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ABSTRACT

The problem of tree-ring standardization is examined in this
study from the point-of-view of standardizing closed-canopy forest
ringwidth series. The problem is defined in terms. of the high level
of uncertainty in differentiating climatic -fluctuations from those
fluctuations in the ringwidtﬁs caused by competitive iInteractions
between trees and stand disturbances.

A biological model for a tree-ring standardization method is
developed through the decomposition of a theoretical ringwidth series
using a linear aggregate model. By this process, it is found that one
class of non-climatic varlance that is frequently responsible for
standardization problems could be objectively minimized in theory.
This 1is the variance caused by endogenous stand disturbances which
create fluctuations in ringwidth series that are non-synchronous or
out-of-phase when viewed across trees in a stand. Since out-of-phase
fluctuations cannot be logically related to the common climatic signal
affecting all trees in the stand, the proposed standardization method
should remove only that variance regarded as unique to individual
trees and simultaneously preserve all common variance resolvable from
the age trend.

A time serles model based on the autoregressive process is pro-
posed as a means of minimizing the timewise iInfluence of endogenous

disturbances In a detrended ringwidth series. Specific estimation



xi

techniques are described for applying autoregressive modelling to the
tree-ring standardization problem and for reducing the influence of
disturbance-caused outliers in the mean-value function. The final
chronology developed by this overall methodology is called the ARSTND
chronology.

A stochastic method of detrending based on émoothing splines is
tested and adopted as part of the ARSTND mefﬁodology. The theoretical
signal and noise variance properties of tree-ring serles are derived
based on an internal additive noise model which may be autoregressive
in form. Signal-to-noise ratio (SNR) properties of this general model
indicate that autoregressive modelling and prewhitening of detrended
ringwidth indices will reéﬁlt in a higher SNR if and only if autocor-
related noise 1is pfesent in the series. This enables the verification

of the general SNR theory and the error variance reduction property of

the ARSTND methodology.



CHAPTER 1
INTRODUCTION

Annual tree-ring chronologies are being increasingly used
around the world to develop long histories of clim;tic variations for
studying climatic change. This study of pasf and present climate from
tree rings is known as dendroclimatology (Fritts, 1976). To this end,
a great deal of research has gone into developing statistical transfer
functions for reconstructing past climate (Fritts et al., 1971;
Stockton, 1975; Meko, 1981). Typically, the predictor variables used
in these transfer functions are mean index chronologies or their
orthogonal transforms. Although the transfer functions are backed by
a sound body of statistical theory, the same cannot be said for the
standardization procedures used to develop the mean index chronolo-
gles. The procedure of modelling and removing "non-climatic” growth
trends and fluctuations is a major purpose of tree-ring standardiza-
tion and is, therefore, crucial to the reliability of the resultant
climatic reconstructions. Thus, it is ironic that relatively little
effort has gone into developing a theoretical framework and procedures
for objectively standardizing tree-ring series compared to that spent
on developing transfer functions. Much of this disparity is due to
the fact that most of the techniques used in dendroclimatology today
were developed by the Laboratory of Tree—-Ring Research in Tucson using
semi~arid site tree-ring series from western North America. Such

1
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trees often have very simple exponential or linear growth trends.
Because these trends can be fit well using simple mathematical models,
there was no reason to develop the standardization methodology any
further.

Once dendroclimatic research left the confines of the semi-
arid tree-ring sites and moved into more mesic, closed-canopy forest
sites of the world, problems in tree-ring standardization quickly
arose. The non-climatic growth trends could not be modelled with any
consistency using simple mathematical models due to the effects of
competitive interactions and sporadic disturbances on tree growth.
Several procedures have been develcped to accommodate these more
complex non-climatic growth fluctuations (e.g. Fritts, 1976; Warren,
1980; Cook and Peters, 198l). As yet, none of them are satisfactory
due tn the wuncertainty of removing valuable climatic information
during the standardization procedure. In the following section, I
will more precisely define the tree-ring standardization problem as a
prelude to developing the biological and statistical models necessary

to yleld a satisfactory solution.

Statement of the Problem

In the semi-arid environments of western North America, trees
growing at or near the upper and lower elevational limits of growth
are often unaffected by stand competition and disturbances because of
the wide spacing between trees. After a common short-lived increase
in radial growth following germination, the growth increment curve of

such open-grown trees reaches a maximum and then declines monotoni-
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cally with increasing age to a relatively constant growth rate. This
negative growth trend is partly related to the geometric constraint of
adding an approximately equal volume of wood each year to a stem of
increasing radius. Other factors contributing to this trend are
declining apical dominance, increasing transport distances for food,
hormones and water, and limitations on exploitable.site resources for
growth. The result is a growth increment curve that decays with time
due to factors which are relatively independent of yearly fluctuations
‘of climate. Because this curve is clearly assoclated with increasing
tree age, it will be defined here as the age trend of a tree-ring
series. Being non-climatic, the age trend must be approximated and
removed from a tree-ring series before the series can be used to study
variations of past climate. In dendrochronology, this operation of
modelling and removing such non-climatic variance 1s known as stan—
dardization (Douglass, 1919; Fritts, 1976). Besides removing age
trends, standardization reduces each ringwidth series to a series of
dimensionless indices with a mean of 1.0 and a homoscedastic variance
(Matalas, 1962). This allows several standardized tree-ring series
from a stand to be averaged together for improving the signal-to-noise
ratio of the series (DeWitt and Ames, 1978).

Once a growth curve has been estimated from the data, the
standardized tree-ring indices are computed as

z, = r /g, _ 1.1

where z, is the index, r. 1s the observed ringwidth, and g, is the

estimated growth curve for year t. The division of r, by g, is meant
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to stabilize the variance because the local variance of a ringwidth
series is proportional to its local mean.

Theoretically, the standardization curve represents the amount
of radial growth produced each year if all climatically-related growth
influences in the tree's environment were held constant through time.
In this sense, the standardization curve is a time series of expected
values of radial growth, and the ring-width indices, or scaled varia-
tions, about the curve are the departures from expected growth due to
climatic fluctuations. In the case where the expected growth series
evolves through time as a simple age trend, this curve can be ade-
quately approximated by a mathematical function of relatively simple
form. When one moves from open to closed—canopy forest environments,
the non-climatic increment curves of trees become more complex because
of sporadic disturbances which directly or indirectly alter the growth
environment of the trees. Such disturbances occur at generally unpre-
dictable times. Growth curves which can fit monotonic age trends well
are unabie to account for any sudden and persistent disturbance-caused
changes in growth. In this context, a disturbance is defined as any
non-climatic event which causes an unanticipated, persistent departure
in growth from the pattern expected from the age trend and climate.
To differentiate a disturbance-caused growth fluctuation from the age

trend, the former will be defined as a disturbance pulse.

In order to cope with disturbance pulses, dendrochronologists
have used more flexible curve-fitting and smoothing techniques with

some success. Orthogonal polynomials (Fritts, 1976) and cubic smooth-



ing splines (Cook and Peters, 1981) are two such methods which have
been used for standardizing forest-interior tree-ring series. How-
ever, each of these methods suffers from a serious degree of indeter-
minancy in choosing the cptimum degree of curve flexibility and shape.
To do so exactly would require explicit knowledge of a tree's environ-
mental history which is, of course, rarely known. If one could assume
that the climatically-related departures from the growth curve were
serially uncorrelated, then the solution would be a relatively trivial
exercise of modelling and removing all of the persistence in the tree-
ring series. But this assumption 1s unjustified because the climate
system 1is known to have feedback mechanisms in the atmosphere-hydro-
sphere-cryosphere system which impart some stochastic predictability
to many climatic time series (Mitchell, 1976). This stochastic
predictability frequently takes the form of persistent departures from
the mean which create many of the low—frequency fluctuations seen I1n
temperature and precipitation series. Some other proposed sources of
climatic fluctuations are solar variability (Eddy, 1976; Mitchell,
Stockton, and Meko, 1979) and volcanism (Lamb, 1970; Schneider and
Mass, 1975).

Because these low-frequency climatic fluctuations may bte simi-~
lar in form to disturbance pulses, the identification, separation and
removal of only the non-climatic fluctuations presents obvious diffi-
culties. The solution to the standardization problem requires the
optimal separation of the observed Ilecw-frequency changes in radial

growth into those created by climate and those created by the age



trend and disturbances, based on some objective criteria. Clearly,
without any explicit knowledge of a tree's environmental history, the
problem appears to be iIntractable because the standardization curve
must “recognize" the occurrence of a disturbance and track the tree
growth response to it without tracking similar fluctuations due to
climate.

In defining the tree-ring standardization problem, I have
emphasized the difficulty in identifying and removing disturbance
pulses which distort any secular variations in the mean due to cli-
mate. This problem is rather obvious. Simply stated, we cannot
preserve more information about fluctuations in the climatic mean than
is allowed for by the standardization curve chosen to remove informa-
tion believed to be non=-climatic. Less obviously, a similar prineciple
holds for the variance of the process. As noted earlier, standardiza-
tion Is meant to stabilize both the mean and variance of a tree-ring
series. Since the local variance of a non-statlonary ringwidth series
is roughly proportional to 1its local mean, the procedure of dividing
each ringwidth by 1its respective growth curve value 1s meant to
stabilize the variance simultaneously with the mean. To what extent
this is accomplished depends on how closely the curve follows the
local mean of the data.

Coﬁsider for the moment the simplest standardization curve:
the horizontal line through the mean of a ringwidth series. Providing
that the series 1s stationary to begin with, this represents the

expected value of the process for all years. Recalling that the



standardization curve, g, is a time series of expected growth values

for n years, the curve constructed from the mean of the ringwidth

series, 2z, is nothing more than

gy =L ry/n 1.2

for each year t. Substituting r, for g, 1in equation 1.1 and
rearranging terms ylelds

z, = nr. /I ry 1.3
Noting that'Elzt] = 1,0 for all t, the variance stabilizing properties

of g, can now be derived.

The variance of a tree-ring index series is

0% =

i

(z
1

e

2
¢ E[zt]) /n 1.4
where E[z_] and n are defined as before. Dropping the I and n which
are not directly related to the local variance of r, and substituting
z, and E[zt] with their equivalences described above, equation 1.4 can
be written as
2 _ - 2
oy = (nr./Ir, 1.0) 1.5
where 02 1s the squared departure from E[z.] at year t. Expanding

t

equation 1.5 yilelds

nr 2nr
Ui— ; --z-r—i'l‘ 1.0 1.6
Ir t

Noting that n/Ir. is the reciprocal of the mean, it’ the final form of

equation 1,6 is
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r 2r '
2 _ t__ t
I = 3 = + 1.0 1.7
xt t

Equation 1.7 reveals that the variance properties of z, are determined
by a quadratic relationship between r. and the mean level of r, used
to standardize the ringwidth. Generalizing equation 1.7 to the case

where g, is a local estimate of expected growth yields

2 t t 1.8

where the czt of each z, is now locally defined by each r. and its
respective standardization curve value, g.. Equation 1.8 avoids the
stationarity condition imposed earlier on the derivation of o% because
g, can be any stationary or non-stationary growth curve now.

The functional form of 0% can be evaluated by solving equation
1.8 for different values of 8 and Ty. Figure 1.1 shows three 0%
curves. Each curve is computed for a fixed g . to assess the change in
the variance of z, as r, varles from its expected value. The parabo-
lic functions are truncated and, therefore, asymmetric due to the fact
that tree-rings cannot be negative. .

Several interesting properties of the tree-ring indexing
procedure can be deduced from these curves. The time stability of the
variance in tree-ring indices 1s closely tied to the goodness-of-fit
of the curve used to standardize the ringwidth series. The proximity

of the curve to the local mean of the ringwidths defines the range

within which the variance stabilizing property of indexing is symme-
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tric. For example, if the growth curve has a local value of 1.0 mm,
then the variance of a tree-ring index computed from that value will
be the same for ringwidths of 0.5 mm and 1.5 mm. This symmetry holds
for all equal departures from the standardization curve up to 0<gt
<2gt. For ringwidths that exceed twice the growth curve value, the
local variance can increase without limit. The consequences of these
results relative to the tree-ring standardization problem are impor-
tant. If the estimated growth curve follows the local mean of the
ringwidth series, then the variance characteristics of the standard-
ized series will not be seriously distorted. However, if the curve
has 1little flexibility relative to the wanderings of the mean, then
the variance of the standardized series may have secular inhomoge-—
neities iIn it which are artifacts of the standardization process.
This finding indicates the existence of an Uncertainty Principle in
standardizing tree-ring series. Concisely stated, the preservation of
long-period fluctuations of the mean may be antagonistic to the stabi-

lization of variance in tree rings.

Previous Investigatiomns

Having defined the tree-ring standardization problem, a criti-
cal review of the literature is necessary to show that none of the
currently available methodologies offer any solution tc this problem.
As described earlier such a solution must, in some way, optimally and
objectively separate the low-frequency changes in radial growth due to
climate from those due to disturbance pulses. Fritts (1963) developed

a computer program for tree-ring standardization based on the negative
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exponential curve as a model for the age trend. It is expressed as

§ = ae”DX
or

log ¥ = log a - bx
in linearized form. This curve proved to be quite adequate for stan-
dardizing moderate-aged conifers growing in open-canopy environments.
However, equation 1.9 has the property that ¥+ o as t*®, This zero-
asymtote property is not appropriate for very old conifers because the
age trends of these trees frequently approached some constant level of
growth, k, where k 1s necessarily positive. Fritts, Mosimann, and
Bottorff, (1969) introduced the modified negative exponential éurve

¥ = ae DX+ k 1.10
to account for this observed behavior in old-age conifer ringwidths.
Equation 1.10 is not intrinsically linear due to the additive constant
k. Because equation 1.9 is a special case of equation 1,10, the modi-
fied negative exponential curve is more flexible as an age trend model
for standardizing tree-ring data from open-canopy environments,
Fritts et al. (1969) note that equation 1.10 cannot model the juvenile
growth period of increasing growth rate seen in many trees near the
pith. They suggest deleting those rings altogether or fitting them
separately with a linear regression curve of positive slope. Although
more general mathematical functions exist for modelling the juvenile
period simultaneously with the subsequent period of exponential decay

(e.g. Yang, 1979; Warren, 1980), they have not been adequately inves-

tigated as standardization tools in dendrochronology.
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When it 1is appropriate for the data, the modified negative
exponential curve is an excellent age trend model. It is objective
and biologically reasonable and is likely to preserve virtually all
low-frequency climatic varlance that is resolvable from the age
trend. Unfortunately, there are numerous cases where equation 1.10
does mnot apply as an age trend model. Fritts .et al. (1969) and
Graybill (1979, 1982) allow for the fitfing of linear regression
curves if the age trend is linear or has a non-negative slope. This
model is expressed as
§ =a+ bx 1.11
The slope coefficient b may be constrained to be negative or zero if
the a priori biological model for the age trend requires that condi-
tion. If such constraints are not placed on the model, the slope may
be positive. The comstrained linear age trend model is also objective,
biologically reasonable, and very conservative in preserving climatic
variance. The allowance for a linear model with positive slope is a
pragmatic concession to violations of the biological model when it
should apply on a priori grounds or when no particular model is justi-
fied. The latter condition will generally be the case in closed-
canopy forest environments where competitive interactions and distur-
bances virtually guarantee the breakdown of any biologically-based age
trend model.
Jonsson and Matern (1974) describe a method of computing tree-—
ring indices based on fitting a low-order polynomial (equation 1.13)

to a mean-value function of log transformed ringwidths from a stand of
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trees. The logarithmic transformation serves to linearize the model
and stabilize the variance of the ringwidths with respect to time.
Although it is not clearly stated b& Jonsson and Matern (1974), this
method would seem to work best for tree-ring series from even—aged
stands that have similar age trends. 1If mixed ages are used and the
‘age trends differ considerably in shape, the resultant logarithmic
mean-value function may require a very high-bfder polynomial to remove
these effects. The danger of removing useful climatic information may
be considerable. Jonsson and Fritts compared their two standardiza-
tion techniques on identical data and found a 77% agreement between
final chronologies (Fritts, 1976, p. 280). The differences were
attributed to within and between tree variations that were not removed
by the Jonsson-Matern method. While the Jonsson-Matern method proba-
bly works well for a restricted class of tree-ring standardization
problems (i.e. even—-aged trees, homogeneous age trends), it lacks the
necessary flexibility to deal with the more general case that includes
mixed-age trees with disturbed age trends.

In related research, Kuusela and Kilkki (1963) investigated
the use of exponential and power functions in modelling the growth
increment percentage functions of trees. The exponential function is
the same as that used by Fritts (1963). The power or hyperbolic
function is expressed as

§ = ax D
or 1.12

log § = loga-b log x
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in linearized form. Kuusela and Kilkki (1963) found that the power
function fit the age-related growth increment percentages somewhat
better than the exponential function. Hett and Loucks (1976) utilized
the same two functions for modelling the age structure of balsam fir
and eastern hemlock. This study 1is pertinent because the frequency
distribution of age classes in uneven—aged forest communities often
mimics the age trends seen in individual ‘trees. Hett and Loucks
(1976) also found that the power function worked better than the
exponential function principally because the mortality rate of trees
was not constant or linear over time. For the exponential function to
work well, the mortality rate must be linear with respect to time. By
analogy, this may explain why the expomential function fails with a
zero asymptotic (k=0) constant for old semi-arid site conifers. The
decay in growth rate 1s not linear with respect to time, but more
nearly exponential. This causes the slope of the curve to approach
zero more rapidly than can be accounted for by an exponential model.
The modified mnegative exponential curve of Fritts et al. (1969)
accounts for this circumstance by assuming that the age trend is
composed of two fairly distinct periods: an early youthful period
where growth rate declines linearly with age, and a later mature
period of equilibrium with the environment where the level of growth
is constant over time. The power function may be a useful alternative
to the modified negative exponential curve in some cases.

As dendrochronology expanded into closed-canopy forest

environments, it became clear that the age trend models described thus
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far were inadequate for modelling and removing episodic disturbance
pulses in the ringwidth series. Thus, a more data adaptive approach
was deemed necessary. Fritts (1976) describes one approach to solving
this problem that involves modelling the age trend and disturbance
pulses collectively using orthogonal polynomials of arbitrary order.

The nth order polynomial model is expressed as
§'=a+b1x+b2x2+ ...+bnxrl 1.13 -

The flexibility of the polynomial curve 1s proportional to the order
with the number of inflections in the curve being equal to n-l.
Because of the flexibility of polynomials and the lack of any biolo-
gical model to guide the fitting, much low-frequency climatic infor-
mation may be lost if a series is overfit. The obvious problem in
applying the polynomial approach is determining the "correct” order
fit for each ringwidth series. The order selection test used by
Fritts (1976) and Graybill (1982) involves fitting a polynomial of
order n to the data and computing the residual variance not accounted
for by the curve. Polynomials of order ntl and mt2 are then estima-
ted. If either of the higher-order polynomials reduce the residual
variance by a significant percent (say, 5%), then the higher order
polynomial is judged superior and the testing procedure continues for
two more orders. If the variance reduction test fails, the order-n
polynomial is accepted as the best estimate of the standardization

curve. Although this testing procedure objectively selects the poly-
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nomial order once the test perdentage is chosen, the percentage itself
is subjective. Roughly speaking, the test percentage will guilde the
fitting towards a range of orders that is inversely proportiomal to
its magnitude. Fritts (1976) used a test percentage of 5% 1in his
example. Blasing, Duvick, and Cook (1983) found that 1% or even 0.1%
produced better results for Iowa white oak. It is'very unlikely that
a unique percentage exists that will work wellleverywhere.

Another problem with polynomials 1is the way 1in which they
sometimes track the general behavior of a serles very well in some
intervals and very poorly in others. As Rice (1969) points out, the
overall behavior of a polynomial can be dominated by the behavior of
the data in a small region which is quite unlike the rest of the
data. In extreme cases, the inflections of a polynomial curve can,
for some regions, be directly out—of-phase with the actual behavior
the data. See Figure 6.5 in Fritts (1976, p. 264) for an example of
this phenomenon. Thus, polynomial curves have the potential for
actually exaggerating the behavior of tree~ring series in poorly-fit
intervals, This is highly undesirable.

Warren (1980) introduced a generalized exponential growth
function used in forestry research for modelling the age trend in
tree-ring data. It 1s expressed as
g = axPe™CX
or 1.14

log § = loga+b log x - cx

in linearized form. The coefficients a, b and c determine the shape
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of the function and allow for modelling the 3juvenile period of
increasing radial growth seen in many trees. Because this growth
function is also incapable of modelling disturbance pulses at random
intervals, VWarren (1980) postulated that a series of disturbance
pulses could be modelled as a discrete time aggregate of generalized
exponential growth functions. Given that the number of pulses 1is
unknown at the start, Warren (1980) developed a technique that
involves fitting equation 1.14 to the first N years of data and
testing for the presence of another pulse by extrapslating the first
estimated pulse N more years Into the future. A t—test was used to
decide if the extrapolated fit departs significantly from the actual
data. If the null hypothesis of no departure is accepted, equation
1.14 1is refitted to the enlarged time base (2N) and the next N year
segment 1s tested against a new extrapolation. If the null hypcthesis
is rejected, new coefficients are estimated for the extrapolation
period data, a new N year extrapolation made, and the t-test applied.
The stepwise fitting and testing procedure continues until the series
i{s exhausted. There are several problems associated with this stan-
dardization method, some of which are noted by Warren (1980). The
time base N used for fitting and extrapolating is arbitrary. Warren
chose N=30 years based on the results of a survey in which several
persons visually examined the fits using different time bases and
chose the fits that looked best. As noted by Warren, it is extremely
unlikely that any one time base will work well for different specles

and regions. The t-test used for testing the extrapolated fit is not
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apéropriate unless the degrees of freedom are reduced due to the
highly autocorrelated nature of most tree-ring data and the extrapola-
ted values (Mitchell et al., 1966). Warren (1980) does not address
this problem. Indeed, Box and Tiao (1975) consider the t-test to be
invalid when an autocorrelated time series 1is being tested for the
occurrence of an intervention such as a disturbance in tree-rings.
While the basic standardization model of Wérren (1980) is intriguing
and, in some ways, conceptually appealing, the estimation procedures
are subjective and statistically questionable.

Barefoot et al. (1974) applied a stochastic method of stan-
dardizing oak ringwidths using an exponentially weighted smoothing
technique developed by Brown (1959) to forecast economic time series.
The smoothing function consists of two components for estimating the
actual ringwidth y for period i: an average, §i, and a lag correction
for trend, §i' This 1s expressed as

§; = ay; + (1-a)ayy 1.15

there ?i is the estimated ringwidth for period i,

= a(yg_1) + (1-0) (34-1) 1.16

I
[
|

and

= o (y47y4q) + (-a) /o (¥4-1) 1.17

<
to
1

The quantity o 1is a weighting factor that determines the degree of
smoothing. Barefoot et al. (1974) arbitrarily selected o =0.2 which

allows the previous 10-15 years of growth to influence the estimate of
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the current righwidth. An obvious weakness of this method 1is the
arbitrary nature of o. It is unlikely that a consistently appropriate
a exists for any tree species or site type. The method also assumes
that the series being smoothed is an 1ntegrated or non-stationary
first-order moving average process (Box and Jenkins, 1970, p. 169).
Such an assumption 1is questionable given the success in modelling
tree-ring series as autoregressive processeé. (Hipel and McLeod, 1977;
Meko, 198l1). Thus, the method of Barefoot et al. (1974) suffers from
the arbitrariness of a and an inflexible underlying model.

