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[1] In order to extend the range of conditions that can be obtained in experiments,
we have measured the viscoelastic properties of polycrystalline organic borneol, as an
analogue to mantle rock. Using a custom fabricated apparatus, the Young’s modulus E and
attenuation QE

−1 were measured accurately over a broad frequency range (10−4 ≤ f (Hz) ≤
2.15) and at low strain amplitude (10−5–10−6). Creep experiments were performed
with the same apparatus to measure the steady state viscosity. Anelasticity and viscosity
were measured at high homologous temperatures (T = 22–48°C; T/Tm = 0.61–0.67) and
various grain sizes (3–22 mm), the growth of which was controlled by annealing. Using
the measured viscosities h and the unrelaxed modulus EU determined from ultrasonic
experiments, the frequency of the entire data set was normalized by the Maxwell frequency
fM = EU/h, resulting in E and Q−1 master curves. The Q−1 data from previous studies
on olivine‐dominated samples also collapse onto the same curve when scaled by fM,,
demonstrating the universality of anelasticity for polycrystalline materials. The similitude
by the Maxwell frequency scaling indicates that the dominant mechanism for the
anelasticity observed in this study and in previous studies is diffusionally accommodated
grain boundary sliding. A generalized formulation for this similitude is provided to
extrapolate the experimental data to velocity and attenuation of seismic shear waves.

Citation: McCarthy, C., Y. Takei, and T. Hiraga (2011), Experimental study of attenuation and dispersion over a broad
frequency range: 2. The universal scaling of polycrystalline materials, J. Geophys. Res., 116, B09207,
doi:10.1029/2011JB008384.

1. Introduction

[2] In the past, the elastic properties of rocks at high tem-
peratures and pressures have been measured using ultra-
sonic techniques or Brillouin scattering methods and, hence,
have been limited to high frequencies (MHz‐GHz) [e.g.,
Isaak, 1992; Jacobsen et al., 2008]. Because seismic waves
have much lower frequencies (10–10−4 Hz), the frequency
dependence (or dispersion) of elastic wave velocities is an
important issue to be clarified. Velocity dispersion and asso-
ciated attenuation are collectively referred to as “anelasticity”
[e.g., Anderson, 1989]. For a one‐dimensional seismological
structure, such as PREM [Dziewonski and Anderson, 1981],
experimentally measured wave velocities agree well with
seismologically measured velocities, and detailed studies on
mantle mineralogy have been successfully performed via
direct comparison of seismological and high frequency exper-
imental data [e.g., Duffy and Anderson, 1989; Stixrude and
Lithgow‐Bertelloni, 2005]. This suggests that velocity reduc-
tion by dispersion at seismic frequencies is small enough
to interpret one‐dimensional seismological structure in the
Earth. Therefore, relatively small attention has been paid to

rock anelasticity. However, recent progress in seismology
has revealed highly resolved, three‐dimensional velocity and
attenuation structures [e.g., Nakajima and Hasegawa, 2003;
Tsumura et al., 2000; Wiens et al., 2006]. Because disper-
sion plays a significant role in causing small perturbations in
seismic wave velocity through thermal and/or chemical het-
erogeneity in the Earth [Karato, 1993; Karato and Jung,
1998], and also because anelasticity influences attenuation
structure, renewed interest in the laboratory study of anelas-
ticity has been prompted.
[3] Experimental studies at seismic and subseismic fre-

quencies have greatly expanded our understanding of rock
anelasticity at high homologous temperature [e.g., Gribb
and Cooper, 1998; Tan et al., 2001; Jackson et al., 2002,
2004; Sundberg and Cooper, 2010]. In order to minimize
thermal cracking, these studies used natural and synthetic
olivine‐dominated aggregates with much smaller grain size
(d = 3–150 mm) than that of mantle rocks (d ∼ 1 mm).
Therefore, extrapolation of experimental data to mantle con-
ditions is contingent on our assessment of the appropriate
grain size sensitivity of anelasticity. It has been widely
known that there exists similitude in anelasticity, such that
frequency, temperature, grain size, and pressure dependences
can be captured by a single “master variable.” Characterization
of the master variable is essential to identifying the under-
lying mechanism of anelasticity and to applying laboratory‐
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derived insights to seismology. However, a consensus among
researchers has not yet been reached about this issue. Gribb
and Cooper [1998] first proposed the idea of similitude
based on the classic model of anelasticity by diffusionally
accommodated grain boundary sliding [Raj and Ashby, 1971;
Raj, 1975]. They suggested that the master variable is nor-
malized frequency, that is, frequency scaled by the Maxwell
relaxation frequency defined by diffusion creep viscosity.
Jackson et al. [2002] demonstrated the similitude with the
attenuation spectra measured for various grain sizes and
temperatures. Although many of their observations are con-
sistent with predictions from the model of diffusionally
accommodated grain boundary sliding, the master variable
obtained from their data exhibited a different grain size
dependence than what is expected from this mechanism.
Recently, Morris and Jackson [2009a] extended the test of
similitude by examining multiple data sets on olivine‐
dominated samples from several laboratories and applying
the Maxwell frequency scaling. However, due to a lack of
viscosity measurements for some of the studies, the estimated
Maxwell frequencies were subject to large uncertainty.
[4] As discussed above, a detailed analysis of anelasticity

