MEASURING LOW-TEMPERATURE CO2-H2O EQUILIBRIA: START-UP

P.I. John Longhi, D.S.R.S.

June 30, 2003

ABSTRACT

Vast potential sinks for anthropogenic CO2 exist within and possibly beneath the Antarctic and Greenland ice sheets. In the process of working out the phase equilibria in the low-temperature portion of the CO₂-H₂O binary system relevant to Mars' volatile history (the atmospheric composition, which is 95 % CO₂ and 0.03% H₂O, is buffered by water ice), it became apparent to me that the CO₂-clathrate phase (CO₂•5.75H₂O) is thermodynamically stable in the presence of water ice over a most of the pressure-temperature range of the terrestrial ice sheets. Furthermore, there are significant portions of the ice sheet P-T range over which liquid CO₂ is stable either with clathrate or liquid water. There is relatively little data on the mutual solubility of CO₂ and H₂O at the relevant equilibrium conditions, so I am requesting funds to begin the process of setting up an experimental apparatus that will enable measurement of the various equilibria and phase composition.