Bitvinskas (1974) discusses the use of moving averages for
creating the smooth age trends necessary for standardization. Speci-
fically, he describes the construction of the curve as an unweighi:‘ed
moving average of anywhere from 3 to 31 ringwidths for the smoothing
process. This is eXpressed as

?j = I }’i/n 1.18
where 3’1 is the ith average usually centered in time in the n-ring
interval used to compute the average of j ringwidths. Aside from the
difficulty of selecting the "correct” number of terms to use in the
moving average, this approach has an extremely bad side effect as a
digital filter. It can create sinusoidal behavior in the series
through what 1s known as the Slutky-Yule effect (Mitchell et al.,
1966, p. 6). For this reason, equation 1.18 is never recommended as a
filtering technique in time series analysis. The appropriate form of

low-pass moving average filter is centrally weighted as
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$.= I w.y. Lw, 1.19
1 73 j

where the wy are symmetric filter weights often shaped like a gaussian
probability density function. See Mitchell et al. (1966) for a
discussion of such centrally weighted moving averages and the
construction of the appropriate weights for filtering time series.
This topic is also discussed and applied to tree-ring data in Fritts
(1976). A variant of the centrally weighted moving average approach
to tree-ring standardization was introduced by Cook and Peters (1981).
Their method utilizes a cublc smoothing spline as a low-pass filter
for modelling the age trend and disturbance pulses collectively
through the selection of a single smoothing parameter p. The smooth-
ing spline represents an infinitely variable family of low-pass
filters which does not require the explicit construction of filter
welghts as 1s required for equatiom 1.19. Thus, it 1s quite easy to
use. However, it suffers the same problem as other filtering and
smoothing techniques so far discussed. That is, the degree of
filtering and smoothing is still arbitrary and often selected on a
ﬁrial—and—error basis. Recent research by Blasing et al. (1983) has
produced an interesting method for selecting the optimum smoothing
parameter p based on the verification success of a climatic recon-
struction. Since the method has been tested only on white oak from
Towa, it is too soon to tell if it will work well elsewhere.

A final problem must be noted in the use of low-pass moving

average filters for constructing the standardization curve. As noted
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earlier, tree-ring series often behave as autoregressive processes.
Jones (1984) shows how filtering an autoregressive process can create
an artificial low-frequency periodicity in the variance spectrum of
the filtered series, when, in fact, none was originally present. This
occurs because time series with positive autoregression have variance
concentrated in the lower frequencies where the filtering occurs. By
removing this low-frequency variance, an aﬁparent spectral peak is
created which is nothing more than an artifact of truncating the

ascending low-frequency continuum of variance characteristic of such

autoregressive processes.

Conclusions

The tree-ring standardization problem has been defined in
terms of the uncertainty associated with the identification, separa-
tion and removal of disturbance pulses that mimic low-frequency
fluctuations caused by climate. The mathematics of standardization
has revealed that the variance stabilizing property of indexing is
closely tied to the goodness—of-fit of the standardization -curve.
This relationship was found to be antagonistic if the standardization
curve does not follow the local mean very closely. A review of the
literature indicates that currently available standardization tech-
niques lack both a theoretical model and a well-defined methodology
for objectively identifying and removing non-climatic disturbance
pulses from climatic fluctuations. In the next chapter, a biological

model will be developed based on the stand dynamics of closed-canopy
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forests. This model will offer some insights into the probable

sources of non-climatic variance. Later chapters suggest and test a

method for removing this variance from an ensemble of tree-ring data.



CHAPTER 2
A LINEAR AGGREGATE MODEL FOR TREE-RING SERIES

Introduction
Consider a single tree-ring serles along a.single radius as a
linear aggregate of several subseries represénting the sources of vari-
ance found in the composite series. Let this aggregated time series be

expressed as

G=C+A+Dl +D2 +E

where:
G = the well-dated tree-ring widths measured along a single
radius,
C = the climatically-related growth variations common to a

stand of trees including the mean persistence of these
variations due to physiological preconditioning and inter-
action of climate with site factors,

A = the age related growth trend,

D1 = the endogenous disturbance pulse originating from forces
within the forest community,

D2 = the exogenous disturbance pulse originating from forces

outside the forest community,

23
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E = the series of more or less random variations representing
growth influencing factors unique to each tree or radius
within the tree.

The assumption of linearity and implicit independence between
the subseries 1Is a necessary oversimplification for the moment. How=~
ever, the purpose of this model is not to describe exact relationships
between the subseries. Rather, it allows for a discussion of certain
‘properties of each component separately from the others as a necessary

step in developing a standardization method that models the nature of

the tree-ring series more adequately.

Subseries C--The Common Climate Signal

The climatically-related subseries, C, reflects certain broad-
scale meteorological variables which directly or indirectly limit the
growth processes of trees in a stand. These variables are assumed to be
uniformly important for all trees of a given species when the site
characteristics of the stand, such as hydrology, elevation, exposure and
soil, are more or less homogeneous. The bilology of the tree governs its
capacity to respond to climate. This in turn determines the “"climatic
window"” (Fritts, 1976, p. 238) through which climate variables create
similar patterns of wide and narrow rings in different trees when
matched contemporaneously. This is the phenomenon that enables cross—
dating. Although cross-dating is normally associated with high-frequen-—-
cy change in ring width, there are also many lower-frequency variations
of climate that pass through the climatic window which can also be shown

to be in agreement between the trees (Fritts, 1976).
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The input that produces C is assumed to involve weakly-station-
ary stochastic processes, That is, its mean and variance are independ-
ent of time, and the seriles evolves through time in a probabilistic
fashion. Because of the previously mentioned feedback mechanisms
affecting the climate system, the climatic signal in C will often be
non-random in an autoregressive sense. This has been shown to be the
case for temperature data (Jones, 1964) aﬁ& Palmer drought severity
indices (Katz and Skaggs, 1981), although precipitation is more fre-
quently random (Salas et al., 1980, p. 51). When the autoregression is
positive, the varlance of C will be concentrated in the lower frequen-
cles of its variance spectrum. Such series are often described as "red
noise" processes (Gilman, Fuglister, and Mitchell, 1963) due to the
analogy between 1owFfreuency variance and long wave-length red light.

Frequently, the persistence observed in C will be much greater
than that which can be accounted for by the persistence in climate
(Matalas, 1962; Meko, 1981). This inflated persistence in the ring-
width series 1s generally thought to come about from a variety of fac-
tors often 1involving the physiological preconditioning of the tree-
growth system by previous environmental conditions (Fritts, 1976) and
from site factors such as soil hydrology (Meko, 1981) which create lags
in the tree-response system. Meko (1981) also contends that some of the
excess persistence is due to residual non-climatic growth varlations not
removed during standardization. This contention implicitly recognizes
that there must be inadequacies of current standardization methods which

I have discussed in Chapter 1. Any differences between the persistence
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structure of climatic variables which produce C and C, itself, can of
course be adjusted for during the transfer function modelling phase of
dendroclimatic reconstructions (Stockton, 1975; Fritts, Lofgren and
Gordon, 1979; Meko, 1981). Meko (1981) has demonstrated how Box-Jenkins
models can be used in this regard. This type of analysis occurs subse-
quent to standardization. Discussion of various aﬁproaches to transfer
function modelling are clearly outside the cﬁ?rent topic and will not be
considered further. From a climatological point of view, the assumption
of weak stationarity for the input leading to C is flawed because the
climate system probably never reaches a true equilibrium state and
appears to be inherently non-stationary over very long time periods.
Thus, a 400-year tree-ring series could have, superimposed on its age
trend, a very low-frequency climatic fluctuation on the order of several
centuries long. In this case, the series would be non-stationary due to
the presence of two different, but not necessarily uncorrelated, compo-=
nents. But in another semnse, the assumption of weak statiomarity is
reasonable for the usual time spans under consideration. Variance spec—
trum analyses of climatic and proxy climatic series for the Holocene
(Kutzbach and Bryson, 1975) show that such series generally have moder-
ately "red" (p=0.5-0.7) spectra for time periods of 100 to 1000 years.
This level of redness is well within the bounds of stationarity for a
first-order autoregressive process (Box and Jenkins, 1970). Since old-
growth stands of trees rarely exceed 1000 years in age, the first two
moments of C may not behave differently in a statistical sense from a

weakly-stationary process. Because there 1is strong binlogical basis for
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expecting an age trend, virtually all tree-ring chronologies are detren-
ded with the realization that some long=-period climatic information may

be lost.

Subseries A--The Age Trend

The age trend, A, was described earlier as being a monotonically
non-increasing function of time which could be characterized often by a
deterministic growth function of linear or expomential form. While this
description holds well for trees growing in open=canopy situations, 1t
must be generalized to allow for the occurrence of a varlety of linear
and curvilinear age trends of arbitrary slope sometimes found iIn trees
from closed-canopy forests. Shade tolerant species such as eastern hem-
lock and red spruce may require many decades of growth to achieve a co-—
dominant position in the canopy. .During these years of subordinate
canopy position, the general trend in radial growth will often be posi-
tive as the suppressed trees grow upward into more favorable regions of
the canopy. Once it becomes established in the canopy, the rate of
growth may decline in the normally expected way. Since both the upward
and downward trend is, again, clearly associated with increasing age, 2a
more general age trend model should be included which may allow for
linear or curvilinear trends of arbitrary slope and shape.

As noted in Chapter 1, many mathematical functions are available
that seem to fit certain kinds of age trends well. For example, quadra-
tic and power functions are reasonable alternatives to the negative
exponential curve in some cases. The model for A should serve only to

detrend a series and stabilize its variance to some degree. If we
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define trend in mean according to Granger's (1966) definition as compri-

sing all frequency components with wave-lengths exceeding the length of
the observed time series, then linear, quadratic, expomential, and power
functions are all possible models of A, They will not remove any clima-

tic information that is resolvable from the age trend.

Subseries Dl and D2--The Endogenous and Exogenous Disturbance Pulses

The non-~climatic variance accounted for by the disturbance pul-
ses, Dl and D2, can be split into two general classes of disturbance:
endogenous and exogenous (Bormann and Likens, 1979; White, 1979), Con-
ventionally, they are differentiated by the causai mechanisms 1nvolved,
i.e. forces internal to the forest community versus forces external to
it, although these differences become quite blurred upon investigation
(White, 1979). In the context of tree-ring standardization, another
differentiating feature 1is pertinent: areal extent of impact., As will
be described, this feature 1lies at the crux of the standardization
method being developed here.

Like the age trend, D! and D2 can be modelled as smocth proces-
ses. Collectively, they have been modelled deterministically using
least square curve-fitting (e.g. Fritts, 1976, p. 164; Warren, 1980) and
stochastically using digital filters (e.g. Bitvinskas, 1974; Cook and
Peters, 1981), but the result is always a smooth, continuous curve for
approximating a disturbance pulse. Superimposed upon this curve will be
the higher-frequency climatic variations of C. However, because the
duration of a disturbance pulse may be short compared to the length of

the tree-ring series, it may be superimposed upon lower—frequency clima-
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tic fluctuations as well. The shape of a disturbance pulse will also be
much more variable than an age trend because a disturbance may cause
growth suppression or acceleration depending on its relationship to the
tree and the nature of its effect.

Endogenous disturbances are caused by factors related to charac-
teristics of the vegetation which are independent. of the environment
(White, 1979). Disturbances which are offen described as such in
closed-canopy forest communities occur when dominant overstory trees
senesce, die and topple as a natural consequence of competition, aging
and stand succession. Although the senescence and death of old-age
trees from internally caused factors seems biologically reasonable, it
rarely occurs without the impetus of external environmental factors such
as insect attack, dfought and windthrow (White, 1979), hence, the diffi~-
culty in differentiating endogenous from exogenous disturbances. The
removal of individual dominants creates gaps in the canopy for sup-
pressed understory trees and adjacent codominants to grow into. These
gaps also provide valuable seed beds for reproduction and regeneration.
The sudden increase of available light and soil moilsture may mean a dra-
matic increase in radial growth over several years for previously sup-
pressed trees as they compete for dominant positions in the canopy gap.
This model for structural changes in forest communities 1s called gap-
phase reproduction by White (1979) and gap-phase replacement by Bray
(1956) and Spurr and Barnes (1973, p. 344)‘.

In the context of tree-ring standardization, truly endogenous

disturbances can be expected to occur randomly in space and time in



30

forest communities. That is, the loss of a dominant tree in one section
of a stand is not likely to be related temporally or spatially to simi~
lar losses at widely separated locations in the stand. This assump tion
immediately suggests that the resultant truly endogenous disturbance
pulses will rarely be synchronous among distant trees in a stand except
by chance alone.

Little data exists for estimating the. frequency of occurrence of
endogenous diéturbances and the gap-sizes produced by then. However, a
study of mnatural disturbances by treefalls in Lilley Cornett Woods
(Romme and Martin, 1982) does shed some light on this matter. Lilley
Cornett Woods 1is a 104~hectare tract of old-growth mixed mesophytic
forest in eastern Kentucky. The dominant tree species are American

beech (Fagus grandifolia Fhrh.) and white oak (Quercus alba L.). Over a

period of eight years, 77 treefall events occurred, 66 by single trees
and eleven by 2-3 trees. The major cause of treefall was ascribed to
high-speed, short-duration winds. The area of each gap produced by
treefall was carefully measured. The gaps ranged from 74m? to 123Sm2 in
size with a mean of 374m? and a median of 307n2 (Romme and Martin,
1982), a4 histogram of gp-size classes as a percent of all gaps indi-
cates that the distribution is highly skewed. The mode lies within the
101-200m2 and 201-300m? gap size classes which account for 467 of all
gaps. A reasonable estimate of the gap size mode is 200m2. On the
assumption that the 8aps do not overlap, the radii of gap influence for
the mode, median and mean are approximately 8m, 10m, and 1lm, respec-

tively. Thus, to minimize the probability of coring trees that are
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affected by the same endogenous disturbance, trees separated by at least
16~22m should be cored. Only the trees tangential to a gap would be
affected using this criterion.

In the 104 hectares of Lilley Cornett Woods, there are 2673-5000
potential gaps using the 200-374m2 gap-size estimates. Allowing for an
average of ten gaps/yea: (based on 77 tree—falls in eight years), only
0.2-0.4% of the canopy area is lost by tree-falls each year. This per-
cent is lower than the percent of trees affected by a gap because sever-
al trees may grow around a gap perimeter. However, even if the number
of affected trees is as large as 5, the percent of all trees affected by
treefalls each year is still only around 1-2%. Thus, the probability of
synchronous endogenous disturbance pulses in tree-ring series from
Lilley Cormnett Woods i1s quite small. This conclusion should hold for
old growth stands in general where the dominant tree species are long
lived and the stand is large relative to the gaps produced py treefalls.

Since the presence of DI in the aggregate should impart more
differences than similarities among a spatially broad sample of tree-
ring serles, an obvious approach to the standardization problem 1s to
identify and remove only these differences. From the standpoint of
minimal loss of climatic information, the identification and removal of
low-frequency differences has obvious appeal because they cannot be
logically related to fluctuatioms attributable to C. It is interesting
to note that Dr. Edmund Schulman of the Laboratory of Tree-Ring Research
used this concept in the pre—computer days of dendrochronology when he

graphically standardized tree-ring series (B. Bannister, pers. comm.).
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By plotting all of the series togther, Schulman was able to identify
significant differences and modify the standardization curves to remove
localized low-frequency fluctuations which did not agree among all
series, The simultaneous scrutiny of tree-ring data during standardiza-~
tion is sometimes omitted today because of the large number of seriles
being standardized. However, a careful examination of the fitted growth
curves 1is advised (Fritts, 1976) and some wb;':kers do remove data that
are not adequately modelled by the growth function, or they vary the
growth function that is used. Of ten they will standardize a sample
several times until the major outliers from the growth curve are identi~
fied and removed or corrected (Fritts, 1976). This is a cumbersome and
sometimes burdensome process.

Exogenous disturbances are caused by environmental forces which
lie external to and are independent of the vegetation (White, 1979).
Unlike endogenous disturbances, these disturbances have many possible
causal agents which can affect large areas of forest. Some of the
important agents are fire, windstorm, i1ce storm, disease and insect
infestation. For a complete review of exogenous disturbance agents, see
Wl;ite (1979). Because an exogenous disturbance can be very extensive,
the resultant disturbance pulse, D2, may occur contemporaneously in
virtually all affected trees in a stand. This presents obvious diffi-
culties for standardization for these contemporaneous pulses may be
impessible to distinguish from common low-frequency fluctuations of C.

The frequency of a specific exogenous disturbance will generally

be inversely proportional to its magnitude and is highly dependent on
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such factors as species composition, topography and geographic location

(White, 1979). For example, pitch pine (Pinus rigida Mill.,) and jack

pine QEL banksiana Lamb.) are shade-intolerant species which require
frequent fire to maintain their communities (Fowells, 1965). Thus, the
frequency of fire in these communities 1s likely to be high. In con-
trast, the fire recurrence interval for northern hérdwood-conifer for-
ests in New England may be several hundred. years 1long (Bormann and
Likens, 1979). The effects of fire will greatly depend on the severity
of the burn. Frequent ground fires may benefit growth of shade-intole-
rant species by destroying understory growth, reducing root competition
for moisture and recycling nutrients trapped in forest litter. More
severe fires may impair subsequent growth if some foliage is killed by
heat or flames and‘the cambial layer is scorched. If burmns are much
more severe than this, the stand may be destroyed outright and the
exogenous disturbance problem is moot.

Insect infestations will have variable effects of forest stands
depending on the severity of injury to host species and indirect effects
on non-host species (Brubaker and Greene, 1979; Wickman, 1980). Phyto-
phagus insects reduce the photosynthetic area of host speclies and thus
cause reductions in carbohydrate production for ring formation. Conver=
sely, growth of non-host species in an infested stand can actually
improve because host—tree defoliation reduces competition for 1light,
water and nutrients (Wickman, 1980). Fortunately, many tree species are
able to withstand light to moderate amounts of defoliation without show-

ing a detectable reduction in radial growth in the lower trunk of the
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tree (Koerber and Wickman, 1970; Brubaker and Greene, 1979). The defo-
liation effect is most apparent in the rings of the upper bole and
branches. This 1is fortuitous berause virtually all tree-ring specimens
are taken from breast height or below on the bole. But this also sug-
gests that defoliation effects will show up more frequently in the ear-
lier segments of tree-ring chronologies because the crowns of trees,
when younger, will be closer to the breast'l;eight region of the bole
" sampled by dendrochronologists.

Sampling strategies can be designed to minimize the probability
of some exogenous disturbances like fire and inmsect infestation. Stands
isolated by water or barren expanses of rock are less likely to be
affected by regional fires, for example. Another approach 1is site
redundancy whereby stands on similar but geographically separate sites
in the same region are sampled with the hope that a stand disturbance
peculiar to one site can be identified. Insect iInfestation effects may
be identified by sampling host and non-host species on the same or
nearby sites. These approaches do not actually solve the problem of
identifying exogenous disturbance pulses during standardization. They
only reduce the problems. Without any knowledge of large-scale distur-
bances that have affected a stand, a better solution to this problem
does not seem possible.

Since the importance of D2 is extremely difficult to establish
because of its dependence on such factors as the frequency and magnitude
of the event, the causal agent, tree species, site topography and geo-

graphic location, it will be assumed to have a minimal contribution to
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G. This assumption is valid only in the sense that, if present, D2 may
be very difficult to differentiate from C during standardization and
should, therefore, be regarded as a possible climatic fluctuation until
proven otherwise by comparison to C in nearby sites and in different
species. This is the rationale for using a number of chronologies for

different species and sites in transfer function analysis (Fritts,

1976).

Subseries E--The Random Varilance

The last subseries, E, 1is the more or less random variance in
the radial tree-ring series which represents such variables as localized
responses to micro-environmental factors and variations in circuit uni-
formity which are unrelated to the variance accounted for by C, A, Dl
and D2. This variance is assumed to result from serially uncorrelated
events affecting each tree which are spatially uncorrelated within the
stand of trees. The standard way to reduce this random variance is
through replicate sampling (Fritts, 1976), That is, a number of trees
are sampled (say, 20 to 40) from a forest stand and standardized. The
results are averaged together to form a mean-value function for the
site,

The linear aggregate model is useful for describing the concept
of the signal-to-noise ratio (SNR) in tree-ring series. For example, a
semi-arid site tree-ring series will be an aggregate of C, A and E with
Dl and D2 assumed to be negligible, minimized or absent. After A has
been removed, the climatic SNR is the ratio of the variances of C and E.

As pointed out by DeWitt and Ames (1978), this ratio will ordimarily be
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considerably higher in semi-arid site chronologies than in mesic forest-
interior chronologies. Given the inadequacies of current standardiza-
tion techniques, it is likely that the SNR of forest—interior chronolo-

gles can be increased appreclably by dimproving the standardization

model,

Conclusion

The linear aggregate model has 1dentified several discrete clas-
ses of variance which can be found in a generalized ringwidth series.
The two classes which have created the principal difficulties in stan-
dardizing forest interior ringwidths are the disturbance pulses, Dl and
D2. The 1likelihood of significant non~synchroneity between endogenous
disturbance pulses in a stand of trees offers a conceptual approach to
optimally removing this class of non-climatic variance. That is, remove
only those fluctuations that differ from tree to tree. In the next

chapter, a method is developed which 1s based on this concept.



CHAPTER 3

A TIME SERIES MODEL FOR TREE-RING STANDARDIZATION

Introduction

The tree-ring standardization model which is developed in this
chapter is based on autoregressive time series modelling and its rela-
tionship to predictive deconvolution. The model cannot be adequately
understood without some familiarity with autoregressive and moving aver-
age processes. These processes and their dual properties will be des-
cribed in some detail for this reason prior to discussing the opera-

tional specifics of the standardization method.

The General Time Series Model

Standardizing tree rings involves the decomposition of each
radial growth increment series into two components: a non-climatically
determined growth curve and a climatically determined set of scaled
residuals or indices. Letting z = C + E and g = A + DL + D2 from the
linear aggregate model in Chapter 2, this decomposition is expressed as
Ty = 2, * 8¢ 3.1

where r, is the growth Increment series, z, is the climatically related

t

index series, g, 1is the smooth growth increment curve. The actual pro-
cedure of indexing involves division of each r, by each g, which amounts
to scaling the r. into percentages of expected growth. This serves to
stabilize the variance which is generally proportional to the mean in

measured ring-widths.

