at I31KZ for mines at ranges between 50 and 400 km. Traces 1 and 3 originating from 
the same mine, however, had signal amplitudes differing by a factor of about 10. Similarly traces 2 and 4, again 
originating from the same mine, had signal amplitudes differing by a factor of about 3. In both cases, spectra ratio 
comparisons showed that the signals scaled approximately linearly with frequency, consistent with the visual 
similarity of the waveforms. Thus, based on this admittedly limited data set we are proceeding with a linear scaling 
function and embedding these in a variety of noise conditions. 
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Figure 12.  Infrasound data (panel b) from selected 

mine blasts (stars in panels a and c) in 
central Asia. Numerous mine blasts are 
recorded by the IMS infrasound arrays, 
I31KZ and I34MN at a variety of 
distances, particularly in the vicinity of 
I31KZ (panel a). 
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CONCLUSIONS AND RECOMMENDATIONS 

We developed a network data set where scaled signals were embedded in varying background noise conditions, 
including carefully constructed clean noise. Analysis of reprocessed scaled data show that both a Mueller-Murphy 
model for nuclear explosions, and modified Brune model with cube-root corner frequency scaling and an empirical 
logM0-mb relation for earthquakes, give consistent amplitude scaling for events in southern Asia. 
 
The detection experiments we executed illustrate some of the benefits that using an embedded data set can provide 
for assessment of signal detection and characterization algorithms. We found clear evidence for an amplitude bias 
for low SNR signals and that measurement uncertainties for azimuth probably underestimate the error at low SNR. 
In general we conclude that experiments with an embedded data set can: 

• Validate assumptions for detection probabilities underlying network simulations of real data 
• Provide accurate estimates of station detection probability as a function of source strength 
• Provide unbiased estimates of false alarm rates 
• Accurately map ROC curves for relative assessment of signal detectors and detector configurations 
• Estimate the statistical characteristics of errors of signal parameters such as arrival times, slowness vectors, 

and signal amplitudes. 
 
The background noise, scaled signals, embedded waveforms and relevant meta-data from this effort are available to 
the monitoring research community via the RDSS web site (http://www.rdss.info/, Woodward et al. 2005). 
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