37



38

Equivalently, equation 3.1 can be transformed to logarithms

yielding the additive model

log r, = log z, + log 8¢ 3.2

Since equation 3.1 and equation 3.2 are mathematically equiva-
lent, a general linear time series model will be utilized because the
usual indexing procedure, in effect, linearizes the model.

In the simple case where disturbance'éffects are absent (i.e. Dl
and D2=0) the growth curve g, 1is ordinarily modelled as a non-stationary
deterministic age trend which, when removed from r. yields a stochastic
series of indices, z,. This basic model is similar to a fundamental
theorem in the decomposition of stationary time series proposed by Wold
(1938). The Wold decomposition theorem states that any stationary, sto-
pchastic process can be decomposed into two mutually uncorrelated,
stationary components which are deterministic and non-deterministic.

The theorem 1s expressed as

Ve = W + Vg 3.3

where Te is the observed stochastic process, and He and V. are the
stochastic and deterministic components, respectively. The form of the
Wold deccmposition theorem is identical to the linearized standardiza-
tion model described above. The significant difference betwen equation
3.2 and equation 3.3 is the stationarity property of V. because the
growth curve, g, is likely toc be non-stationary. The search for deter-
ministic components corresponding to Ve in individual tree-ring series

(Douglass, 1919, 1929, 1936; Bryson and Dutton, 1959; LaMarche and

Fritts, 1972) has always produced equivocal results. This suggests that
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Ve will rarely be a factor in modelling the stochastic properties of

tree-ring series. Fcr simplicity v, will be assumed equal to zero after
8¢ has been removed.

An important property of the stochastic component u, 1s its
representation as an infinite weighted moving summation of a current and
all past random shocks (Wold, 1938). Let

y.=e_+I Y.e _
t t 1=1 17t-1

3.4

where Uy is the observed stochastic series, e, is an unobserved series
of serially random shocks with a mean of zero and a variance equal to
e%, and the y; are fixed weights. Equation 3.4 is identical to the gene-
ral linear process (Box and Jenkins, 1970, p. 46) which is the basis for
autoregressive and moving average stochastic modelling. Because the
Wold decomposition theorem applies to all stationary stochastic proces-
ses, once the growth increment series, T, has its deterministic growth

curve, g,, removed the resultant z, index series can be modelled as a

stochastic process of the form in equation 3.4.

The Moving Average Time Series Model

The infinite summation in equation 3.4 is obviously unsuitable
in practice. When, on statistical grounds, only the first q of the Y-

weights are non—zero, the process is called a moving average (MA) pro-

cess of order q (Box and Jenkins, 1970, p. 52). To differentiate the
finite order process from the infinite representation, the difference

equation form of an MA(q) process is conventionally changed to
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q
z =e -3 0H.,e
t t g fti

3.5

where the 61 are equal to the finite set of non-zero Y . Thus, moving
average processes are truncated forms of the general linear process.
The moving average process represents a specific class of digi-

tal filters known as causal feedforward filters (Robinson and Treital,

1980, p. 48). The filter is causal in the sense that the current fil-
tered output is a function of a current random shock and a weighted sum
of past random shocks. The 6-weights represent the memory function or
impulse response function of the filter. Additionally, this filter is
physically realizable (Robinson and Treital, 1980, p. 100) because it
does not need future inputs to produce the current output. The diffi-
culty in fitting the endpoints of tree-ring series using polynomials and
symmetric digital filters occurs because these filters are not purely
causal and, therefore, not physically realizable. That is, each method
must anticipate or guess at the behavior of the data off the ends in
order to f£it the ends. Thus, causal filters have a mathematical formu-
lation that is consistent with the way tree-ring series actually evolve
through time.

The feedforward property of moving average processes is ex—
pressed schematically in Figure 3.1 for the simple MA(l) process. A
random shock e, is fed into a constant box where it is multiplied by the
8~weight. The —Get term then enters the time delay box where it is

delayed one time unit. On exiting the time delay box, the -fe,_; term is
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fed forward and added to a new random shock e, to produce the output z..
The feedforward filter schematic can be easily extended to MA(q) proces—

ses by providing q time delay boxes with delays of one to q time steps,

a q O-weights.

The Autoregressive Time Series Model
The general linear process in equation 3.4 has an alternate
representation as an infinite weighted sum of all past observations and

a current random shock (Box and Jenkins, 1970, p. 47). Let

z, = et +-E “izt—i 3.6
i=1

where z,. is the observed process, e, is a random shock as before, and

the T, are fixed weights related to past z,. If T 0 for all i > p,

then the process is a finite autoregressive (AR) process of order p (Box

and Jenkins, 1970, p. 51). To differentiate the finite process from the
infinite process, the notation for an AR(p) process changes from equa-
tion 3.6 to
;
z =e_+ .z 3.7
t t oy 1t

where ¢i =m, for 1 < p.

The autoregressive process represents another class of digital

filters known as causal feedback filters (Robinson and Treitel, 1980, p.

80). These filters are causal in the same sense as the moving average
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process because only past outputs are needed along with a current input
to produce the current éutput. For this reason, it immediately follows
that autoregressive processes are also physically realizable digital
filters.

The feedback property of autoregressive processes 1s expressed
schematically in figure 3.2 for the simple AR(1) pfocess. The current
output z, is fed into a constant box where it is multiplied by the ¢-
weigﬂt. The z, term then enters the time delay box where it is delayed
one time unit. On exiting the time delay box, the ¢zt_1 term 1s fed
backwards and added to the current e, to produce the new current output
z.. The feedback model can be easily extended to AR(p) processes by
providing p time delay boxes with delays of one to p time steps, and p
¢—-weights.

The autoregressive representation of a stochastic process is
especially useful for modelling the observed persistence structure of
tree-ring serles. Tree-ring series frequently have autocorrelation and
partial autocorrelation functions which behave similarly to those func-
tions of theoretical autoregressive processes of order p. That is, the
autocorrelation function damps out with increasing lags while the par-
tial autocorrelation function cuts off after lag p in accordance to the
theoretical model (Box and Jenkins, 1970, p. 79). This behavior cccurs
so commonly in tree-ring series that it suggests that the physiological
processes responsible for much of the observed persistence act togethef
as feedback mechanisms to produce an autoregressive—like memory.

Matalas (1962), Stockton (1971), Hipel and McLeod (1977) and Meko (198l)
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have all found that relatively low-order AR processes (p € 3) are usual-~
ly sufficient to model the observed persistence structure in tree-ring
chronologies from western North America. I have also applied Box-
Jenkins modelling techniques to tree-ring chronologles from eastern
North America and the forest—tundra ecotone of Canada and Alaska.

Again, autoregressive models almost always fit the persistence structure

of the data well.

The Duality Between Autoregressive and Moving Average Processes

Box and Jenkins (1970) describe in detail the duality between
autoregressive and moving average processes. Specifically, any finite
order AR process can be mathematically re-expressed as an infinite order
MA process, and vice versa (Box and Jenkins, 1970, p. 72). This is

easily illustrated for the AR(1) process:

Zp = $12¢-1 T ooy 3.8

By successive substitutions of Ze 1 with its equivalence (¢lzt_

g-1 * €;), the duality develops recursively as:

z, = ¢lh(¢lzt_2 + e 1) te, 3.9

¢122t-2 T4y epg ey

¢12 (9123 + epp) + ¢ ec + e

¢13 Zp3 + 4’12%—2 9 e teg

12 (orzey + epg) + hlerp t oy ey teg
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= ¢142:—4 + ¢17e 3 + $2epg + 0 epy ey

and so on back to minus infinity to yield the MA (=) process

[

_ i
z =e, +ii & e 4 3.10

It follows that the MA(l) process:

zt = et - 61 et__l 3.11
can also be expressed as an AR (®) process:
|
z_=e_~-1 0,7z 3.12

t i 7t-1

i=1
by using the same recursion illustrated above.

Another means of examining their duality is by expressing AR(p)
and MA(q) processes as polynomials of order p and q using the backward

shift operator B (Box and Jenkins, 1970, p. 8).

Letting Bizt = Zeg» the AR(1) process in equation 3.9 becomes
z, = (¢1B)zt + e, 3.13

or

e, 3.14

and the AR(p) process in equation 3.7 becomes

(L - 0B = ¢B%= <ve = ¢.BP) z, = e, 3.15
or more succinctly,

$(B) z, = e, 3.16
Likewise, the MA(q) process in equation 3.5 becomes

= - - 2 -— LK ] -

z, = (1L - 8;B - 0,B quq) e, 3.17

or, in compact form

z, = 6(B) e, 3.18
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The duality now takes on a different form. That is, the AR(p)
process in equation 3.16 is re—expressed as an MA(®) process by dividing
both sides of the equation by the operator ¢(B). This yields

z =48 e, 3.19
which 1is mathematically equivalent to equation 3.12. Thus, when
expressed as polynomials, AR and MA processes are seen to be inverse
forms of each other.

The importance of these noted dualities will come clear in the

next section where the basic model for predictive deconvolution (Peacock

and Treital, 1969; Robinson and Treital, 1980) is described. As will be
discussed, predictive deconvolution and autoregressive time series
modelling are equivalent for the special case where a one—step ahead
prediction is of interest. The difference lies in the application. Box
and Jenkins (1970) use AR modelling for forecasting and control purposes
while Robinson and Treital (1980) use it to prewhiten or deconvolve
seismic traces that are contaminated by reverberations.

The Relationship Between Autoregressive Modelling
and Predictive Deconvolution

The relationship between autoregressive modelling and predictive
deconvolution of time serlies is rarely described outside of the scienti-
fic literature dealing with predictive deconvolution and autoregressive
spectral estimation of geophysical data (Peacock and Treital, 1969;
Freyer, Odegard and Sutton, 1975; Ulryeh and Bishop, 1975; Ulrych and

Clayton, 1976). In the context of standardizing tree—ring series via an
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autoregressive model, this relationship is very useful towards under-
standing the basis of its expected performance.

Predictive deconvolutlion or prediction—error filtering is used
extensively in geophysics to minimize the effects of echoes or reverber-
ations in seismic traces due to the passage of sound waves through
layered sediments. The desired sound reflection coefficient series
which describes thé structure of the layered medium is assumed to be
serially uncorrelated (Peacock and Treital, 1969). 1In this sense, the
coefficient series is equivalent to the random shock series described
earlier. When an impulse of sound passes through the layers, some of
the sound energy echoes backwards through the layer boundaries, creating
ﬁhat is known as a reverberating pulse train. The pulse train obscures
the random reflection coefficient series by distributing the energy of
the sound impulse at each boundary to subsequent layer boundaries. The
result is the addition of stochastic predictability to the random series
which degrades the resolution of the trace.

Robinson and Treital (1980) describe the pulse train as a linear
aggregate of smooth sound wavelets of fixed shape that begin at the
layer boundaries and propagate forward in time with diminishing energy.
The energy of each wavelet depends on the strength of the reflection
coefficient from which it propagates.

Wavelets have two properties which differentiate them from
sample time series: a definite origin or arrival time and finite energy
or transience (Robinson and Treital, 1980, p. 63). The property of ori-

gin means that the wavelet does not exist in the series prior to its
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arrival, and the property of finite emergy means that it decays with
time and eventually disappears from the series. A wavelat can be either
"short-period” or "long-period” depending on the character of the rever-
berations (Peacock and Treital, 1969). Short-period reverberations show
up 1in the autocorrelation function as a waveform which damps out or
decays with increasing lag. Long-period reverberations have a correlo-
gram which maintains a strong waveform at loné lags.

Robinson and Treital (1980, p. 242) express the above model

mathematically as

Xy = bOet + blet-l + eee = z bset_S 3.20

5=0

where the by are the coefficients of the wavelet and the e, are the ran—
domn shocks or reflection coefficients. Equation 3.20 is the one-sided,
discrete convolution formula. Thus, the model states that the raw seis-—
mic trace x, is created by the convolution of the wavelet b, with the
reflection coefficient series e,. An excellent discussion of the mean-
ing of convolution is given in Robinson and Treital (1980, p. 66). How~
ever, it is readily apparent that equation 3.20 is mathematically iden-
tical to the general linear process in equation 3.4 by letting by = 1.0.

The goal of predictive deconvolution is to model and remove the
filtering effects of the aggregated wavelets to reveal the reflection
coefficient series more clearly. Since the underlying model assumes
that these coefficients are serially uncorrelated, what is needed is an
inverse filter which will prewhiten or deconvolve the autocorrelated

sequence back to the original series of random coefficients or shocks.
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This amounts to compressing the broadly distributed energy of each wave-
let back to its original form as a random shock. This is accomplished
by designing a prediction-error filter for which the prediction distance
is unity (Peacock and Treital, 1969) or, equivalently, by fitting an
autcregressive process to the data (Freyer et al., 1975). The impor-
tance of the duality between autoregressive and moving average processes
now comes clear. The wavelet has been modelled as an MA(®) process in
equation 3.20. Recalling that AR and MA processes are inverse forms of
one another (equations 3.18 and 3.19) and that an MA(®) process may be
parsimoniously modeled as an AR(p) process (equation 3.10), it follows
that the inverse filter needed to deconvolve the autocorrelated sequence
is an autoregressive process of order p. Thus, the coefficients of an
AR(p) model are the coefficients of the unit-distance prediction—-error
filter or inverse filter of length p needed tc compress each wavelet
back to a random shock, the strength of each shock being proportional to
the total energy of its respective wavelet.

Having noted the equivalence between autoregressive modelling
and predictive deconvolution, 1its usefulness in minimizing the effects
of non-synchronous disturbance pulses in tree-ring chronologies begins
to clarify. A disturbzace can be modelled as an impulse or random shock
to the tree growth system because the duration of the disturbance will
ordinarily be short compared to the duration of the response to the dis-
turbance. For example, the removal of an overstory tree by windthrow
cccurs suddenly and is over quickly. But the gap it leaves in the canopy

will influence the growth of trees in and on the perimeter of the gap
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for many years. Since a disturbance has a defined arrival time and an
effect on tree growth which decays asymtotically with time, the resul-
tant disturbance pulse in the tree-ring series has the two properties of
a wavelet defined earlier.

Another assumption of predictive deconvolution 1is that the sys-
tem response to an impulse (the wavelet) is minimum-delay (Robinson and
Treital, 1980, p. 241). This means that_a'ﬁavelet has maximum energy
shortly after the impulse arrives which subsequently decays with time.
For a prediction-error filter length of p = 1, the filter coefficient k
is said to be stable if |k|< 1 (Robinson and Treital, 1980, p. 82).
Remembering that a unit-distance prediction-error filter 1is equivalent
to an autoregressive model, the bounds of stability for a prediction-
error filter of leﬁgth p = 1 are identical to the stationarity require-
ments for a first-order autoregressive process (Box and Jenkins, 1970,
p. 53). That is, for an AR(p) process where p = 1, the process is sta-
tionary 1f |$|< 1. Therefore, a tree-ring series which can be modelled
as a stationary autoregressive process is approximately minimum-delay in
its response to disturbance. The predictive deconvolution of tree-ring
series with z disturbance pulse will result in the compression of that
pulse to a random shock and a series of climatically related random
shocks analogous to the reflection coefficients in seismic traces.
Depending upon the severity of the disturbance, this non-climatic random
shock may or may not be significantly different from the surrounding
climatic random shocks. This is not a serious problem in the context of

standardization because the arrival time of each disturbance 1is not



explicitly needed. However, the expected performance of predictive
deconvolution in minimizing disturbance effects i1s dependent omn the
degree of synchrony of the disturbance'arrival times through the stand
of trees. If the arrival times differ from tree to tree due to local-
ized endogenous disturbances, then the disturbance shocks will be
greatly reduced or averaged-out of the mean—value function. Conversely,
if the arrival times are synchronous due to'iarge—scale exogenous dis-
turbances, then the resultant disturbance shocks will be preserved in
the mean-value function.

A caveat is necessary now in describing a tree-ring series as a
minimum-delay process. While it is almost certain that a tree's physio-~
logical system will behave in a minimum—delay sense, the output of that
system (the tree rings) may have long-delay properties embedded in it.
How might this apparent contradiction arise? 1In a closed-canopy forest,
a gap created by a tree-fall will allow a suppressed tree to grow upward
into a codominant canopy position. This process may take several years
to complete. During those years, the trend in radial growth will be
positive, as available light increases, until the top of the forest
cénopy is reached. At this point, the tree has reached a new equili-
brium state in its photosynthetic capacity. Thereafter, the trend in
growth will decline to zero and subsequently go negative as expected for
a normal age trend. It is apparent that the time required to reach a new
equilibrium state may be much longer than is allowed for by a minimum-
delay model. The forest canopy structure, itself, acts as a filter with

delay properties that can prolong the response time of a tree to a
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disturbance. Because the long-delay property 1is triggered by episodic
disturbances, it is not a time-invariant characteristic of the tree-ring
series. For this reason, it is embedded within the time-invariant mini-
mum-delay model that is used to deconvolve each series. The probable
effect of long-delay will be added persistence in a tree-ring series

since the transience of a disturbance pulse will be "stretched out" by

the forest canopy structure.

Averaging random shocks should minimize the effects of endoge-
nous disturbances more efficiently than averaging together the original
tree-ring indices. This can be appreciated by exaﬁining the transience
property of some wavelets obtained from modelling tree-ring indices as
autoregressive processes. The coefficients of each wavelet, which are

the Y-weights of a MA(®) process, are obtained from the ¢-weights of its

respective AR(p) process as

‘po = 1.0
¥ = ¢
Yy = 419 + 49 3.21

ST AZ B I

(Box and Jenkins, 1970, p. 134). Figure 3.3 illustrates some character-
istic wavelets of six tree species. The wavelets all decay with time as
expected, but the transience can last for many years. The oak, hemlock

and pine chronologies have wavelets which die away in 10 to 20 years.
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The two spruce wavelets decay much more slowly, and the white spruce
wavelet is still discernible after 50 years. Because the transience of
a disturbance-caused wavelet may last for many years, its effect on the
correlation between tree-ring series may be very strong. This will be
especially so if long-delay effects are also present. If the temporal
effects of disturbances can be minimized using prediétive deconvolution,
then the correlation between series should imbrove.

This property is illﬁstrated in an ensemble of tree-ring series
from eastern hemlock growing Iin New York. Thirty radial dincrement
series were obtained from 15 trees. Each series was converted to indi-
ces using negative exponential or linear regression curves. Any distur-
bance pulse that is shorter than the length of the series in which it is
found will not be removed by these standardization curves. For the
common period 1842-1973, the average correlation between the indexed
series was +0.30 with a standard deviation of +.07 to +0.50. After the
same 30 series were deconvolved to random shocks using an AR(l) model,
the average correlation rose to +0.43 with a standard deviation of +0.32
to +0.54. The change in correlation between some series can be drama-
tic. Before predictive deconvolution, the correlation between two
indexed series from different trees was -0.43. After predictive decon-
volution, the correlation rose to +0.31.

Another benefit of averaging random shocks rather than tree-ring
indices is the way in which predictive deconvolution eliminates the
effects of aggregating autoregressive processes when developing the

mean-value function. Granger and Morris (1976) illustrate in some
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detail how higher-order autoregressive-moving average (ARMA) processes
may arise when aggregating simpler AR processes. For exampie, when two
independent AR(l) processes are combined, the theoretical model of the
aggregate 1s ARMA(2,1). Additionally, if two AR(l) processes are
unequal in length, then the combined series will behave as an ARMA (2,1)
process for the common interval, and as an AR(1) where no overlap
occurs. This is clearly undesirable becausé'any climatic reconstruc-
tions developed from such series would also be stochastically non—homo-
geneous.

Granger and Morris (1976) also show that the aggregate of k
AR(1l) processes will theoretically yield an ARMA(k,k-1) process. That
such very high-order processes do not seem to arise by aggregating many
tree-ring series into a mean-value function is probably due to "coinci-
dental situations"” (Granger and Morris, 1976) whereby several series
with similar AR operators tend to cancel out each other. However,
coincidental situations cannot be assumed to always ameliorate the
effecte of aggregating tree-ring series. Because an ensemble of tree-
ring indices 1s almost guaranteed to have unequal length series in it,
combining these series into a mean—value function may still produce a
stochastically non-homogeneous composite, especlally where sample depth
is small or declines quickly. By averaging ramdom shocks rather than

indices, this potential problem should be minimized.
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Robust Estimation of the Mean—-Value Function

The standardization technique being developed here relies on the
wavelet compression property of predictive deconvolution and the compu-
tation of the mean-value function of resulting random shocks to reduce
or eliminate the effects of endogenous disturbances. The most critical
phase of the technique, and the point at which it is most 1likely to
break down, is in the ability of the mean-value function to "average-
out” the endogenous disturbance shocks peculiar to a subset of trees in
the ensemble. Under the assumption that the contemporaneous climatic
shocks in the ensemble are samples from a normally distributed popula-
tion, the disturbance shocks should behave as extreme values or outliers
in the sample.

Chen and Box {19795) studied several real data sets and conclu-
ded that the occurrence of outliers often results from secular inhomoge-
neity in the variance of the data. The probability distribution of such
series could be described by a contaminated normal distribution. That
is, the basic distribution is N(u,oz) for most of the data with occa-
sional intervals where the variance of the data suddently increased
significantly for a short time. Such behavior shows up as "long tails”
in the probability distribution function of the data.  Long tails can
also be produced by secular inhomogeneity of the mean. Potter (1976)
investigated this "shifting mean" theory as the possible explanation of
the "Hurst phenomenon”, an indicator of long memory that 1s observed in

many natural time series such as streamflow.
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Because no attempt is made here to insure the timewise stability
of either the mean or variance in individual detrended tree-ring series,
outliers produced by secular inhomogeneity are almost certain to occur.
Such outliers can be viewed as existing in two dimensions: time and
space. Timewise outliers exist in individual series as extreme values.
These outliers may be real in a climatic sense, real in an exogenous
disturbance semse, or real in an endogenous' disturbance sense. For
individual series viewed independently of all others in the ensemble,
the three classes of outliers are likely to be indistinguishable. Only
when viewed across space (or cores, if you will) can endogenous distur-
bancé outliers be differentiated from the others. Spacewise, climatic
and exogenous disturbance outliers will show up as contemporaneous
across cores. Thus, while they remain outliers in a timewise sense,
they will not be outliers in a spacewise sense. In contrast, endogenous
disturbance outliers will not be contemporaneous across cores except by
chance alone. Thus, they will act as outliers in a spacewise sense even
1f they are not strong outliers in a timewise sensa.

As shown by Mosteller and Tukey (1977), the arithmetic mean is
especially sensitive to outliers which, when present, render it an
inefficient, biased estimator of location. If outliers are suspected, a
robust mean should be used which discounts the influence of extreme
values automatically. Mosteller and Tukey (1977, p. 205) suggest the

biweight robust mean which 1s solved for iteratively using the arithme-

tic mean or median as the initial estimate.
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The biweight mean is defined by Mosteller and Tukey (1977, p.

205) as

T owyyy/T wy 3.22

y*
vhere w, = [1.0 - ((y; - y*)/c8)21? when ((y; - y*)/cs)? < 1.0.
Otherwise, w; = 0 when ((y; ~ y*)/e$)? > 1.0 -

and S is a robust measure of variance or spread, here defined by the
median absolute deviation (MAD)

S = median lyi - y*| 3.23
and ¢ is an arbitrary constant usually between 6 and 9. Because the MAD
has an expectation of 0.6754 ¢ for normally distributed data (Chen and
Box, 1979a), any outliers exceeding 6.08 standard deviations from the
uncontaminated, arithmetic mean will be completely discounted when c=9.
Thus, ¢=9 will be used.

The variance of the biwelght mean (Mosteller and Turkey, 1977,
p. 208) 1is

2 It (yy - y*)?Z (1-u?)t
s = 3.24

[Z' (1-u?) (1-5u?)] [-1+Z'(1-u?) (1-5u?)]

where: u = (y; - y*)/ecS, S is the MAD, y* is the biweight mean, and I'
indicates summation only when u2<l.
The normalized weight function corresponding to the w; in equa-

tion 3.22 and ¢ = 6.08 is shown in Figure 3.4. The weight function
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behaves like a symmetric digital filter which is applied to time series
for the purpose of suppressing unwanted frequencies of variance. Thus,
for the normalized departure x = 0, w; = 1.0 which maximally weights
that observation. For x =1, sy = 947, which is a discount of about
5%; for x = 2, w; = .795 which is a discount of about 20%; and so on.
Because the weight function is symmetric, the biweight mean will produce
nearly unbiased estimates of central location.regardless of the presence
or absence of outliers in the szmple. In this semse, 1t is an excellent
cholce for autumatically discounting the presence of disturbance shocks
in the mean value function of tree-ring random shocks.

The penalty one incurs by using the biwelght mean is a loss of
estimator efficiency over the arithmetic mean when the data are normally
distributed and uncontaminated by outliers. The arithmetic mean has the
smallest variance among all measures of central location under the nor-
mal assumption and is, therefore, the most efficient estimator possible.
This is important for the construction of confidence intervals and
statistical hypothesis testing. The biweight mean 1s not the most
efficient estimator of location under the normal assumption because the
weighting procedure loses some information contained in the sample.
This increases the uncertainty or variance of the estimate and results
in wider confidence intervals. The efficiency of the biweight mean
relative to the arithmetic mean can be expressed as a ratio of their
respective variances (Mosteller and Tukey, 1977, p. 205). That is,

EFF = 02/0%i 3.25

where U%i and 0% are variances of the biweight and arithmetic mean,
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respectively. Letting o = 1.0, the variance of the biwelght mean will
usually be less than 1.1. This results in a relative efficiency of more
than 907 except for small sample sizes (say, n < 10) where it will be
somewhat less. For very small sample sizes (say, n<6), the biweight
mean can be replaced by the simpler median because not enough informa-
tion exists to warrant the use of more complicated robust measures of
location. The loss of efficiency (usually <iOZ) is a small penalty to
pay for protection from the deleterious effects of outliers. When out-
liers are present in the tree-ring data, experience indicates that the
biweight mean will be more efficient than the arithmetic mean by about
25% on the average. The overall effect will usually be a reduction in
the total error variance associated with the yearly means of the mean-
value function. This results in an increase in the signal-to-noise
ratio of the chronology.

The biweight mean performance as a robust estimator can break
dowm if outlier contamination 1s very high. Performance tests of rela-
ted maximum likelihood robust estimators of location (Andrews et al.,
1972) suggest that the breakdown point will be around the 40% level of
contamination. That 1is, if more than 407 of the cores have similar
endogenous disturbance outliers in any given year, the robust mean will
not perform any better than the arithmetic mean. When such sample
distributions are bimodal or miltimodal due to non—-homogeneous growth
responses across the stand, no clear region of central tendency exists
for the biweight mean to iterate towards. 1In this case, the resultant

biweight mean will converge to a Solomon—like compromise solution that
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splits the modes apart. Because the arithmetic mean will not perform
well here either, this condition cannot be improved upon without collec-

ting more data or manually discarding suspected bad values.

A Pooling Procedure for Time Series Autoregression

On the assumption that the disturbance shocks have been effec-—
tively averaged out of the mean-value function, one more problem must be
solved: the recovery of low-frequency climatic variance that may have
been lost by removing autoregressive persistence. The non-random beha-
vior in each z, series, which is a composite of climatic and physiologi-
cal feedback mechanisms, has been modelled as an AR(p) process. The R
which are assumed to be time invariant, represent the memory function of
the feedback filter that imparts the non-random behavior to Zys and the
e, series reveals the time history of events or shocks that drive the
system. Since the ¢; are related in an unknown and probably very
complex way to climate, site and physiology, the safest way to rein-
troduce the necessary climatic persistence into e. is to assume that all
of it is related to climate in some way. What is needed is a pooled
estimate of the ¢i which reflects the common persistence structure of
the ensemble of tree-ring series. Pooling the ¢; should dampen out the
random effects of micro-site and tree physiology differences in the
stand just as robust averaging of the e, across cores should reduce the
effects of endogenous disturbances.

The solution to this problem is not trivial because the tree-
ring serles in the ensemble will usually be of different lengths and

each series may be significantly cross-correlated with the other series
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at lags other than zero. When present, the latter property is most
important because 1t means that the persistence structure in each tree-

ring series 1is not independent of the persistence in the other series.

This precludes the naive approach to pooling the ¢; based on some form
of simple averaging across series. The lagged interdependence between
series should be expected in most tree-ring ensembles because of inter-
actions between neighboring trees for light and soil moisture. In
closed-canopy forests, canopy and root competition will assure this. 1In
extreme open—canopy forests, these interactions should be minimal.

In order to account for the lagged interdependence beween
series, multivariate autoregressive modelling (Jones, 1964) is called
for. The concept of lagged interdependence can be appreciated by
congsidering the two-variable case. Let X, and Y, be two auto- and
cross—-correlated time series. The interactions of a multivariate lag-

one autoregressive model is expressed schematically as

Xt-l

!

Yt-l — 't

i

(adapted from Salas et al., 1980, p. 350).

The arrows show the way that the two serles can interact. At

lag-zero, the interaction of X, and Y, is symmetric and is described by

the covariance matrix
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where X% and Y% are varlances of Xt and Yt’ and Xth are covariances
between X, and Y,. The lag-one interaction of X  and Y, i8 not symme-
tric however because X, lags Y, and Y, lags X, which yilelds different

values unless Xt = Yt' The lag-one matrix 1s

tht-l Xth-l

Y X1 Yelem

where tht-l and Yth-l are lag-one autocovariances, and Xth—l and
Y.X,_; are lag-one cross-ccvariances. Cleariy, {if the off-dlagonal
terms are non-zero, pooling terms along the principal diagonals (the
naive approach) will yield incorrect estimates.

An elegant solution to the pooling problem, which takes into
account the off-diagonal terms, was recommended by R.H. Jones (pers.
comm,, 1982)., Instead of computing lag-covariance matrices as described
above, the lag-product sum matrices are computed, The lag-product sums
are equal to n times the lag-covariances where n is the number of terms
in each sum, If all of the series are equal in length, the matrices
computed either way will yield identical results, However, when the
serles are unequal in length (which 1s usually the case for tree-ring
series), each lag-product sum will be proportional to n, the number of
common observations for each pair of tree-ring series.

The lag product sums r (k) are m by m matrices computed as

n

0y xx 3.26
1=k+1
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where Xy 1is the matrix of m properly aligned time series with their
means removed and k is the order of the lag matrix. Because the m
series will usually be of different lengths, n equals the maximum length
of the composite time series in the ensemble. For those series that are
less than length n, zeroes can be appended to the ends to pad out the
matrix. The zeroes ensure that each lag-product sum will only reflect
the number of non-zero products in each suﬁ; Beginning with k=0, the
(k) are computed for an arbitrarily large number of lags because the
order of pooled autoregression is unknown. All that matters is that k
is greater than the order p likely to be encountered. Lag-product sums
computed out to 10 lags (k = 11) have been sufficient for all tree-ring
ensembles tested to data. Other results of modelling tree-ring series
as ARMA processes (Hipel and McLeod, 1977; Meko, 1981) support this

choice of k.

Once the P(k) are computed, the pooling is accomplished by sum-

ming the elements in each matrix into a grand sum P(k)

Fd.y 5 7 ® 3.27

where ;(k) is now a vector of length k. The k terms in E(k) provide the
pooled lag-product sums needed for solving the Yule-Walker estimates of
the autoregressive coefficients. One can also obtain pooled autocorre-
lations B%) as

(k) = T /7(0) 3.28

for all k.
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This pooling procedure is analogous to a weighted regression
analysls whereln each variable 1is weighted by the reciprocal of its
variance (Steele and Torrey, 1960, p. 180). Because variables with
large variances are weighted less than those with smaller variances, the
resultant regression coefficients will be more precise. The variance of
autocorrelations is approximately equal to 1/n (Box and Jenkins, 1970,
pe 35). Using lag-product sums automatically'ﬁeights each sum by n, the
reciprocal of the normalized variance of that sum. This procedure
should produce more precise pooled estimates of ensemble lag-structure.
Additionally, by including the off-diagonal elements in the E(k), the
lag covariance between series is automatically compensated for in the
pooled estimate.

The Yule-Walker estimates of autoregressive coefficlents are
described in detail in Box and Jenkins (1970). The coefficients up to

order p require the solution of

-1
T, r, veel
T r ool
_ 1 0 p—2
[alc.-ap] - rllo-rp] : : : 3029

-(p-1) F_(p_z) ...PO

where the a; are the autoregressive coefficients. Although there is a
small. sample blas towards zero associated with these estimates, for any
reasonable length series (say, n=l00), the bias is negligible. The
coefficients can be solved stepwise 1n successively increasing order

from p = 1 to p = k-1 using the computationally efficient Levinson-
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Durbin recursion (Levinson, 1947; Durbin, 1960). Using the notation of
Jones (1982), the recursion begins by estimating the first-order auto-

regressive coefficient
1) =
a1 = 1y/r, 3.30
and the residual sum-of-squares
= - a, ) '
where the Pi are lag-product sums as before. If the process is first-
order, g equals the first-order autocorrelation coefficient. The gene—

ral step proceeds from p = 2 to k-1 calculating the pth order partial

autocorrelation coefficient

pl -
a P r -z 2V gy 3.32
P Pogm 3 p=J p-1

for j = 1, 2,0-0-,p-1, and

Pz 4.(p-1)_ 45 (P) (p-1)

%3 23 % "%p-3

and
= (1 - (p)q2

S, (1 [a, P’] ) Sp-1 3.33
completing the recursion.

Since the order of autoregression 1s unknown at the start, a
test must be applied to determine the value of p beyond which any

higher-order coefficients are not significantly different from zero. In

the next section, such a test is described.
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Selecting the Order of Autoregression

Several criteria are avallable for selecting the order of an
autoregression (e.g. Akaike, 1974; Schwarz, 1978; Hannan and Quinn,

1979). The Akaike Information Criterion (AIC) (Akaike, 1974) is a

widely used criterion for selecting time series models and will be used
here. It 1s defined as

AIC = n ln (RSS) + 2p L 3.34
where n 1s the number of time serles observations and RSS is the sum-of-
squares of the residuals after fitting an order p autoregression to the
series. The right-hand term of equation 3.34 is a penalty function
associated with the number of parameters in the model. If the mean is
subtracted from the data prior to fitting, p must be increased by one.
The correct order autoregression 1s selected as the one which yilelds the
minimum AIC, This represents the point at which additional coefficients
do not reduce RSS enough to offset an increase in the penalty function.

Ideally, the AIC decreases monotonically with increasing order
to a single minimum and then 1increases monotonically thereafter.
Unfortunately, this is not always the case, and two or more minima (or
dips) in the AIC trace may occur. This happens when the time series
being fitted has a 1large partial autocorrelation coefficient that is
preceded by one or more small partial autocorrelation coefficicients.
When competing minima occur, the principle of parsimony usually prevails
and the simpler model 1s chosen (Jongs., 1982).  Another reason for
accepting the simpler model is the finding of Shibata (1976) that the

AIC 1s not a consistent statistic, That is, the minimum AIC does not
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converge to the true order of autoregression as n increases to infi-
nity. This lack of consistency results in an occasional overestimation
of the true order, based on simulation experiments (Hannan and Quinn,
1979). Strongly consistent estimators have been formulated (Schwarz,
19768; Hannan and Quinn, 1979), but at the expense of lower power in
identifying the true order of autoregression when the magnitude of the
coefficients and/or the number of observatiohé is small. Based on the
principle of parsimony and the properties of the AIC noted above, the

order of autoregression will be chosen using a first-minimum AIC

selection criterion.

It should be pointed out that the first-minimum AIC search will
not necessarily yield the best model for explaining the complete sto-
chastic behavior in the tree-ring series. Important long-lag persis-
tence may be missed. For example, an AR(2) model selected by the first-
minimum search would miss a large partial autocorrelation coefficient at
lag-5 which could have climatic significance. However, the purpose of
this modelling is not to develop a high-resolution spectrum, which can
be obtained by allowing the AR order to increase. At this stage, it 1s
only necessary to characterize the short-lag persistence structure which
describes the minimum delay properties of the tree's physiological sys-—
tem. Because the tree growth response to climate and disturbance will
be approximately minimum delay, most of the information needed to decon-
volve the series will be contained in the short lags. Long-lag persis-
tence, which is more likely to arise from long-term climatic fluctua-

tions, will not be affected by the deconvolution and will be preserved
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in the random shocks. 1In this context, "random” must be qualified to
mean only the short-lag behavior of the shock series.

The first-minimum AIC criterion can be applied for fittiag auto-
regressions to the individual series and the pooled data. This would
seem to be the optimum approach because each series can "speak for
itself” in selecting the best model for deconvolution. Operationally,
some problems can arise from this approach hbﬁever. The order selected
by the AIC can vary considerably between series due to random fluctua-
tions of each partial autocorrelation function and the length of each
series being tested. The power of the AIC 1s proportional to the length
of the series being fitted. This being the case, shorter series will
tend to be underfitted relative to longer series in the ensemble.

The pooled AR order selected by the AIC represents an estimate
of common persistence structure due to specles and site specific charac-—
teristics. Because all data are used in =stimating the pooled AR order,
this estimate should be more robust than that derived from any one
series. To ensure that each tree-ring series 1is deconvolved in a way
that is consistent with the others, the AR order fit to each series will
be constrained to equal that of the pooled order. This approach ensures
ﬁhat the pooled autoregression added to the mean-value function of ran-
dom shocks at the last stage of chronology development will always be of

the same order removed from each series.

The Composite Site Chromology

The last step in developing the site tree-ring chronology is the

additicn of the pooled autoregression to the robust mean—value function
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of random shocks. This final chronology has the form

+ 6 3.35

where z, is the composite growth index for year t, e, is the robust mean
random shock, ¢; is the autoregressiﬁe coefficient of the pooled AR(p)
process, and & is a constant related to thé AR process and its mean
level. The 6 is needed because all tree-ring index series have a mean

of 1.0, but the e, have a mean of zero. This constant 1s related to the

¢i as
§ =1.0~- . ¢i 3.36

for the case where E[z] = 1.0,

In examining equation 3.35, an obvious problem is the lack of
Zeoq values to start the recursion. A number (=p) of starting values
are needed tc produce the first p tree-ring indices after which the
recursion proceeds on its own. If no information is available for
selecting the starting values, the unconditional expected value of the
process can be used. If the unconditional mean is used, the first few
values of z, will be biased towards 1.0. The transient effect of the
starting values is proportional to the wavelet of the AR(p) process
being generated and the order p. The wavelets in Figure 3.3 indicate
that this effect will usually disappear after 20-30 years in most

series.
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Another way of generating starting values is to use the tree-
ring indices of the longest series that were lost when that series was
fit as an AR process. For example, if the longest series begins in 1600
and is modelled as an AR(5) process, then the indices lost through fit-
ting (1600-1604) can be used as starting values for the e, which begin
in 1605. TIf several series begin in the interval 1600-1604, then a
mean—-value function of starting values is poséible. Using actual tree— .
ring indices for starting values seems preferable to the unconditional
mean because these indices provide some information about what actually
occurred even though that information may not be very accurate due to
small sample size. The key assumption is that these start-up indices
are not seriously biased.

Operationally, the issue of starting value transience will not
be a problem in many cases. Tree-ring chronologies are frequently
several decades longer than the useful length for dendroclimatic studies
due to sample size decline. If these early decades are not used in

subsequent analyses, then the choice of starting values will not mea-

surably affect the results.

Conclusion
The biological and statistical models developed in Chapter 2 and
here provide a theoretical framework for a new tree-ring standardization
method. Because this method is based on the autoregressive time series
model, it will be given the acronyn ARSTND (for AutoRegressive STaNDard-

ization). The ARSTND method is performed in the following series of
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steps after the tree-ring data for a site have been well-dated and
measured.

1. Detrend and index each individual ring-width series with a
curve that is "stiff" relative to the shorter—term fluctuations seen in
the series. Consider the “"trend-in-mean” concept as a useful criterion
for determining the minimal stiffness that is accepﬁable.

2. Estimate the pooled autoregreSsibh model of the ensemble of
tree-ring index series. Use the first-minimum AIC to select the order
of the model. Save the AR coefficients of this model for later addition
to the residual mean-value function.

3. Model each tree-ring index series as a constrained order AR
process equal to that of the pooled AR model, but compute the coeffi-
cients from the individual series. These coefficients may differ consi-
derably from those of the pooled process.

4. Prewhiten or deconvolve the individual series using the AR
coefficients estimated from the constrained fitting procedure and save
the resultant ensemble of white-noise residuals or random shocks.

5. Compute the mean~value function of residuals using the bi-
welght robust mean or the median if the sample size 1s small (say, less
than six). By this procedure, any anomalous disturbance effects will be
automatically discounted in the mean-value function.

6. Using the coefficients of pooled autoregression, add lost
persistence back into the residual mean-value function to create the

final ARSTND chronology.



CHAPTER 4

A DATA ADAPTIVE METHOD FOR DETRENDING RINGWIDTHS PRIOR TO
AUTOREGRESSIVE MODELLING
Introduction

The detrending curves used to standardiée individual series prior
to autoregressive modelling are designed to remove the non-stationary
variance due to age-related trends and fluctuations. In theory, this
should be a simple procedure since any least squares simple regression
curve will remove the linear trend in the data. Unfortunately, tree-
ring data from forest interior sites rarely have purely linear age
trends. The true.trends may be somewhat exponential or parabolic in
shape. More commonly, the trends look like compound or pilecewise func—
tions of all three kinds of curves. Such complex trends are very diffi-
cult to estimate with mathematical models as pointed out in chapter 1.
As a result, the data may be fitted very well in some intervals and very
poorly in others.

Recently, H.C. Fritts and R.L. Holmes (pers. comm.) reported
that the warlance spectrum of an ARSTND chronology is sensitive to the
initial detrending procedure. They found this sensitivity to be most
apparent in the lowest frequencies of the spectrum where the variance is
affected most strongly by detrending. Specifically, they found inflated
variance in this spectral region when the detrending curves were poor
approximations of the underlying age trends. This inflation probably
occurred as a result of residual non-stationary age trends in the indi-

75
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vidual detrended series. They were not adequately minimized in the
mean-value function due, most probably, to coincidental agreement of
residual age trends among series. This problem should be most acute in
the poorly replicated sections of a chronology where the powers of
robust mean estimation and the Law of Large Numbers are weakest. Be-
cause the method of detrending will, to some degree, dictate the final
low-frequency properties of the ARSTND chrodélogy, it is necessary that
a method be found which will satisfactorily remove complex age trends
and yet preserve as much low-frequency climatic variance 1s possible.

Such a method, based on smoothing splines, will now be described.

A Data Adaptive Method of Detrending Based on Smoothing Splines

Due to the inhomogeneous character of many age trends seen in
forest-interior tree-ring serles, a data adaptive, stochastic method of
detrending based on smoothing splines will be investigated. The formu-
lation of this detrending method is based on the "trend in mean” concept
of Granger (1966). "Trend in mean” refers to all variance in a time
series with wavelengths longer than the length of the series. The low—
est frequency harmonic that may be resolved from the trend in a series
is equal to 1/N where N is the series length. This corresponds to a
cycle with a period equal to the series length and is the fundamental
frequency of the series (Jenkins and Watts, 1968, p. 19). Variations at
frequencies lower than 1/N may appear as a trend because the cycle is
incomplete. This provides a well defined resolution 1imit on the reco-
very of low-frequency climatic variance given the almost ubiquitous pre-

sence of age-related trends in the ringwidth data. Thus, based on the
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“"trend in mean"” concept, detrending should not remove variance resolva-
ble from the trend.

The 1/N 1limit provides an objective guideline for using the
cubic smoothing spline (Cook and Peters, 198l) to detrend and index a
ringwidih series prior to autoregressive modelling. The spline should
remove virtually all variance at frequencies }ower ghan 1/N and, at the
same time, leave higher frequency variance uﬂaffected. Due to the shape
of the spline frequency response function (Cook and Peters; 1981), this
cannot be done exactly as phrased. In fact, some higher-frequency
variance will always be lost. Using equations 2 and 3 in Cook and
Peters (1981) and a hypothetical series 100 years long, a smoothing
spline with a 50% frequency response at frequency 1/100 (the 1/N
criterion) will reduce the amplitude of a harmonic at frequency 1/75 by
about 24%. The equivalent variance reductions, obtained by squaring the
amplitude responses, are 25% and 5.8%7 for frequencies 1/100 and 1/75,
respectively. Thus, 5.8% of the variance is lost at a period of 75
years which violates the "trend in mean” concept to a small degree.
Unfortunately, the reduction of variance at a period of 100 years is
only 25% which may be insufficient. This has probably caused the infla-
ted low-frequency variance noted by Fritts and Holmes in experimenting
with splines using a 1/N 50% frequency response criterion. Given the
shape of the spline frequency response functions, an acceptable 50% cut-
off criterion probably lies somewhere between 1/N and 2/N. Splines in

this range should remove most of the variance associated with age—rela-
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ted trends and, yet, preserve most of the shorter term variance that may
be related to climate.

Using an ensemble of disturbed eastern hemlock ringwidth series
from eastern New York, four chronologies will be developed using four
percentages of N in the range 1/N - 2/N: 100%N, 75ZN, 674N and 507%N.
In addition, a chronology will be created using a combination of linear
regression and negative exponential detrending curves, and a double-
detrending (D-D) method conceived by R.L. Halmes (pers. comm.). The D-D
method first fits a negative exponentlal curve or linear regression line
to a series to remove any trend attributable to either of these models.
The tree-ring indices resulting from the initial detrending are then
filtered with a smoothing spline to remove residual stochastic trends.
The spline 507 frequency cutoff is 100%ZN if the series 1s detrended ini-
tially with a negative exponential curve. Otherwise, a 674N cutoff is
used. The D-D method is based on the premise that the overall age trend
can be decomposed into a deterministic trend and a residual stochastic
trend not fit by the deterministic model. Fritts and Holmes (pefs.
comm.) report that the D-D method reduced the inflated low-frequency
Qariance they observed in earlier detrending experiments.

The effect of the detrending method will be evaluated by compa-
ring the spectra of the resultant ARSTND chronologies and the theoreti-
cal spectra of the AR processes obtained from the ARSTND procedure.
Each theoretical spectrum will be, in effect, the null continuum of the
underlying process because of the low-order selection tendency of the

first-minimum AIC criterion described in chapter 3. The actual spectrum
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will vary about the continuum depending on the frequency distribution of
variance. However, if the AR model 1s correct and the detrending proce-
dure is reasonable, than the general shape of the actual spectrum should
be similar to that of the null spectrum. The AR coefficilents used to
compute the null spectra will be estimated from the actual ARSTND chro-
nologles instead of the pooled AR coefficients. . This 1s necessary
because the coefficients of the chronologies ﬁill always differ slightly
from their respective pooled values due to random effects in the resi-
dual mean-value functiom.

The results of these detrending experiments are given In table
4,1, In every case, a pooled AR(1l) model was selected. The pooled
coefficients are very similar, ranging from 0.451 for the 100%ZN case to
0.412 for the 50%N case. The average variance.explained by autoregres-
sion in the individual series (ﬁz) shows the effects of differing
detrending much more strongly. The g2 ranges from 41.4% for the expo-~
nential-straight line (E-S) case to 26.9% for the 50%N case. Given the
strong similarities of the AR coefficients, the Ez statistics are
reflecting the removal of long-period non-synchronous age trends from
the data as the detrending curves become more flexible. If this were
not the case (i.e. the age trends were synchronous), the AR coefficients
would show progressive deflation from the E-S to 507N splines as more
common low-freduency varlance was removed from the data. This non-
synchronicity property is also supported by the signal-to-noise ratio
(SNR) comparisons in table 4,1, The SNR's were computed from the aver-

age correlations between series following Wigley, Briffa, and Jones,
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Table 4.1 Autoregressive modelling and signal-to-noise ratio results
for an eastern hemlock ensemble using different detrending
options.

E-S = exponential and straight 1line detrending; D-D =
double detrending; %N = spline detrending using a 507
frequency response cutoff equal to a percentage of each
series length; integer values (i.e. 200, 100, ...) are
fixed 50% frequency response cutoffs applied to all series;
R“= average variance explained by the AR(p) model; T =
average correlation between series (1841-1973 period); SNR
= signal~to-noise ratio computed from T.
DETRENDING OPTIONS
E-S D~D 100%N 75%N 67%N 50%N
AR(p) 1 1 1 1 1 1
$1 445 443 .451 443 436 2412

R? 41.1 34.6 37.9 32.7 31.1 26.9

T .293 347 .336 .367 .376 .399

SNR 6.21 7.98 7.60 8.71 9.04 9.97

DETRENDING OPTIONS
200 150 100 50 25
AR(p) 1 1 1 1 1
9, 448 .436 .398 .313 .215

R? 34.5 30.7 24.6 14.3 5.3

T .353 377 413 .449 434

SNR 8.18 9.09 10.56 12,20 11.50
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(1984)., The SNR increases by about 60% as the flexibility of the curves
increase. This would not be the case i1f the splines were only removing
synchronous or common fiuctuations from all the series. The SNR results
seem to support the 507N spline as the best detrending choice. As will
be shown by spectral analyses and additional spline experiments, this
simplistic choice based on maximum SNR is not advisable.

The variance spectra of the ARSIND.chronologies based on the
detrending methods just described are shown in fig. 4.1. Fach spectrum
was computed from 28 lags of the autocorrelation function which 1is about
127 of the series length. Only the estimates for perliods of 8 years or
longer are shown because all of the spectra are virtually identical at
shorter wavelengths. Superimposed on each spectrum is the theoretical
null continuum and its 95% confidence limit (Mitchell et al., 1966).
The E-S, D-D, 75%N and 677N spectra are all extremely similar to each
other. The E-S spectrum shows slightly more variance at infinite period
which may be reflecting the inflated variance phenomenon noted by Fritts
and Holmes, However, each of these spectra follows the shape of the
null continuum very well, There 1s no indication of variance loss or
distortion in the low-frequency band as a result of D-D, 75%ZN or 67Z%ZN
detrending. This indicates that the "trend in mean” concept 1is being
conserved even though the splines are removing some higher frequency
variance. This behavior 1is probably due to relatively little variance
removal near the fundamental frequency coupled with a general lack of

coherence between series around that frequency band.
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The 100%N and 50%N spectra show some peculiar differences from
the others. The former has less low-frequency variance than the tighter
splined series which seems contradictory. It is likely that this was
caused by poor curve fits that left in strongly out-of-phase residual
age trends. These trends could dominate and cancel out common long-
period fluctuations and, thus, reduce the low-frequency power, Similar-
ly, the 50%N spectrum shows a loss of low-frequency varlance and some
increase in the middle frequencies. In this case, the distortion in the
spectrum is probably being caused by the excessive removal of low-fre-
quency variance as described by Jones (1984) and in chapter 3. Based on
these analyses, the D-D, 677%N and 75%N spline detrending methods appear
to be superior.

As mentioned earlier, selecting a detrending method based on
maximum SNR is not advisable. This judgment was supported by the spec-
tral analyses just discussed. To examine the correctness of this judg-
ment further, the hemlock ensemble was detrended with splines of Increa-
sing flexibility to examine the SNR properties and spectra of the resul~
tant ARSTND chronologies. In this experiment, the splines were chosen
to remove 50% of the amplitude in every series at periods of 200, 150,
100, 50, and 25 years. The tighter curve fits clearly violate the
"trend in mean" concept because many of the hemlock series are over 200
years 1long. Examining the effects of these tighter curve fits 1is
Instructive because they have been advocated and used in the literature.
Cook and Peters (1981) and Blasing et al. (1983) have used splines in

the 50% frequency response cutoff range of 30 to 100 years. And,
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Briffa, Jones and Wigley (1983) used a Gaussian low-pass filter with a
50% variance (or about 70% amplitude) cutoff at 30 years to standardize
British Isles oak chronologies for climate studies.

Table 4.1 shows the results of these detrending choices. As
before, a pooled AR(l) model was selected in every case. This time,
however, the AR coefficients show progressive decay from 0.448 to 0.215
as the spline flexibility increases. At the s'e;me time, the SNR shows an
Increase of about 49%. Given the fact that each case is still modelled
as an AR(l) process, this null continuum model will again be used in
examining the spectra.

The spectra are plotted as before in fig. 4.1. The 200-year
spline spectra is extremely similar to the 67%N and 75%N spectra. This
is due to the prevelence of 200-300 year long series which make the 200-
year spline detrending nearly equivalent to 67%N~75%N detrending. The
150-year spline spectrum shows the same characteristics as the S50%N
spectrum. After that, the spectra show a very rapid decay of low-fre-
quency variance in violation of the underlying AR null continuum. The
result is the development of statistically significant peaks in the 50-
yeér and 25-year spectra which are artifacts of the spline detrending.
This 1llusion 1s caused by the way in which the higher frequencies
contribute more relative variance to the spectrum after low-frequency
variance 1s removed. This 1is precisely the phenomenon described by
Jones (1984) when an autoregressive process is filtered by a high-pass

moving average filter. Clearly, a spline detrending approach predicated
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on a maximum SNR criterion would lead to an extremely distorted variance
spectrum and the possible creation of spurious low-frequency peaks.
There seems to be little difference between the D-D, 75% ana
67%N detrending methods based on their respective spectra. To test this
conclusion, the D-D, 75%N and 67%N detrending methods were applied to a

different ensemble of 26 Jeffrey pine (Pinus jeffreyi) cores from the

San Pedro Martir Mountains in Mexico. The chronology from this data set
is the one in which Fritts and Holmes found excessive low-frequency
variance due to inadequate detrending. In addition, a baseline chrono-
logy was created using the E-S detrending method. A chronology based on
100%ZN detrending could not be developed because the spline growth curve
went negative. The theoretical null continua of the E-S, D-D and 677N
chronologies are based on the AR(3) model estimated from each series
using the first-minimm AIC criterion. The continuum of the 757N
chronology 1s based on an AR(2) model estimated in identical fashion.
These spectra with their 957 confidence limits are shown in Figure 4.2.
The E-S, 75%ZN and 67ZN spectra all show inflated low—-frequency
variance that exceeds the 95% confidence limit. The inflation in the E-
S case 1s caused by poor curve fits in 14 of the 26 cores which had been
identified a priori by R.L. Holmes as needing polynomial or spline
detrending. In contrast, the variance inflation in the 67%N and 757N
cases 1s caused by poor fitting in the steeply exponential juvenile
growth periods of the 12 cores requiring the negative exponential curve
option (R.L. Holmes, pers. comm.). The D-D method, which is a hybrid of

the E-S and 7N methods, has produced a chronology without the inflated
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low-frequency variance seen in the other spectra. At the same time, it
has conserved low-frequency variance in accordance with the theoretical
null spectrum. The hybrid nature of double detrending makes it a gene—

ral and robust detrending method for the ARSTND methodology.

Discussion

Age~trend removal using the double @etrending method is a good
compromise between the desire to preserve as much low—frequency variance
as possible and the need to minimize the effects of age-related, non-
climatic variance. The initial use of negative exponential and linear
regression curves removes the deterministic portion of the age trends.
The residual stochastic age trends are removed with splines that
conserve the "trend in mean" concept.

The 7N criterion used in the spline fitting makes the double
detrending method easily applicable to tree-ring series of general
length. This is a highly desirable quality. A drawback of the %N
criterion 1s the way in which shorter series will have less resolvable
long-period variance compared to longer series. This problem is impli-
cit when detrending any ensemhle containing variable length series. On
this basis, it 1s desirable that the minimum length in a tree-ring
ensemble be a large fraction of the maximum or useful length of the
final chronology. In this way, very little long-term variance in common
to all series will be lost within the resolution limits of spectral
analysis. As a result, the spectrum may be more easily f£fit by a theore-
tical null continuum which will fascilitate the comstruction of fiducial

limits for hypothesis testing purposes. More importantly, any climatic
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inferences or reconstructions made from these chronologies will not be

seriously bilased because of the detrending method.



CHAPTER 5
THE THEORETICAL SIGNAL AND NOISE PROPERTIES OF THE ARSTND METHODOLOGY

Introduction

The double detrending method described in chapter 4 will remove
most of the non-stationary variance due to deterministic and stochastic
age~-trends without seriously distorting the low-frequency variance
characteristics of the ARSTND chronology. The remaining signal and
noise variance with periods shorter than the serles length will now be
modelled based on the probable characteristics of the signal and noise,
and on the likely way in which the two variances are associated. 1In so
doing, the theoretical signal-to-noise ratio and minimum error variance
properties of the ARSTND methodology will be derived.

The General Configuration of the Signal and Noise
Variances in Detrended Tree-Ring Series

There are basically two signal and noise configuration that can

be postulated for the detrended tree-ring series. One 1s the classic

signal plus noise model

Z, =S, + N, 5.1

where S¢ is the signal or variance in common among all series, and N, is
the noise or variance that is unique to each series. Although S, and N,
are often assumed to be serially uncorrelated, the autocorrelated nature

of tree-ring indices allows for both S and N, to be autocorrelated as

89
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+S_ + I $.N .+ on, 5.2

where S, is now an AR(p) process and N, is an AR(q) process. Although
the S, and N, models could be easily generalized to include mixed auto-
regressive-moving average processes, only the AR description will be
examined because this is the time series model on which the ARSTND
methodology is based.

The signal and noise configurations of eqs. 5.1 and 5.2 assume
that the noilse evolves from sources that are independent of the signal
in the observed process, 2o This is equivalent to saying that the
noise in tree-rings is added by a process that is either separate from
or external to the tree's physioiogical processes that are responsible
for encoding the signal in the ringwidths. It is difficult to defend
the proposition that the noise evolves from a separate or compartmenta-
lized set of processes within the physiological system. The observed
differences between series are more likely to arise from differential
rates of the same processes that create the common persistence in the
signal. However, there is a source of noise that is added after, or is
external to, the formation of the ringwidths. This is the variance ari-
sing from the accuracy and precision of the ringwidth measurements.

This noise will be referred to as external additive noise. Its likely

contribution to the total noise varince in a tree-ring series will be

considered later.
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An alternate model for autocorrelated signal and noise variance

is one in which the noise evolves in direct association with the signal,

namely
p ~

Z, = I ¢i zt-i + (St + nt) 5.3
i=1

In this model, both the serially random signal, Sgs and noise, n,,
become autocorrelated via a common AR operatdf, ;i, which, in this case,
represents the tree's physiological system that produces the ringwidths.
The important difference between this model and eq. 5.2 is the way in
which the noise is an integral or internal part of the autoregressive
representation of the tree-ring series. For this reason, eq. 5.3 will

be referred to as the internal additive noise model. Note that the

internal and external noise models differ only when autoregression is
present. Otherwise, each model reduces to eq. 5.1 where S, and N_ are
serially uncorrelated. Eq. 5.3 can be generalized further by letting
the noise be separately autocorrelated as in eq. 5.2, namely
P . P _

Zt = iil ¢i zt-i + (st + j£1 ¢j Nt-j + nt) 5.4
This model still maintains the internal character of the noise, but now
allows 1t to contribute additional autocorrelation to the observed
serles, Z,.

Eq. 5.4 has particular relevance to the ARSTND methodology. It
states that a tree-ring series can be decomposed into a signal, Sy, and

persistence, ¢izt—i’ which are common to all series in the ensemble. In
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addition, each series can be decomposed into a noise component, n,, and
persistence, $th-j which are only associated with that series. The 51
can be thought of as representing the persistence due to macro-environ-
mental influences and genetically predisposed physiological processes of
the tree species. In contrast, the $j arise from the persistent
departures from expected growth due to local environmental influences
such as endogenous disturbances.

A hybrid noise model incorporating both intermal and external
additive noise is clearly possible. However, before considering this
added complexity, the relative contributions of internal and external
noise to the total noise variance will be estimated. As will be shown,

the external noise estimate 1s small enough to ignore for all practical

purposes.

The Estimated Contributions of External and Internal Additive Noise

In tree-ring research, external additive noise comes from two
sources: the precision of the machine used to measure the ringwidths
and the accuracy of the person who makes the measurements. The preci~
sion of most currently available measuring machines is + 0.0l mm. The
measurement accuracy 1s more difficult to estimate because it is based
on the experience and care of the measurement technician, and on the
degree of circuit uniformity and ring boundary definition of the tree-
rings. Fritts (1976, p. 250) considered the issue of measurement accu—
racy by having several experts measure identical 20-year sequences from
arid-site conifers and temperate-forest white oaks. TFrequency histo—

grams of the sum-of-squared departures between the replicates (Fritts,
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1976, p. 251) were developed as guides for assessing measurement accu-
racy. The mode of the histogram for arid-site conifers is approximately
0.02. This corresponds to a most frequent accuracy of + 0.03 mm which
yields an additive noise variance of 0.0011. For the temperate-forest
oaks, the mode is about 0.10 which represents an accuracy of + 0.7 mm
and an additive noise variance of 0.0053. MEasuriﬁg machine precision
is embedded in these estimates. '

The percent contribution of this noise variance depends on the
variance of the tree-ring series being measured. Results of Fritts and
Shatz (1975) indicate that many arid-site chronologies will have vari-
ances of about 0.l14. Using this value, the external additive noise
variance 1is only 0.8%Z of the total variance. Mesic-site tree-ring
chronologies are likely to have variances of about 0.06 based on results
of DeWitt and Ames (1978). Using this value, the external additive
noise represents about 8.8% of the total variance. These estimates are
undoubtedly high, however, because the variances of individual detrended
series will be higher than that of the mean—value function. For this
reason, external additive noise 1in individual mesic-site tree-ring
series will probably be less than 5% of the total variance.

The contribution of external additive noise to the total noise
variance in an ensemble can be estimated from the SNR study of DeWitt
and Ames (1978). Using an average fractional common variance estimate
of 29%, the average total noise variance for mesic-site tree-ring chro-
nologies is 71%Z. Then using a 5% estimate for external additive noise,

this noise component accounts for only 7% of the total error variance.
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Thus, internal additive noise with its average contribution of 93% must
dominate the SNR of a tree-ring chronology. TFor simplicity, external
noise will be assumed non—-existent and egs. 5.3 and 5.4 will be used

exclusively in the SNR derivations presented next.

Theoretical Signal-to-Noise Ratio Properties of Tree—Ring Data

Using the signal and noise configurapions of eqs. 5.3 and 5.4,
the signal-to-noise ratio (SNR) properties of tree-ring data will be
derived now. These derivations will be somewhat different from those of
Wigley et al. (1984) because the effect of autocorrelation on the SNR
will be considered. Wigley et al. (1984) implicitly assumed that the
signal and noise were serially uncorrelated.

Among others, one unbiased estimate of SNR from Wigley et al.
(1984) is

SNR = N a / (1-3) 5.5
where 4 is an unbiased estimate of fractional common variance such as
the average correlation between trees and N is the number of trees in

the ensemble. The formula for SNR on which the derivations for autocor-

relted noise will be based is

SNR = o* /o 5.6
s &
where 3§ and 3% are the variances of the serially random signal and

noise, respectively. SNR expressed in eq. 5.6 is a blased estimator of
the sample signal-to-noise ratio because it does not take into account

the contribution of nolse variance to the estimate of the signal vari-
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ance. The blas 1s not important here, however, because this analysis is
a purely relative comparison of SNR's in the presence and absence of
autocorrelated noise. The results presented here can be applied to the
unbiased estimates of SNR derived by Wigley et al. (1984).

The basic time series model for autocorrelated signal and noise
will be the autoregressive process. In order to derive the various
SNR's, the variances with and without autoéorrelation are necessary.
For the serially random case, the unbiased estimate of population vari-

ance for series e, is

n
2 - - a)2 -
og 121 (et e/ (n-1) 5.7

which 1is standard to any elementary statistics books. For the case

where the series in question is autoregressive, the variance estimate of

an AR(p) process is

2 °¢22
ac.= - 5.8

(Box and Jenkins, 1970, p. 56) where cg is the variance of the serially
random shocks or residuals from eq. 5.7 and the ¢i and P; are autore-
gressive and autocorrelation coefficients of the order p process. For
the simple AR(1l) process, eq. 5.8 reduces to

g2

2 _ e

g = —S 5.9
z - a2
1 ¢1
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(Box and Jenkins, 1970, p. 58). The stationarity condition of the AR(1l)
process requires that ¢; must lie between * 1.0. Thus, ¢% < 1.0 and,
consequently, 03 > og. This variance 1inflation property of
autoregression is a crucial concept in understanding the effect of
autocorrelated noise on the SNR.

The following SNR derivations will be based on an AR(1) model
when the signal and noise are autocorrelated. As will be clearly evi-

dent, the results can be easily extended to the general AR(p) model.

The general formulation of the AR(l) model used in the derivations is,

from eq. 5.4,

6 5.10

where Z, is one observed autocorrelated series of an ensemble, $1 is the
autoregression coefficient common to the ensemble or the system that the
ensemble represents, s, is the serially random common signal, $i is the
autoregression unique to the noise, N, is the autocorrelated noise, and

n, is the serially random noise. The model assumes that St and n, are

t

uncorrelated within each Z, and that all n, series are mitually uncorre-

lated within the ensemble.

The SNR's for two cases will now be derived: 1) the common
autocorrelation~-random noise case; and 2) the common autocorrelation—

autocorrelated noise case.
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The Common Aut zorrelation-Random Noise Case

The time series model for this case derives from eq. 5.3 and

simplifies from eq. 5.10 to

2y = $12.4 + (sy + n;) 5.11

by noting that $1 = 0.0. Hence, the seriaily random signal, S¢s 1s
contaminated with serially random noise, n.. The observed process, z,
is autocorrelated through 51’ which like S, 1s common to an ensemble of

Z Using eq. 5.9 and the additivity property of variances, the

to

variance of Zt is

o2 + a2
o2 = = 5.12
1~
or
) 52 P
o2 = = + = 5.13

z - 32 - 32
1 ¢1 1 ¢1

The SNR for the case where no autocorrelation exists has been

defined previously as

SNR = 0%/02
S n

We now define the SNR for the common autocorrelation case as

SAR = 02/02 5.14
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2 and 32 are the signal and noise variances after the addition of

~
where os a

common autocorrelation. In this case, from eq. 5.13

2. s 5.15

and

92
n

n 2
1&1

Substituting the right-hand side of equs. 5.15 and 5.16 into eq. 5.14

yields
. o33
SNR = -_—2———2— 5.17
52/ (1=32)
or
SNR = G2/G2 = SNR 5.18

from eq. 5.6. Thus, autocorrelation common to both the signal and noise
has no effect on the signal-to-nolse ratio of an ensemble. 1In this
case, there would be no advantage in using autoregressive modelling to
develop a tree~ring chronology when the noise 1is random within and

between trees.

The Common Autocorrelation—-Autocorrelated Noise Case

This case 1Is based on the full model described by eq. 5.10.

That is,



99

Zp = $12pq F (s F $Npq + 1)

where all terms are defined as before. This model represents the gene-

wias 4

ral noise case where there are non-synchronous (i.e. non-climatic)

growth fluctuations in the detrended tree-ring indices.

To derive the SNR for autocorrelated noise, first define this

SNR as
T A

~ ~
where og and cnz are autocorrelated signal and noilse variances, respec-—

2

tively. The 0,° can be expressed (via eq. 5.15) as

02 = —2— 5.20
2
1 -37

The onz is a little more complicated to express because of the contribu-
tions of both ¢1 amd $1- First define the variance of the autocor-—
related noise, N., as

o2
n__ 5.21

¥ = ~
- 32
1 ¢1

where 3§ is the serially random noise variance. Now definme the total
noise variance after the addition of common autoregression to both s,

and Nt as
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02 = —2— 5.22
1 - 2
n

32 32
52/ (132

h2 _
On = Y 5.23
%
This leads to
52 = n 5.24

n

2 -a2
1-%%) (1-4%)
Using results of eq. 5.20 and 5.24, the SNR in eq. 5.19 becomes

. o2/ (1-82)
SR = — ) 5.25
02/ (1-32)(1-62)

or -y
oS(1-47)
sfR = =10 5.26
a2
n
) .
Because (l-$1) is always less than 1.0, the SNR of an ensemble contami-
nated with autocorrelated noise will always be less than the SNR of an
ensemble containing serially random noise. That is, skr < SﬁR.
The effect of autoregressive modeling and prewhitening on the
SNR will now be examined for the autocorrelated noise case. We begin by

defining the SNR of the serially random mean—value function obtained by

prewhitening the individual series as



101

w ey g .
SNR = Os/Gn 5.27
This SNR differs notationally from SNR (eq. 5.8) because ;g and og are

Z and 52 even though each SNR is based on serially

unlikely to equal o a

random data from the same ensemble. The variance in the estimates of

autoregression used to prewhiten each series will ensure that SNR # SNR.

However, if the AR coefficient estimates are unbiased, then E[SNR] =

SNR . This suggests that reasonable estimates of gg and ;g should be

available from 32 and Eﬁ via eqs. 5.20 and 5.24. Thus,

“y _Ap . 9

og = 0% (1-¢ 1) 5.28
and

o2 = 02 (1-¢%) a-) 5.29

Substituting the right-hand sides of eqs. 5.28 and 5.29 into eq. 5.27
yields

. o2 (1-32)
SNR = s L 5.30

52 - -2
02 (1-%) (1-¢{)

or, from eqs. 5.20 and 5.21

. @
SNR = N—Z—_“'Z—- 5.31
of (1-¢7)

Again, nothing that (1-$21) is always less than 1.0, the variance of the
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autocorrelated noise will always be less after prewhitening. Thus, SﬁR
> shR.

Eq. 5.31 shows that SﬁR is an estimate of signal-to-noise in the
residual mean-value function which is one-half of the final ARSTND chro-
nology. However, it is clear now that this is also the SNR of the
ARSTND chronology obtained after adding pooled autoregression to the
residual mean-value function. This follows from the common autocorrela-
tion-random noise SNR derivation which showed that common persistence
added to both the signal and noise has no effect on the signal-to—noise
ratio. Thus, the error variance reduction property of autoregressive
modelling which was hypothesized in chapter 3 has been derived in
theory.

Eq. 5.30 suggests the need for estimating both 51 and $1 in
order to optimally prewhiten the series. Unfortunately, neither coeffi-
cient 1is known at the start. However, &1 can be estimated using the
pooled autoregression procedure described in chapter 3. Given this
estimate of pooled or common ensemble persistence, the prewhitening pro-
cedure could occur in two different ways.

The first way, suggested by eq. 5.30, is a two—-stage procedure
whereby each Z, 'series is first prewhitened using the pooled AR coeffi-
cient ;. This would yleld (from eq. 5.10)

Zt = St + ¢1Nt_1 + nt 5.32
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Then, each Z, would be modelled and prewhitened again by estimating $i

uniquely for each series to yield
Z.=s_+n . 5.33

It is also possible to obtain a direct estimaté of the endogenous
disturbance pulse(s) within each series by noting that the expected
value of the serially random s;gnal, S¢; in the presence of serially and
spatially random noise, n., is the mean-value function, §t. Since E[st]
= §t, we can estimate the endogenous disturbance pulses by subtracting
§t from each Zes after prewhitening with $i, which yilelds an estimate of

Then, given the estimated noise series, ﬁt, the disturbance pulse can be

estimated as
~/\ - .
MNeg = (s + 9Ny + 1) -8 - d 5.35

Eqs. 5.34 and 5.35 provide explicit estimates of the random variance and
disturbance shocks in ﬁt and the tree-ring response to the ﬁt in $iNt-1‘
These estimates would be very useful in stand dynamics studies because

the interference of the common environmental signal has been eliminated.
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The solution for ﬁt and ${;::i also highlights the fundamental
difference between the ARSTND methodology and the more traditional flex-
ible curve-fitting procedures. The latter explicitly estimates $;;::i
in each tree-ring series as a smooth flexible curve without any clearly
objective method for differentiating the signal, s ., from the noise, n..
In contrast, the ARSTND methodology produces a robust, minimum variance
estimate of the common signal among series without the need to expli-

N
cltly estimate $1Nt-1 at all.

The alternate method of prewhitening each Z, series is to esti~
mate $1 and $i together as a composite astimate of common and unique
persistance in Zyo This 1s the proced@re advocated in chapter 3 under
the constraint that the AR-order fit to each Z, must equal that of the
pooled autoregression model. Since the best estimate of $1 is the
pooled estimate, the constraint implicitly assumes that the noilse model
has the same order as the signal model. This is a reasonable assumption
given the fact that the autocorrelation structure in the signal and
~noise will be dominated by persistence due to tree physiology in most
cases (Matalas, 1962; Meko, 1981). Thus the same system and, hence, the
same model should be imparting persistence to the signal and the noise.

The principal advantage of estimating individual series autore—
gression as a composite of signal and noise persistence 1s computational
efficiency. The AR modelling is only dome once for each series instead

of twice in the two—stage procedure. Unless stand dynamics information

is of interest, this more efficlent method is suggested.
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Discussion

A plausible model for the configuration of signal and noise in
detrended tree-ring series has been constructed. Based upon this model
and the variance formula of an autoregressive process, the theoretical
SNR properties of the ARSTND methodology have been derived. For the
case where the noise variance is serially random, the SNR of a tree-ring
chronology cannot be improved by AR modelling and prewhitening of the
jndividual series. However, for the case where the noise is autocorre-
lated, AR modelling and prewhitening should increase the SNR through the
reduction of noise variance that was previously inflated by autoregres—
sion. In this sense, the ARSTND methodology is likely to produce a
chronology with minimum error variance.

The SNR of the final ARSTIND chronology was also shown to be the
same as that of the residual mean-value function prior to the addition
of pooled autoregression. This SNR and its estimate of fractional com—
mon variance can be compared to the same statistics estimated from the
detrended indices prior to prewhitening. In addition, actual estimates
of error variance in both chronologies can be calculated and compared.
These comparisons will provide objective tests of the theoretical SNR

property of the ARSTND methodology.



CHAPTER 6

VERIFICATION TESTS AND PERFORMANCE
PROPERTIES OF THE ARSTND METHODOLOGY
Introduction
The theoretical signal and noise models for tree-ring seriles
derived in chapter 5 indicate that autoregréssive modelling should be
useful in reducing error variance when it 1s autocorrelated. Verifi-
cation of this proof 1s crucial before it ca; be accepted as true and
before the ARSTND methodology can become an accepted method of stan-
dardizing tree-ring series. In order to do this, an empirical esti-
mate of the level of autocorrelated noise in a tree-ring ensemble will
be proposed. This estimate will then be correlated with an empirical

estimate of error variance reduction due to autoregressive modelling

in an attempt to verify the theory.

In addition, the performance characteristics of the biweight
robust mean will be examined in computing the chronology mean-value
function. This is the second stage of the ARSTND methodoloby which is

intended to reduce the effects of disturbance-related outliers in the

mean~value function.
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Empirical Estimates of Autocorrelated Noise and the
Reduction of Error Variance Rue to Autoregressive Modelling

The fractional variance due to pooled or common autoregression

can be estiamted from the variance formula of an autoregressive
process of order p, viz.

2
o

2 - 2 ' 6.1
z 1= 4Py = 9yPy T eee — 0 e,

g

In this case, Og is the pooled variance of the observed ensemble, ci
is the pooled variance of the unobserved white noise of the ensemble,
and ¢; and py are the pooled autoregression and autocorrelation
coefficients, respectively. From eq. 6.1, it is easy to show that the

fractional variance due to pooled autoregression is

P

4\2—
R™ =1 9Py

6.2
The average fractional variance due to all sources of
autoregression (ﬁz) in the individual series is simply

=2 P 2

R = 151 R i/N 6.3
where R% is the fractional variance due to autoregression iIn series 1
and N is the number of series in the ensemble. From eqs. 6.2 and 6.3,

the proposed measure of autocorrelated unoise 1is, simply, the
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2

%2 and R®. That is,

difference between R

ar? = §2 - R2 6.4
If the noise 1is serially random, ﬁZ = g2 and, hence, AR% = 0. If the
noise is autocorrelated, g2 > ﬁz and, hence, AR? > 0.

According to the theoretical signa;.and nolse properties of
tree-ring data derived in chapter 5, autoregressive modelling will
reduce the error variance in the mean-value function if and only if
autocorrelated noise is present, i.e. AR2 > 0. Having formulated an
estimate of the level of autocorrelated noise in an ensemble, an esti-
mate of error variance reduction is now needed. This estimate will be
based on the change in fractional common variance before and after the

autoregressive modelling. Specifically, let this change be defined as

where T, and T, are the estimates of fractional common variance before
and after autoregressive modelling of the previously detrended and
indexed ensemble of radial increment series. The estimate of each T
is the average correlation between trees following Wigley et al.

(1984). If Er > ES after prewhitening, then some reduction in error

variance may be attributed to autoregressive modelling since all other
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variables have been held constant. This leads to the verification
test that AR2 and Ar must be positively correlated if the theory in

chapter 5 is correct.

The Verification Data and Test Results

The verification test was made utilizing estimates of Es and

Er from 66 tree-ring ansembles comprising fQur tree genera: Tsuga,

Quercus, Picea and Pinus. The ring-width series of each emsemble were

double~detrended and indexed, in the manner described in chapter 4,

prior to the autoregressive modelling. The estimates of RZ, ﬁz

, and,
therefore, AR2 were derived from the total length of each series in
the ensemble. This means that vériable record-length tree-ring series
were used in these estimates. In contrast, Ty, T, and, hence, AT were
derived from the period of record in common among all series which is
shorter in length than many of the individual series. This means that
the time windows utilized in estimating AR2 and AT for an ensemble are
not identical. To minimize the error variance in the estimates of AR2
and AT which may bz attributable to the different time windows, the
length of the common period used in estimating AT averages over 200
years. This 1is almost always a large fraction of each series'
length. Because each genus could represent a different population of
AR2 and AT values (in both a statistical sampling and biological

sense), the data were stratified by genus into four independent

groups. This resulted in a sample size of 26 for Tsuga, 14 for
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Quercus, 13 for Picea, and 13 for Pinus. The null hypothesis being
tested in each case 1is: There is no positive linear dependence
between AR2 and Ar. To test this null hypothesis, linear regression
and  correlation will be used. Because the theory being tested
indicates that autoregressive modelling will cause an increase in
fractional common variance when autocorrelated noise is present, the

2 and the predictand A%.

predictor variable will be AR

Table 6.1 contains the means, standard deviations and standard
errors of AR2 and AT for each genus along with the intermediate
statistics used to estimate them. The average ARZ is 0.097 for Pinus,
0.125 for Picea, 0.139 for Quercus, and 0.157 for Tsuga. This is the
ranking from lowest to highest in terms of absolute levels of autocor-
related noise. Each AR2 value can be iInterpreted as the fractional
variance component due to autoregression within individual series that
is unique to those series. 1In contrast, each ﬁz value can be inter-
preted as the fractional variance component due to autoregression
between series that is common to all series. Thus, the decomposition
of ﬁz into AR? and ﬁz can be interpreted much 1like the component
varlances 1in a one~way analysis of variance. Although AR2 is the
principal statistic of interest here as it relates to AT, its percent
contribution to §2 (denoted as ZAEZ) reveals the relative 1level of
out-of-phase persistence between serles within each ensemble. ZAﬁZ is

analogous to the percent variance components reported by Fritts (1976,
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Table 6.1. The mean statistics of autoregressive modelling and its
effect on fractional common variance.

A total of 66 tree-ring ensembles have been stratified by
genus into four groups., The sample sizes are 26 for Tsuga,
14 for Quercus, 13 for Picea, and 13 for Pinus.

A. Tsuga 2 R? sR2 #aR%2 f, P, AT %AE
Mean .332  .493  .161  32.7 .304 .420 .116 38.1
Stand, Deviation .108 .081 065 13,8 ,075 .056 .054 27.4
Stand. Error .021 016 ,013 2.7 .015 ,011 .011 5.4

B. Quercus

Mean .205 .344 .139  40.4 .276 .336 .059 21.8
Stand., Deviation .099 .075 044  17.3 .060 ,075 .032 11.1
Stand. Error .026 ,020 .012 3.4 .016 ,020 .009 2.9
C. Picea
Mean .393 .518 125 24.1 .279 .356 .076 27.2
Stand. Deviation .154 .061 .104 22,8 071 .077 .086 33.6
Stand. Error .043 .017 .029 6.3 .020 .021 .024 9.3
D. Pinus
Mean .311 .407 .096 23.6 .338 .389 .051 15.1
Stand., Deviation  .149 .123 .056 15.7 101 .,086 .049 12.6
Stand. Error .041 .034 .015 4.4 .028 .024 .014 3.5
Eg = fractional variance due to pooled or common autoregression.
R2 = Egtal.gractional variance due to all sources of autoregressiomn.
AR ; R® - 3 fractional variance due to autocorrelated noise.
%40R< = (AR“/R°) °* 100 = percentage of total fractional variance due
_ to autoregression that is accounted by autocorrelated noise.
r, = fractional common variance among all series before autoregres-
_ sive modelling.
r. = fractional common variance among all series after autoregres-

sive modelling.
A = T, - Ty = the change in fractional common variance due to auto-
regressive modelling.
ZAES = (AE/ES) * 100 = percentage increase in fractional common vari-
ance due to autoregressive modelling.
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p. 282) in his analysis of variance results. From table 6.1, the ZAEZ
values of the four genera are 23.6% for Pinus, 24.1%Z for Picea, 32.7%

for Tsuga, and 40.4%Z for Quercus. The ranking of Quercus and Tsuga is

reversed when autocorrelated noise 1s viewed in terms of relative
contribution to total autoregression. These statistics indicate that
individual tree-ring series, even after double-detrending, can have a
substantial level of residual non-synchronous tree-ring varifance that
needs to be minimized.

The average change in fractional common variance after autore-
gressive modelling (Ar) is 0.051 for Pinus, 0.059 for Quercus, 0.076
for Picea, and 0.116 for Tsuga. These values may also be interpreted
as the average increase in fractional common variance due to the noilse
reduction property of autcrcgressive modelling. The mean AT values
appear to be rather modest wuntil they are examined as percentage
increases in fractional common variance, %A?s , compared to Es « When
this is done, the percentabe improvement in fractional common variance
is 15.1% for Pinus, 21.8% for Quercus, 27.2% for Picea, and 38.1% for

Tsuga. In both the AT and %A?s statistics, Picea and Tsuga appear to

show the greatest benefit of autoregressive modelling.

Prior to the correlation and regression tests, an equality of
means test was performed for each group of AR2 and AT means using a t-
test (Sokol and Rolf, 1981, p. 243). The results are shown in table

2

6.2. Tsuga has a significantly greater average AR“ when compared to
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Table 6.2. The equality of means tests of AR? and AT stratified by

genus.,

A t-test Is used which utilizes the pooled variance of all
66 samples in the estimate of the standard error of the
difference between each pair of means., As a result, each t—~
test has 62 degrees of freedom and the critical t-statistic
for rejection of the null hypothesis at the 95% confidence
level of 2.00. The significantly different pairs of means
are denoted by asterisks.

A. Equality of Means Tests For AR?

t-tests
Tsuga Quercus Picea Pinus
Tsuga - 0.78 1.35 2.54%
Quercus - - 0.52 1.57
Picea - - - 1.03
Pinus - - - -—
B. Equality of Means Tests for Ar
t-tests
Tsuga Quercus Picea Pinus
Tsuga - 3.07% 2.07% 2.57%
Quercus - - 0.82 0.34
Picea - - - 0.31

Pinus
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Figure 6.1. The linear regressions and correlations of AR2
versus AT for four tree genera.

Each regression is statistically significant at
the 997 confidence level.
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Pinus and a significantly greater average Ar compared to all other
genera. These results suggest the potential for genus-related differ-—
ences in the levels of autocorrelated noise and the resultant change
in fractional common variance due to autoregressive modelling.
However, caution is required in interpreting any apparent genus—level

differences in AR2 and AT because of the limited sample sizes.

2

The linear regressions and correlations of AR” versus AT were

computed next for each gerns. TFig. 6.1 shows the four scatter plots
with fitted curves. Each genus shows a statistically significant
correlation betweern AR? and AT that exceeds the 99% confidence
level. These results clearly verify the theoretical signal and noise
models of chapter 5 and the efficacy of autoregressive modelling in
reducing noise variance when it is autocorrelated. Tsuga and Picea
show the strongest relationship between AR2 and AT and the greatest
range in each statistic. The high (AR2 > .20) levels of autocorrela-
ted noise seen in some Tsuga and Picea ensembles are conspicuously
rare or absent in Quercus and Pinus. This may reflect higher compe-

tition levels in some of the Tsuga and Picea stands. The range of

response to competition and disturbance may also be greater in shade-
tolerant species compared to those with moderate to low shade toler-
ance. A test of the equality of the four regression curves was
performed (Sokol and Rolf, 1981, p. 499) to see if the slopes were

homogeneous. No statistically significant differences were found.
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This analysis indicates that the rate of change of AT with respect to
AR2 appears not to be genus dependent.

One consistent feature that seems to contradict theory is the
occurrence of negative y~intercepts in every case. Theoretically, one
should expect AT=0 when AR2=O because this is the point where the
noise is perfectly random. The negative y-intercepts imply that a
small, but real, loss in fractional common variance may occur due to
autoregressive modelling when the level of autocorrelated noise is
very low. However, the 95% confidence intervals for the y-intercepts
include the origin for all but Picea. Thus, the problem could be
dismissed as a chance phenomenon of statistical sampling. An alter-
native explanation 1is that the loss of common variance is due to the
removal of the smoothing effect produced by pusitive autoregression.
Chen and Box (1979b) show that smoothing due to positive autoregres—
sion has a normalizing effect on the probability distribution of time
series. This could artificially enhance the estimate of the common
signal by diminishing minor differences between series. This pheno-
menon 1s equivalent to the degrees—-of-freedom problem noted by
Mitchell et al. (1966) in statistical hypothesis testing when data are
autocorrelated. The lack of serial independence creates an environ-
ment for inflated estimates of association between series. In this

sense, the estimate of T based on the prewhitened data should be

preferred in computing the signal-to-noise ratio instead of T esti-
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mated from the original autocorrelated series. Thus, it is probable
that any decrease in T after prewhitening can be attributed to the

removal of smoothing due to autoregression.

Discussion

An empirical estimate of the relative level of autocorrelated
noise in a tree-ring ecnsemble was proposed in order to test the
theoretical signal and noise properties derived in chapter 5. This
statistie, ARZ, was correlated with the change 1in fractional common
variance after autoregressive modelling (Ar) for each of 66 tree-ring
ensembles stratified into four genera. The results show that the
theory is valid. That 1is, autoregressive modelling will reduce the
error variance in a mean-value function when autocorrelated noise is
present in the original series. The average increase in fractional
common variance appears to be somewhat genus dependent with Tsuga

showing a significantly greater gain over Quercus, Picea and Pilnus.

Better replication for Quercus, Picea, and Pinus will more clearly

define the level of genus-related differences.

Empirical Properties of the Biweight Robust Mean

The biweight robust mean 1s used in the second stage of the
ARSTND methodology after autoregressive modelling has reduced the
error variance associated with non-synchronous disturbance pulses. It

is intended to discount the effects of outliers in computing the mean-
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value function of prewhitened indices in an effort to minimize the
error associated with non—-synchronous disturbances. This form of
error reduction differs from the autoregressive modelling procedure in
that it minimizes error across space or between trees for any given
year rather than through time for any given series.

Three properties of the robust mean will be examined to assess
its performance: (1) The percentage of means which are improved by
robust estimation. The criterion for improvement is a smaller stan-
dard error of the mean using the biweight mean compared to that of the
arithmetic mean. As described in chapter 3, this measure of perfor-
mance 1is indicative of some level of outlier contamination in the
sample. (2) The average change in error variance using robust esti-

mation. The measure of error variance change (Asz) is
As? = (sg - s%) / sg 6.6

where sg is the variaunce of the arithuetic mean and s% is the variance

of the robust mean. When A52 is positive, s% < sg and a percent

2

reduction in error variance equal to As® has occurred. Conversely,

when A52 is negative, s% > si and a percent increase in error variance
equal to |A52| has occurred. The positive and negative A32 are summed

separately over the number of improved and unimproved means, respect-—

ively, to produce average estimates of error variance reduction and
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increase due to robust estimation. (3) The net change in chronology
error varlance due to robust estimation. This is simply the average

2 for the chronology.

of the positive and negative As

These statistics have been obtaimed in the course of computing
the residual mean—-value functions for the same set of 66 tree-ring
ensembles used in the previcug section. As before, the statistics
have been stratified by genus to see if an}; genus—level differences
exist in the performance of the robust mean. Table 6.3 shows the
means and standard deviations of the percentage of improved mean
(ZIMP), the percent reduction in error variance (Z%ZRED), the percent
increase in error variance (ZINC), and the net percent reduction in
error variance (NET). Also shown are the equality-of-means test
results using the same t-test as in the previous section.

The ZIMP statistics indicate that 40%Z to 50% of the means can
be improved on the average by using robust estimation when examined
across all genera. These are rather large percentages considering
that each ensemble has been collected from a geographically 1limited
site with reasonably “"homogeneous” physical characteristics. This is
indicative of the very high noise level in individual tree-ring series
from closed-canopy forests. The equality-of-means tests reveal an

interesting stratification of the ZIMP. Tsuga and Picea each have

significantly greater mean %IMP's compared to Quercus and Pinus. An

obvious correlate for explaining this effect is the level of competi-
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The biweight robust mean statistics stratified by genus.

The equality of means among genera 1s tested for each
performance statistic of the robust mean. Each t-test has
62 degrees of freedom, as before. Those t-values exceeding
the critical t-value at the 95% confidence (t=2,00) are
denoted by asterisks.

Percent Improved Means (ZIMP)

Tsuga Quercus Picea Pinus
Mean 49,99 41,00 -749.19 41.86
Stand, Deviation 6.62 7.25 9.96 6.64
Standard Error 1.30 1.94 2,76 1.84
t~-tests
Tsuga - 3.61% 0.31 3.18
Quercus - - 2,83% 0.30
Picea - - —-— 2.49%
Pinus - - - -
Percent Reduced FError Variance (ZRED)
Tsuga Quercus Picea Pinus
Mean 22.83 22.14 24,03 20,28
Stand. Deviation 3.79 4,09 3.80 2,72
Standard Error 0.74 1.09 1.05 0.76
t-tests
Tsuga - 0.55 0.99 2.04%
Quercus - - 1.34 1.29
Picea - - —-— 2.65

Pinus
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Table 6.3. (cont.)

Percent Increased Error Variance (ZINC)

Tsuga Quercus Picea Pinus
Mean 7.34 7.86 7.45 . 7.92
Stand. Deviation 0.70 1.10 1.39 0.90
Standard Error 0.14 0.29 -0.39 0.25
t—-tests

Tsuga - 1.58 0.33 1.72

Quercus - - 1.07 0.16

Picea - -- - 1.21

Pinus - -- - -

Net Reduced Error Variance (NET)

Tsuga Quercus Plcea Pinus

Mean 7.63 4,61 8.04 4,22

Stand. Deviation 3.50 3.16 3.07 2.49

Standard Error 0.69 0.85 0.85 0.69
t—-tests

Tsuga - - 2.87% 0.38 3.17%

Quercus — -— 2,81% 0.32

Picea - - - 3.07%
Pinus - - - -
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tion tolerance and, by extension, the level of competition itself.

Tsuga and Picea are extremely shade tolerant wheras Quercus and Pinus

only possess moderate to low shade tolerance.

The Z%RED statistics indicate that the error variance of the
improved means is reduced by 20% to 24% on the average across all
genera. The equality of means tests indicate that-Picea has a signi-
ficantly greater average Z%RED compared to Pinus. All other means are
statistically the same. There is no clear stratification of genera by
competition tolerance in this particular case.

The %INC statistics indicate that the error variance increase
caused by robust estimation, when none 1s necessary, averages 7.6%
across all genera. This penalty is quite small compared to the gain
due to 7ZRED using robust estimation. No statistically significant
differences in mean %ZINC were found between genera.

The net effect of robust estimation on the level of error
variance in the mean-value function is shown in the NET statistics.
The average NET ranges from 4.22%7 to 8.04% reduction in error vari-
ance. The equality of means tests show the same stratification by
competition tolerance as the ZIMP means. This is not surprising since

the NET statistics reflect the average information contained in the

other statistics.

Discussion

The performance results of the biweight robust mean indicate
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that there is a substantial amount of outlier contamination in tree-
ring ensembles from closed-canopy forests. This is probably due to
the high level of competition between trees and the occurrence of
episodic endogencus disturbances. The percentage of years in which
outlier contamination occurs appears to be stratified along competi-
tion tolerance linesﬂ The corollary agent which could produce this
stratification 1s competition level or intensity. For this hypothesis
to be true, the average level of competitition in Tsuga and Picea
stands would have to be significantly greater than in Quercus and
Pinus stands. Testing this hypothesis is difficult because the level
of competition today, as measured by some competition index, may not
be the same as it was in the past for the sampled trees. However,
some insights may be gained by correlating such indices against the

robust mean results if one assumes a uniform competition level in the

past.

Conclusions
The theoretical error variance reduction property of
autoregressive modelling has been verified for a suite of 66 tree-ring
ensembles representing four tree genera. The technique appears to

work more efficiently for Tsuga than for Picea, Quercus or Pinus. The

reality of this genus-level difference cannot be firmly established
until additional samples of the latter three gemera are available.

The biwelight robust mean was shown to be very useful in
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reducing the effects of outliers in the mean-value function. The
level of outlier contamination, as reflected in the number of improved
means, can be substantial. This number may be related to some aspect
of competition tolerance and/or intensity based on the significant

differences between the Tsuga-Picea and Quercus-Pinus groups. Again,

more samples are needed to substantiate these differences.

The net result of the ARSTND methodoldgy is a two—stage reduc-
tion of error variance in the mean-value function. This 1is accom~
plished by methods which are totally independent in design and appli-
cation. The fractional common variance and resultant signal-to-noise
ratio calculated from the average correlation between trees only
reflects the effects of autoregressive modelling. These estimates do
not include the additional reduction in error variance due to robust
estimation which will increase the total fractional common variance
above that estimated by the average correlation between trees alone.
Until a robust estimate of fractional common variance is derived based
on concepts related to the biwelght robust mean, the signal-to-noilse
ratios of ARSTND chronologies computed from the fractional common

variance between trees will be biased corservatively downward from

their true levels.



CHAPTER 7
COMPARISON OF ARSTND WITH ACCEPTED STANDARDIZING METHODS

Introduction

The theoretical and empirical results in. chapters 5 and 6
revealed some important properties of ARSTNDléhat support its use as a
standardization method. To further bolster the validity of the ARSTND
methodology, actual tree-ring data will be standardized and compared
using accepted methods (e.g. Fritts, 1976; Graybill, 1982) and ARSTND.

This detailed comparison will be made using two tree-ring
ensembles that are inferred to be free of disturbance pulses. This
inference is based on the way in which each ensemble can be standard-
ized satisfactorily using simple linear and exponential growth curves
to model the observed age trends. ARSTND is not likely to offer any
demonstrable improvements when the age trends can be modelled as
simple, monotonic growth functions. Thus, the ARSTND chronology and
the chronology developed by standard methods (Graybill, 1982) should
be statistically identical. The latter chromnology will be referred to
as the standard (STNDRD) chronology in all subsequent discussions.

The two tree-ring ensembles come from different tree species
growing in radically different geographic areas and environments:
semi-arid site ponderosa pine in New Mexico and lake-site bald cypress

in Arkansas. The different species and environments produced tree-
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ring ensembles with very different time series characteristics. Thus,
each test case will provide new and independent information about the

properties of the ARSTND methodology.

Ditch Canyon Ponderosa Pine

The ring-width measurements of 24 increment cores from Ditch

Canyon, New Mexico, ponderosa pine (Pinus Aponderésa Laws.) will be
examined first. These data were obtained frbﬁ Dr. William J. Robinson
of the Laboratory of Tree—-Ring Research at the University of Arizona.
The Ditch Canyon site is a classic open-canopy, semi-arid tree-ring
site. The final chronology, which is published in Drew et al. (1976),
has excellent statistical characteristics for dendroclimatic analyses
based on the results of Fritts and Shatz (1975). Most importantly,
the age trends of the 1ndividual cores are, in general, nicely
modelled by negative exponential curves. Thus, this data set has
minimal problems regarding tree—-ring standardization. Each ring-width
series was standardized using a curve-fit option that first tries to
model the age trend as a modified negative exponential curve. If the
non—-linear estimation procedure failed to converge or the data had a
non-negative slope, a linear regression line of either positive or
negative slope was fit to the series. This procedure resulted in 15
cores being standardized with negative exponential curves, 8 with
regressions of negative slope, and 1 with regression of positive
slope. This last series (I.D. #012082) does not conform to the
biological model of open-growth trees which predicts that the age

trend should be negative. Although it could be deleted from the



127

ensemble for this reason, it will be left in since it was used in the
chronology published in Drew et al. (1976).

At this stage, the STNDRD site chronology was computed as the
mean~value function of the standardized ring-widths or indices using
the biweight robust mean. This was done because the ARSTND method-
ology relies on the robust mean to censor outliers in the 'random
shocks. If the arithmetic mean were used. in computing the STNDRD
chronology, any differences between that series and the ARSTND chrono-
logy could be related only to the different methods of computing the
mean—-value function rather than those differences in the ARSTND
methodology relating to the autoregressive modelling. To evaluate the
performance of the biweighting procedure, each robust mean was
compared to the corresponding arithmetic mean following the methods in
chapter 6.

The results of the biweighting procedure are given in table
7.1. For the STNDRD chronology, the percentage of improved means
(ZIMP) was 377 with an average percent error reduction (Z%RED) of
25.7%. The remaining unimproved means have an average percent error
increase (ZINC) of 8.6%. The net reduction in error variance (NET) is
3.6%. The Z%ZIMP and NET statistics are less than the averages for
Pinus in Chapter 6. This is consistent with the belief that these
open—grown trees should be less affected by competition and distur-
bances than closed—canopy trees. The resultant robust STNDRD chrono-

logy covers the years 1555-1971.

The next step in the ARSTND methodology 1is the selection of
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.1. The chronology statistics for the standard (STNDRD) and
ARSTND chronologles of the Ditch Canyon Ponderosa Pine test case.

ROBUST STATISTICS CHRONOLOGY STATISTICS

/ / / /
ZIMP ZRED ZINC  NET M. Se s.d. rl gl g2
STNDRD 37.0 25.7 8.6 3.6 .365 ..393 .496 .029 3,05
ARSTND 32.1 22,5 9.4 3.8 .352 .379 456 136 3.25
ARMA-MODELLING COMMON INTERVAL ANALYSIS
- - /
STNDRD 3 363 .199 .081 .629 18.6
ARSTND 3 «345 .179 .078 .610 17.2
ZIMP = percentage of means Improved by robust estimation
ZRED = percent reduction in error varlance of the improved means
ZINC = percent increase Iin error variance of those means not improved
by robust estimation
NET = net percent reduction in error variance for all means
m.s. = mean sensitivity
s.d. = standard deviation
rl = first-order autocorrelation coefficient
gl = coefficient of skewness
g2 = coefficient of kurtosis
AR(p) = autoregressive process of order p
¢i = the coefficients of autcregression
T = average correlation between treas
SNR = gignal-to-noise ratio
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the pooled AR order and computation of the pooled coefficilents. As
described in Chapter 3, this is accomplished through the construction
of lag-product sum matrices for lags t=0 to t=10. The lmportance of
this pooling approach is the way in which the off-diagonal terms serve
as measures of covariance between the series at lags other than zero.
If the series covary in common at these lags, then the terms in the
upper and lower triangles will have the same sign as those in the
principal diagonal. This means that each tree 1is encoding common
environmental information via a common set of physiological proces-
ses. Clearly, this is exactly what we hope to find because it should
provide the cleanest dendroclimatic signal to analyze. A roughly
equal number of positive and negative terms in the off-diagonal
elements would indicate that either some trees are encoding environ-
mental information differently from other trees or they are encoding
different information. The components responsible for these differ-
ences may be site heterogeneity, random variability in each tree's
physiological system and endogenous disturbances. Because of the
large number of terms in each lag—product sum matrix, a parsimonious
representation of each matrix is needed. The sign test (Siegel, 1956)
is a simple non-parametric method which provides a significance test
for this test of homogeneity. Each lag-product sum was coded as plus,
minus or zero within each matrix depending on its departure from the
expected value of zero for random numbers. The number of pluses and
minuses were summed separately and each sum was scaled to a percentage

of the total number of pluses and minuses. The percentages can be
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plotted as a function of lag and tested for significance. The number
used to compute the 957 significance levels is equal to number of
series used to compute the lag-produce sum matrices. This represents
the number of samples (N) that is contributing "independent™ informa-—
tion to the sign test, not the N2 terms in each lag matrix. The null
hypothesis states that there is no common positive or negative cova-
riance within the particular lag matrix. If the number of pluses or
minuses exceed the number expected by chance alone at the 957 level,
the null hypothesis is rejected. The results of this analysis for
Ditch Canyon ponderosa pine is shown in Figure 7.la. Each vertical
line has a range totaling 100% which includes the %+ (upper limit) and
%= (lower lindt) values. The lag-product sum matrices have signifi-
cant positive covariance out to lag 5 after which random effects domi-
nate the remaining multivariate persistence structure. The lag-pro-
duct sums were then pooled as described in Chapter 3. Using the
Levinson-Durbin recursion and the first-minimum AIC search criterion
(see Figure 7.1d), a pooled AR(3) order was selected as the common
persistence operator among all the trees. The pooled AR coefficients
are: ¢,;=0.320, ¢,=0.193 and ¢3=0.109. The fractional variance due to
pooled autoregression (ﬁz) is .324. The pooled autocorrelation
function (ACF) and partial autocorrelation function (PACF) obtained
from this analysis are illustrated in Figures 7.lb and 7.lc. The ACF
coefficients are computed as described in Chapter 3 while the PACF

coefficients are produced as an intermediate result of the recursion.

The pooled ACF damps out and drops below the approximate 95% confi-



131

dence limits after 1lag 6. This agrees well with the pooled sign
tests. The PACF cuts off after lag 3 in accordance with the theoreti-
cal behavior of an AR(3) process. The absolute (but second) minimum
AIC occurs at lag 7. The source of this 7th order minimum is apparent
in the PACF where a significant lag 1s indicated. The AR coefficients
for the selected order are illustrated in Figure 7.le. The positive
signs of all three coefficients indicate th’e‘. persistence in the tree
rings 1s a linear aggregate of mixed exponentials produced by the
convolution of the wavelet of the AR(3) process with the series of
random shocks. That wavelet is illustrated in Figure 7.1f. It
requires about 15 years to dampen out.

Having estimated the pooled AR order, the 24 core index series
were modelled as AR(3) processes and prewhitened to produce residual
serles. Although the AR order was estimated from the pooled data, the
AR coefficients were estimated separately from the properties of each
series. The maximum entropy method (Ulrych and Bishop, 1975) was used
to estimate the coefficients. The average fractional variance
explained by total autoregression (iz) was 0.305. From R % and §2,
the level of autocorrelated noise (ARZ) is -.019. Thus, there is no
evidence of autocorrelated noise in the ensemble and, hence, no out-
of-phase fluctuations in the individual series. In each case, the
residual autocorrelation function (RACF) was examined for randomness
using the modified portmanteau statistic (Ljung and Box, 1977). The
number of lags examined by this procedure was 25. As noted in Chapter

3, constraining each series to be modelled as a pooled AR order may
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result in some residual series having non-random RACF's because of
unremoved longer lag persistence. In this instance, all 24 series
passed the portmanteau test for randomness at the 957 level. This is
another indication of the excellent stochastic homogeneity in the
Ditch Canyon tree—ring ensemble.

The robust mean-value function of residuals was computed next.
The 7%IMP, %RED, %INC, and NET statistics in ‘Table 7.1 are quite simi-
lar to those of the standard chronology robust mean-value function
computed earlier (also in Table 7.l1). Due to the autoregressive
modellirg, the first three values of every series were lost. Hence,
the residual mean—-value function begins in 1558 instead of 1555.

The RACF of the residual mean-value function passed the port-
manteau test for randomness (p=0.637). The standard errors of the
RACF were also computed using the Impulse response function weights of
the pooled AR process {(Box and Pierce, 1970). This extremely sensi-
tive test suggested lag~l non-randomness in the RACF. The lag-l r of
0.029 has a 2 standard error limit of 0.011. Although statistically
significant, the lag-l persistence 1is very small and probably not
operationally significant. An AR modelling of the residual series
using the minimum AIC failed to identify any autoregression in the
series, which supports the latter contention. On this basis, the
residual mean-value function was accepted as a serially random
process.

The pooled autoregression was added back in at this point as

described in Chapter 3 (equations 3.36 and 3.37). The starting values
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were obtalned from the standard chronology for the years 1555-1557.
Because these sgtarting values are real data, the resulting ARSTND
chronology incorporates them and, therefore, is equal in length to the
STNDRD chronology.

Mean sensitivity (m.s.), standard deviation (s.d.) and lag-l
autocorrelation (rl) are frequently used to judge the probabie dendro-
climatic value of tree-ring chronologies ‘(e.g. Fritts and Shatz,
1975). Therefore, the first comparison of the STNDRD and ARSTIND
chronologies will use these statistics. From Table 7.1, these statis-—
tics are: m.s.= 0,365 and 0.352, s.d. = 0.393 and 0.379, and rl =
0.496 and 0.456, respectively, for the STNDRD and ARSTND chronolo-
gles. Very little difference 1s seen between the two series using
these statistics. The higher moments are also preserved nicely. The
coefficlents of skew and kurtosis (Table 7.1) are 0.029 and 0.136, and
3.051 and 3.253, respectively. None of these summary statistics
reveal any differences between the STNDRD and ARSTND chronologies.

Cross—spectral analysis (Jenkins and Watts, 1968) will be used
next to compare the frequency domain properties of the STNDRD and
ARSTND chronologies. The spectra used for this purpose are the coher-
ency, gain and phase spectra. The coherency spectrum is the frequency
domain analogue of the squared correlation coefficient. That is, it
measures the percent variance agreement between two series as a
function of frequency. The ideal is a coherency spectrum of 1.0 for
all wavelengths. This indicates that the two series behave identi-

cally in a relative sense although theilr variances may not be equal.
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The gain and phase spectra are useful in characterizing the linear
filter that transforms an input series into a new output series. In
the sense used here, the input series is the STNDRD chronology, the
linear filter is the ARSTND methodology and the output series is the
ARSTND chronology. The gain spectrum will reveal how well the filter
passes variance as a function of frequency. If the ARSTND methodology
is unbiased, the resulting gain will be near 1.0 everywhere. This
means that the technique has recovered 1007 of the variance in the
chronology at all wavelengths. The phase spectrum will reveal if the
output series leads or lags the input series due to the filtering
operation. Again, for the ARSTND methodology to be unblased, the
phase angle between the input and output series should be near zero
everywhere.

In this and all subsequent spectral analyses, the spectra will
be computed from the autocovariance functions of the series. The
number of lags will be 25%Z of the total observations in every case.
This means that the equivalent degrees of freedom (EDF) and, hence,
the variance of the spectral estimates will be constant for the three
test cases. Using the Hamming window, each spectral estimate has 10
degre=s of freedom. The drawback to the comnstrained lag approach is
the way in which the spectra of longer series will be resnlved better
than shorter series because more lags are available. However, it is
more important here to maintain a constant EDF so that the results of
the test cases are comparable.

The spectra were computed using 104 lags of the autocovariance
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functions. The coherency, gain and phase spectra of the STNDRD and
ARSTND Ditch Canyon chronologies are shown in Figure 7.2. The coher-
ency spectrum shows an extremely high percentage agreement across all
frequencies. Except for the first coherency estimate corresponding to
infinite pericd, all estimates exceed the 997 significance level
(coherency = 0.83). There is a small drop in coherency around the 3.5
year period (harmonics 58-59). This is close to the AR order for
prewhitening. Since the AR process is a finite-order approximation of
an infinite-order general linear process, this may be a truncation
effect of the model. Overall, the coherency spectrum does not reveal
any significant difference in the ARSTND chronology.

The gain spectrun indicates that the ARSTND series has the
same variance characteristics as the standard chronology. Most of the
gain estimates fall between 0.90 and 1.10. Two estimates fall outside
the 95%Z limits which 1s about the expectation by chance alone. There
is a tendency for the gain to stay below 1.0 in the lowest frequen-
cies. This is due to small differences in the level of autoregression
between the series. These differences will be described and discussed
in more detail later. At this stage, it need only be remembered that
autoregressive processes such as these are "red noise” processes
(Gilman et al., 1963). As such, any differences in the coefficients
will be most readily seen in the low-frequency or "red” end of the
spectrum. The phase spectrum also verifies that the ARSTND chronology
is unbiased. Only one estimate exceeds the 957 limits.

The cross-spectral analyses have not revealed any significant
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differences between the STNDRD and ARSTND chronologies. Another
method of comparison will be to compare the time domain stochastic
structures of the two series. This will be done by fitting each
series as an ARMA (p,q) process for all possible orders up to p=3 and
q=3. The minimum AIC will be used to select the best model. The
stochastic properties of the ARSTND chronology have not been
constrained in any way to be like those of "the standard chronology.
Thus, this test could reveal some differences between the two series
both in the order of the stochastic model and the estimated ARMA
coefficients. Ideally, no significant differences will be found.
Using the minimum AIC criterion, the STNDRD chronology was fit best as
an AR(3) process. The AR coefficlents are ¢1 = 0,363, by = 0.199 and
¢ = 0.081. The - ARSTND chronology was also fit best as an AR(3)
process which, of course, agrees with the pooled model. These estima-
ted coefficlents are: ¢1 = 0.345, 9y = 0.179 and bq = 0.078. It can be
seen again that the two chronologies agree very well in both the order
of the selected model and the model coefficients. The only difference
seems to be slightly smaller coefficlents for the ARSTND model.

The two chronologies are plotted together for visual compari-
son in Figure 7.3. The two serles agree exceptionally well. The
greatest disparity is in the earliest portion of the record where the
replicaiton is poorest. This result was anticipated because it is the
‘interval where the mean-value function has little or no statistical
precision. The differences are probably due to variability in the

persistence structure of individual series and the pooled estimates.
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These differences should be expected to surface where replication is
poor, in this case only 1 ioc 3 cores for the 1555-1609 period. A
particularly inter-esting phenomenon shows up for the years 1583, 1584
and 1585 where the replication is only 3 cores based on two trees. In
the STNDRD chronology, the mean indices are 0.044, 0.147 and 0.000
compared to 0.229, 0.333 and 0.231 for the ARSTND chronology. These
are rather large differences, especially fér the 1585 growth year
which resulted from a locally absent ring in all three cores. The
ARSTND estimates indicate that the input environmental signal (as
reflected in the residual mean-value function) and the physiological
persistence (as reflected in the pooled autoregression coefficients)
are insufficient to explain the cbserved indices in the STNDRD chrono-
logy. Sampling variability due to the very small sample depth in this
sequence of means may be largely responsible for these differences
since no similar departures exist in the better replicated portion of
the chronolgies. However, there is some indication that the ARSTND
chronology underestimates persistent extremes compared to the standard
chronology. Consider the following intervals for the STNDRD and
AkSTND chronologies. For the 1663-1670 period, the interval means are
0.468 and 0.516, respectively. For the 1818-1824 period, the means
are 0.381 and 0.424. For the 1884-1892 period, the means are 1.422
and 1.492. 1In every case, the ARSTND chronology underestimates the
magnitude of persistent extremes. This would be wundesirable 1if it
represents a loss of climatic information. More likely, the observed

differences 1in persistent extremes are due to small differences in the



142

level of autoregression in each series. As described in Chapter 5,
the variance of autoregressive process is proportional to the variance
of the random shocks and the level of autoregression in the process
(equation 5.8). This means that the slightly larger AR coefficients
of the STNDRD chronology (Table 7.1) will produce a chronology with
more variance than the ARSTND chronology given the same set of random
shocks. The variances of the STNDRD and ARSTND chronologies are 0.155
and 0.l44, respectively. The former is about 7.6% greater than the
latter. The difference in the variance that can be attributed to the
coefficients can be estimated from the variances of the random shocks
obtained by fitting the two chronologies as AR(3) processes. The
variance of the STNDRD and ARSTND random shocks are 0.110 and 0.109,
" respectively. The former is now only 0.9% greater than the latter.
Re—-examining the four periods of extremes using the zero—mean random
shocks of the STNDRD and ARSTND chronologies, the results are as
follows. For the 1663-1670 period, the means are -0.284 and -0.269,
respectively. For the 1818-1824 period, the wmeans are -0.358 and
-0.354. And, for the 1884-1892 period, the means are 0.238 and 0.239.
The differences between the means are now much smaller than before
and, for the third interval, reversed. These results indicate that
the ARSTND methodology has not resulted in any appreciable loss of
climatic variance with regard to persistent extremes.

The signal~to-noise ratio (SNR) properties of the Ditch Canyon
ensemble will now be examined based on the SNR derivations described

in Chapter 5. This analysis is donme on a time period that includes as
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many cores as possible from the ensemble. For the Ditch Canyon ensem-
ble, 22 of 24 series from eleven trees covering 1868-1971 were used.
Each SNR will be estimated from the average correlation between trees
following Wigley et al. (1984). As shown in chapter 5, the SNR for
the ARSTND chronology is the same as that of the mean—value function
of prewhitened indices or residuals. The SNR of the STNDRD chronology
is based in the detrended indices prior to autoregression modelling.

In table 7.1, fractional common variance as measured by the
average correlation (r) and SNR of the STNDRD chronmology are 0.629 and
18.6, respectively. The corresponding figures for the ARSTND chrono-—
logy are 0.610 and 17.2. The difference in fractional common variance
(Ar) 1is -.019. There is virtually no difference between the
chronologies in terms of average correlation and SNR. The near-zero

2

AT agrees with the AR“ in support of Chapter 5 theory.

Discussion

The Ditch Canyon standardization comparisons indicate that the
ARSTND methodology can produce a site chronology that i1s virtually
indistinguishable from one produced by accepted methods when the
accepted method works well. Thus, while little is gained through the
increased computational burden of autoregressive modelling, this bur-

den does not result in a loss of chronology fidelity.

Hemstead County Bald Cypress

The second data set used to test the ARSTND methodology was

provided by David W. Stahle of the University of Arkansas. It is the
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ring-width measurements from 29 increment cores of bald cypress (Taxo-

dium distichum [L.] Rich.) growing in a lake in Hemstead County,

Arkansas. Stahle et al. (1982) reported that every increment core
series could be standardized well using negative exponential curves
and regressions of negative slopes. In May 1982, I visited this site
with Stahle and found that it is an undisturbed stand of widely spaced
cypress growing in shallow water. This fiﬁding, coupled with the
classic age trend behavior observed in the ring-width series, makes
the Hemstead County site an excellent test case using ARSTND. In
addition, it is radically different from the Ditch Canyon site in
terms of species and site characteristics which enhances its value for
study.

As was done with the Ditch Canyon ensemble, each cypress ring-
width series was standardized by trying the modified negative exponen-
tial curve first. If that option failed, a linear regression curve
was fit to the series. Of the 29 series, 25 were standardized with
negative exponential curves and four with negative slope regression
curves. These standardization curves agree with Stahle's treatment of
the data. The staﬁdard chronology mean-value functicn was then compu-
téd using the robust mean as before. The results of biweighting
procedure are given in table 7.2. For the total period with a minimum
replication of six cores, the ZIMP 1s 42% and the ZRED is 22.7%. The
remaining unimproved means have a ZINC of 7.4%. The NET effect is a
4,27 error reduction using the robust mean. The STNDRD chronology

covers the 1766-1980 interval.
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Table 7.2. The chronology statistics for the standard (STNDRD) and
ARSTND1, and ARSTND2 chronologies of the Hemstead County
Baldcypress test case.

ROBUST STATISTICS CHRONOLOGY STATISTICS
/ / / /
ZIMP ZRED 7ZINC  NET m.s. .s.d. rl gl g2
STNDRD 42,0 22.7 7.4 4.2 +437 .370 .096  .485  3.26
ARSTNDl 44,0 24.2 7.4 5.9 467 .370 -.083 447 3,21
ARSTND2  -- - - - 428 .370 .099 .520 3,32
ARMA-MODELLING COMMON INTERVAL ANALYSIS
/ /! - /
MA(q) 61 62 63 r SNR
STNDRD 3 -.055 =.373 -.116 401 12,0
ARSTND1 3 -.077 -.434 -.038 447 14.5
ARSTNDZ 3 -,061 -,421 -,101 - —
%ZIMP = percentage of means Improved by robust estimation
ZRED = percent reduction in error variance of the improved means
ZINC = percent increase in error variance of those means not improved
by robust estimation
NET = net percent reduction in error variance for all means
m.s., = mean sensitivity
s.d. = standard deviation
rl = first-order autocorrelation coefficient
gl = coefficient of skewness
g2 = coefficient of kurtosis
MA(q) = moving average process of order q
ei = the moving average coefficlfents
T = average ccrrelation between trees
SNR = signal-to-noise ratio
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The pooled autoregression was estimated from the lag product
sum matrices. Figure 7.4a shows the percent agreement by sign for
each lag matrix. The matrices show significant homogeneity with posi-
tive signs for lags t=0 and t=2, and negative signs for t=8. The
subsequent AR fitting procedure selected an AR(2) model using the
first-minimum AIC search. The pooled AR coefficients are: $ = 0.070
and ¢, = 0.351. The fractional variance dué to pooled autregression
(I":z) is .138. The pooled ACF and PACF obtained from the analysis are
illustrated in Figure 7.4b and 7.4c. The AIC trace (Figure 7.4d)
shows an absolute minimum at lag 8 which also shows up as significant
in the pooled signs, ACF and PACF. However, the first minimum AIC
order selection will be used here given the properties of the AIC
statistic noted in chapter 3. The AR coefficients and their equiva-
lence in wavelet form are also shown in Figure 7.4. The wavelet
behaves in a damped sawtooth-like fashion due to the difference in the
AR coefficients. It effectively diminishes to zero after lag 8.

All 29 series were prewhitened as AR(2) processes. The aver-
age fractional variaunce due to all sources of autoregression (f{%) is
0.191. From iz and —2, the level of autocorrelated noise (ARZ) is
estimated to be 0.053. This indicates that a very small amount of
autocorrelated noise 1is 1in the data which probably has 1little
operational significance in selecting and fitting standardization
curves. The residual series were tested for randomness using the
portmanteau test as before. This time, the test failed to pass four

of the 29 series for randomness at the 95% level. The failed series
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were not the ones standardized by linear regression curves. Longer-
lag persistence associated with the 8th-order term in the pooled esti-
mates may be partly responsible for this problem along with random
effects in the autocorrelation functions. As discussed in Chapter 3,
this problem was anticipated because of the constrained nature of the
ficting procedure. No additional modelling was.perfomed on these
series Iin order to ==intain an order of préwhitening consistent with
the pooled estimate.

The robust mean-value function of residuals was computed next.
The biweighting procedure results are shown in Table 7.2. The ZRED is
24.2% for the 447 7IMP means. In contrast, the ZIMP is 7.4%Z for the
remaining 56% unimproved means. The NET effect is a 5.9% reduction in
error \;ariance. The results are very close to those of the STNDRD
chronology (also in Table 7.2). Although most of the individual
series appeared to be serially random, the residual mean-value
function contalned significant short-lag persistence. This was
revealed through a significant (p=.037) portmanteau statistic and a
surprisingly large lag-l autocorrelation coefficient of -0.135. Using
the wavelet form of the pooled AR order (Figure 7.4f) to compute the
standard errors of the RACF (Box and Pierce, 1970), this coefficient
is almost six standard errors from the expected value of zero. This
was quite unexpected because the average first-order coefficient of
the individual series was only 0.0002 with 16 being positive and 13
being negative. The range of values is 0.082 to 0.075. Thus, the

lag-1 ‘coefficient of the RACF even exceeds the range of the single
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Several possible causes for this anomalous lag-l persistence
were hypothesized and tested. The mean residual series was recomputed
using the arithmetic mean instead of the robust mean to see if the

lag-l persistence could be an artifact of the biweighting procedure.

-0.143 which is marginally more negative thaﬁ the robust mean coeffi-
cient. Thus, the biweighting procedure is not the source of the lag-l
residual persistence.

Another cause of the lag-l persistence could be the con-
strained fitting procedure imposed on the individual series. This was
examined by independently applying the first-minimum AIC search to
each series. 1In this case, each series 1s modelled as an AR process
without the constraint that the fitted order is the same as the pooled
order. Thus, each series model may differ from the others. This
resulted in 22 AR(2) selections and seven AR(3) selections. The ACF
of the residual mean-value function developed from this fitting pro-
cedure was essentially identical to the constrainad model ACF. The
lag-l coefficient was =-0.138 which is extremely close to the con-
strained run result. The series were then refit as AR(8) processes in
accordance with the absolute minimum AIC choice. The ACF for the
residual mean-value function from this extended model was, again, very
similar to the others. In fact, the lag-l coefficient equalled -0.158
which is slightly more negative than the simpler models. The cause of

the residual persistence does not appear to be related to the con-
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strained AR fitting procedure. In fact, the method appears to be
rather robust in this regard.

Another possible cause for the lag-l persistence 1s the inade-
quacy of the autoregressive model to precisely explain the stochastic
properties of each series. This admits the possibility that MA or
mixed ARMA processes may be more appropriate stochastic models in some
cases. To test this hypothesis, the bald cyp’réss STNDRD chronology was
modelled as an ARMA (p,q) process for all possible orders up to ARMA
{3,3). The winimum AIC criterion was used to select the best model.
The STNDRD chronology i1s being used here to estimate the "true”
stochastic model of the individual series in much the same way as the
AR pooling procedure estimates the common persistence structure of the
ensemble. By this procedure, an MA(3) process was selected with
several mixed models in close competition. Out of the 15 models
tested by this procedure, the AR(2) model used for prewhitening ranked
as the sixth best. This finding suggested that the residual persis-
tence may be due to model inadequady which does not show up strongly
until the residual mean-value function 1s computed. The AR(2) model
falls above the median in goodness—of-fit which indicates that it is a
r‘easonable model, but not the very best.

To see 1f, in fact, a misspecified model was responsible for
the residual persistence, the bald cypress indexed cores were remo-
delled as MA(3) processes. Again, the 1lag~l1 RACF coefficient was
strongly negative, equalling -0.148. The individual series were then

remodelled as MA(8) processes in accordance to the absolute minimum
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AIC obtained by applying the AIC search for all MA models out to order
10. The lag-l coefficient equalled -0.148 for this model which is
identical to the MA(3) results. It ic clear from these tests that the
significant negative lag-l persistence is not an artifact of model
nisspecification. In fact, none of the tests have resulted in any
reduction of the lag-l coefficients below that produced by the
constrained AR(2) model.

Although the above testing failed to identify the source of
residual persistence, the MA modelling identified a highly desirable
property of the ARSTND methodology. The method seems to be robust not
only with respect to the order of AR process used for prewhitening,
but also in the case of model misspecification. This means that
reasonable results' should be expected over a broad range of ARMA
models even though ARSTND is based on the autoregressive time series
model. The reason for this result is related to the mathematical
duality of AR and MA processes described in Chapter 3. Box and Pierce
(1970) show that the random shocks of an ARMA (p,q) process can be
closely approximated by an AR (ptq) process. The closeness of the
approximation can be appreciated by comparing the coefficients of
AR(3) and MA(3) processes fitted to the bald cypress standard chrono-
logy. Recall that an MA(3) model is probably the correct one for this
time series. The "correct” MA(3) coefficients are: 6, = -0.055, 62 =
-0.3675 and 64 = -0.1134. The “"approximate” AR(3) coefficients are:
¢y = 0.0557, ¢, = 0.3037 and ¢3 = 0.0351. The similarity in the

magnitudes of the coefficients indicates that either model will pro-



153

duce similar random shocks, in agreement with Box and Pierce (1970).
The pooled AR coefficients also agree well with the first two coeffi-
cients of the MA(3) process. This indicates that the pooled AR
coefficlents are reasonable approximations of the common stochastic
behavior in the ensemble even when the correct model is moving aver-—
age.

Having eliminated the biweighting proéedure and the stochastic
model cholce as causes of the lag-l residual persistence, the ensemble
of tree-ring residuals weré examined for multivarate persistence using
the AR pooling procedure. The sign tests of the lag-product sum
matrices revealed significant negative 1lag-l1 persistence in the
ensemble in agreement with the residual mean-value function. This
means that the sérially random individual series were not multi-
variately random due to lag-covariance between the ensemble pairs.
Thus, the residual persistence appears to be a statistical artifact of
the univariate AR fitting procedure which is totally "blind"” to any
stochastic structure between series. The order of the residual multi-
variate dependence obtained from the pooled AR modelling is AR(1l).
Tﬁe pooled AR coefficient is -0.157 which is slightly larger than the
lag-1 coefficient of the residual mean-value function.

Because the lag-l residual persistence has been 1dentified as
an artifact of the univariate modelling procedure, the removal of this
effect is justified. This is most easily accomplished by modelling
the residual mean—value function as an AR(p) process where p is con-

ctrained to be less than or equal to the order -of the autoregressive
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process used to prewhiten the separate series. The order constraint
guards against rem5ving longer-lag variance that is not related to the
multivariate lag artifact. In this case, p=l1 and the AR coefficient
¢; = -0.135. The residual mean-value function was "rewhitened” based
on this fit which resulted in the complete removal of the lag-l auto-
correlation. The RACF passed both the portmanteau test (p=.102) and
the very sensitive Box-Pierce (1970) signifiﬁance tests for specific
residual autocorrelations.

Although the rewhitening procedure appears to be Jjustified
based on the multivariate AR modelling, its effect on the final ARSTND
chronology was investigated. Thus, two ARSTND chronologies were crea—
ted by adding the pooled autoregression into the non-whitened
(ARSTNDL) and rewhitened (ARSTND2) mean residual series. In each
case, the two starting values needed for the autoregression were
obtained from the beginning values of the SINDRD chronology. The
STNDRD chronology begins in 1766 while the ARSTNDl and ARSTND2
chronologies begin in 1766 and 1767, respectively.

The comparisons of mean sensitivies (m.s.), standard devia-
tions (s.d.) and first-order autocorrelations (rl) from table 6.2 are
as follows. For the STNDRD chronology: m.s.= 0.437, s.d.= 0.0368 and
rl= 0.096. TFor the ARSTND. chronology: m.s.= 0.467, s.d.= 0.370 and
rl= -0.083. And for the ARSTND2 chronology: m.s.= 0.428, s.d.= 0.370
and rl= 0.099. The STNDRD and ARSTND2 chronologies agree very closely
for all three statistices. The difference in mean semsitivity and

standard deviation between the STNDRD and ARSTNDL chronologies reflect
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the residual negative autocorrelation in the ARSTNDI mean-value
function. The coefficients of skew (gl) and kurtosis (g2) are pre-
served nicely in both ARSTND chronologies. For the STNDRD chronology:
gl= 0.485 and g2= 3.264. Tor the ARSTNDl chronology: gl= 0.447 and

3.209. And for the ARSTND2 chromology: gl= 0.520 and g2= 3.322.

g2

None of these statistics show any appreciable difference between the
chronologies.

The spectral analysis was carried out using 53 lags of the
autocovariance function. The coherency, gain and phase spectra are
shown in Figure 7.5 for the ARSTNDL (solid lines) and ARSTND2 (dashed
lines) chronolegies versus the STNDRD chronology. The STNDRD-ARSTND1
and STNDRD-ARSTND2 coherency spectra are virtually identical over the
entire frequency range indicating that this spectrum is rather insen-
sitive to differences between the competing ARSTND chronologies.
Except for a narrow frequency band around a period of four years
(harmonics 27-29), the coherencies are all above 0.98. The dip in
ccherency at about four years occurs near the lag truncation point of
the AR(2) prewhitening operator. This effect may arise from varia-
tions in the stochastic structure of the individual series that depart
from the pooled estimate. The gain and phase spectra reveal the lar-
gest differences between the STNDRD and ARSTND chronologies. The
STNDRD-ARSTNDl gain spectrum (solid line) shows that the residual lag-
1 persistence in the ARSTNDL chronology acts as a high-pass filter.
The result 1is proportionately more high-frequency variance and less

low-frequency variance 1in the ARSTNDl chronology compared to the
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STNDRD chronology. The STNDRD-ARSTNDl phase spectrum (solid lines)
reveals a significant phase lag for most frequencies in the ARSTNDL
chronology. Again, this is related to the residual persistence.

The STNDRD-ARSTND2 gain and phase spectra (dashed lines) indi-
cate that the rewhitening operation has reduced the effects of the
residual persistence. The gain spectrum is flat indicating that the
ARSTND2 chronology is now fairly unbiased in-its distribution of vari-
ance by frequency. The phase spectrum still shows a tendency for
phase lag in the ARSTND2 chronology, but most of these values are no
longer significant at the 957 level.

Having investigated the frequency domain properties of the
STNDRD and ARSTND chronologies, their time domain stochastic struc—
tures will now be compared. Due to the loss of one data point due to
rewhitening, the common period for all three chronologies is 1767-
1980. Each chronology was modelled as an ARMA (p,q) process for all
possible models up to p=3 and q=3. The AIC statistic was used to
select the best model. As before, an MA(3) model was selected as best
for the STNDRD chronology. The estimated MA(3) coefficlents are: 91=
-0.055, ©,= -0.373 and 645= -0.116. The ARSTNDl chronology was also
modelled best as an MA(3) process. The estimated MA(3) coefficients
are: 6;= -0.077, 6,= -0.434 and 645= -0.038. The differences between
the first coefficlents of the STNDRD and ARSTNDl chronologies reflect
the negative lag-l1 persistence in the ARSTNDl mean residual series.
The ARSTND2 chronology was modelled best as an MA(3) process like the

others. The estimated MA(3) coefficlents are: ;= ~0.061, 6,= -0.421
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and 85= -0.101. The ARSTND2 chronology coefficients are extremely
close to those of the STNDRD chronology.

The time and frequency domain comparisons indicate that the
ARSTND chronology based on the rewhitened residuals 1s statistically
indistinguishable from the standard chronology. This test case is
especially important because it provides evidence that the ARSIND
methodology is both unbiased as a chronoldgy development tool and
robust with regard to violations of the assumed autoregressive model
upon which the method is based.

The STNDRD and rewhitened ARSTND chronologies are plotted
together in Figure 7.6 for visual comparison. The two series agree
exceptionally well even in the early part of the series where the
replication is poor. Unlike the Ditch Canyon case, there is no indi-
cation that this ARSTND chronology underestimates extremes.

The SNR and fractional common variance comparisons were made,
as before, between the STNDRD and ARSTND chronologies. The common
interval covers 1899-1980 and includes 23 of the 29 total series. 1In
table 7.2, the average correlation between trees and SNR of the STNDRD
chronology are 0.401 and 12.0, respectively. The corresponding values
for the ARSTND chronology are 0.447 and 14.5. In this case, there is
a small increase of SNR using the ARSTND methodology. Based on the
theoretical SNR derivations in chapter 5, this increase in SNR
reflects the presence of autocorrelated noise which 1s more effi-

ciently minimized through autoregressive modelling.
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Discussion

The Hemstead County bald cyprus comparisons again indicate
that the ARSTND approach can produce a site chronology equal in
quality to that produced by accepted methods. Important new insights
have been gained from this example, however. The autoregressive basis
of the ARSTND time series model appears to be robust when that assumed
model 1s incorrect.  Thus, the method should work reasonably well
within the broader family of ARMA time series models.

The apparent need for “rewhitening” in some cases was a
totally unexpected discovery. The removal of this artifact of
multivariate lag dependence between series appears to be justified
since it 1is not related to the common signal within each time
series. Modelling directly the lagged interactions between series
would be a more satisfactory solution were it not for the large number
of series in each ensemble and the different number of observatinns in
each time series. Thus, the somewhat ad hoc and pragmatic method

utilized here is currently the best solution available.

Conclusions and Synthesis

The test results presented here coupled with the results of
Chapter 6 support the contention that the ARSTND methodology is a
valuable new tool for dendroclimatic research. Its prineipal
advantages are as follows:

1. The ARSTND methodology has a better defined theoretical
basis both biologically and sitatistically than previous

standardization wmethods. The biological theory is based on the
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distinction between exogenous and endogenous disturbances and the way
in which endogenous disturbances should create non-synchronous distur-
bance pulses in an ensemble of tree-ring series. This leads to the
concept that only these non-synchronous pulse should be removed using
information available within the ensemble of ring-width data.

2. ARSTND can produce a chronology with less error variance
than a chronology developed without autof;gressive modelling when
developed from the same set of detrended indices. This will be true
wherever non—-synchronous growth fluctuations are present in the data.

3. ARSTND provides insights into the time series properties
of tree-ring chronologies on a "real time" basis. These revealed
properties should be guite useful in dendroclimatic studies.

The principal disadvantages of ARSTND are as follows:

1. ARSTND is considerably more complex and difficult to
understand than previous methods. A familiarity with time series
analysis is very desirable in understanding the method.

2. It is a computationally expensive method to use. With the
cost of computing power steadlily declining, this disadvantage should
bécome less important.

3. The method is much more "black box" in design. This means
that it has the potential to be used and accepted blindly. ARSTND is
not foolproof, especially in the detrending phase. Any detrending
method has the potential for very poor curve fits if the trend compo~
nent abruptly changes character especially near the beginning or end

of a serles. If enough very poor curve fits of similar form and
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timing occur, then there is the potential for a curve-fitting artifact
to remain in the final ARSTND chronology. Such an artifact is most
likely in the poorly replicated portion of a chronology where the Law
of Large Numbers and the power of robust estimation are weakest.
While the trend-in-mean concept 1s a very useful guide for determining
what frequencies of variance to remove prior to autoregressive model~
ling, the choice of the actual detrending téchnique may require some
judgement and experimentation. The choice of deterministic, stochas-
tic, or hybrid (i.e. double-detrending) methods is still largely up to
the research sclentist and may, in some cases, be dictated by prior
knowledge. However, the use of "prior knowledge” should be minimized
as much as possible to be consistent with the underlying philosophy of
objectivity in the ARSTND methodology.

The autoregressive modelling phase may also require occasional
experimentation by the scientist. The first-minimum AIC criterion
will frequently select an adequate AR-order. However, there are times
when the AIC trace behaves for most of its length in a sawtooth-like
manner which produces multiple minima. Alternately, the AIC trace may
Be extremely flat for several orders past the first-minimum AIC. 1In
either case, competing models with AR-orders longer than that chosen
by the first-minimum AIC criterion may be tried. The autocorrelation
function of the residual mean-value function may also indicate the
need for a longer model through the presence of "significant” autocor-
relation coefficients near to but exceeding the AR-order chosen by the

AIC statistic. The decision to use a longer AR-model may be somewhat
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subjective. However, there is very little loss incurred by this deci-
sion even when it is weakly justified. The longer model will only
result in the loss of additional data at the beginning of each series
as a consequence of prewhitening the tree-ring indices. This will
reduce the replication locally in the mean—value function. Nothing
else is lost since the variance explained by the -longer AR-model is
added back to the ARSTND chronology by the pooled autoregression
coefficients.

At this stage in the development of ARSTND, it is not clear
how much operational improvement will occur in using ARSTND chronol-
ogies in dendroclimatic studies. While it is clear that an increase
in signal-to-noise ratio 1s 1likely, this increase does not easily
translate into a better climatic signal and an improved climatic
reconstruction. Insofar as the ARSTND chronology is a more precise
estimate of the population common signal among trees, some improvement
in climatic reconstructions should be expected. Perhaps the more
important consequence of the method 1is the way in which long-period
common variance 1s conserved through the "trend-in-mean” concept of
detrending. Thus, the climatic reconstructions developed from ARSTND
chronologies may not have as much low-frequency bias as those
developed from older standardization methods.

ARSTND has been developed principally with dendroclimatology
in mind. The tree-ring series used in this kind of research are
typically 200 or more years long. From a time-series analysis point

of view, long series are highly desirable from the initial step in
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detrending to the estimation of both the order of the autoregressive

process and the resultant AR coefficients. It is not clear how well

these procedures will work on short data sets (e.g. less than 100

years long). Sensitivity tests are ARSTND to series length would be

desirable at some point.
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