requires accurate and reliable measurement of elasticity and
viscosity. However, anelasticity data with reliable viscosity
data measured under known creep mechanisms are still
lacking. In this study, we use an organic polycrystalline
material as an analogue to mantle rock to accurately measure
anelasticity and viscosity at various grain sizes and tem-
peratures. This organic material has been shown to be an
appropriate analogue to earth materials and detailed mea-
surements of its elasticity have previously been performed
[Takei, 2000]. In the companion paper, we discuss a new
apparatus formeasuring attenuation andYoung’smoduluswith
great precision over a broad range of frequencies. Here we
report experimental data from a suite of experiments per-
formed within this apparatus. Detailed analyses of the data,

including a test of the similarity principle and extrapolation to
seismic frequencies, are reported.

2. Experimental Details

2.1. Sample Fabrication

[5] Polycrystalline samples were created using borneol
(C10H18O; Tm = 204.5°C), which is classified as a plastically
crystalline organic that deforms by the same kinds of disloca-
tion and diffusion processes as minerals, metals and ceramics
[Sherwood, 1979]. Very fine borneol powder (∼3 mm)
obtained from a cold ball‐milling procedure (−40°C, 6 days)
was placed in a cylindrical die and pressed to 13.9 MPa
at ambient temperature for ∼48 h to produce fully dense,
polycrystalline right circular cylinders (height = 60–70 mm;
diameter = 30 mm). A Teflon inner sleeve allowed removal
of the sample from the die without fracture. This method
resulted in translucent (i.e., nonporous) samples with very
uniform and fine initial grain size (∼3 mm). After attaching
two end platens, the sample and platens were sealed in a non‐
reactive plastic bag to prevent sublimation during mechan-
ical testing and annealing. A mirrored crossbar and steel
base plate were clamped tightly to the platens. We will refer
to these components together as the “sample assembly”
(Figure 1). The sample assembly is described in greater detail
in the companion paper [Takei et al., 2011].

2.2. Mechanical Testing

[6] In order to explore the mechanical properties of the
analogue material borneol over the full range of its vis-
coelastic response (elasticity, anelasticity and viscosity), a
variety of tests were employed. In a previous study, the
shear and longitudinal wave velocities (Vs and Vp, respec-
tively) were measured in pure borneol samples at ultrasonic
frequency ( f ffi 1 MHz at 18 ≤ T(°C) ≤ 60) [Takei, 2000].
From such data, the complete set of elastic constants,
including the unrelaxed Young’s modulus EU, was obtained.
Because EU represents the crystal property, it does not
depend on grain size but was found to have a temperature
dependence of the form: EU(T°C) = 2.574 (GPa) − 0.00334
(GPa/°C) × T(°C). In this study, forced oscillation and creep
tests were performed to measure anelasticity and viscosity,
respectively.
[7] Young’s modulus and attenuation of borneol samples

were measured in cyclic compressive loading tests as
functions of frequency, using the custom‐fabricated appa-
ratus (Figure 1) fully described in the companion paper
[Takei et al., 2011]. A piezoelectric actuator applied a series
of sinusoidal cycles, in addition to an offset stress, starting
with the highest frequency and systematically working to the
lowest frequency at logarithmically equally spaced frequen-
cies (three per decade). At f ≥ 0.0464 Hz about 30 cycles
were used in testing; between 0.0464 > f (Hz) ≥ 0.00215,
about 10 cycles were tested; between 0.00215 > f (Hz) ≥
0.000215 about 5 cycles were tested; and, due to oscillo-
scope data logging capacity, only 2.4 cycles were tested for
f = 10−4 Hz. Stress was monitored by load cells and the
response of the sample was measured by a pair of laser
displacement meters with resolution of 10−8 m (with a 60–
70 mm sample height, this corresponds to strain resolution of
∼10−7) and with sampling frequencies larger than 500 × f.
The offset stress was 0.28 MPa and the amplitude of the

Figure 1. Schematic of the custom‐fabricated, cyclic com-
pressive, forced‐oscillation apparatus. During testing, the
whole apparatus rests in a temperature‐controlled incubator.
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sinusoidal stress (zero‐to‐peak) was 0.055 MPa, which was
nearly constant for all testing frequencies. As discussed in
the companion paper, the offset stress slightly decreases
during a set of cycles as the sample shortens by creep. At the
beginning of each new set of cycles, the movable stage
(Figure 1) was programmed to rise until the desired offset
stress was again obtained. Therefore, at low frequencies, the
data acquisition was delayed for a predetermined length of
time to omit transient effects associated with the reapplied
stress.
[8] Using the same apparatus, viscosity h (Pa s) was

measured via creep tests, in which a nominally constant
stress (s = 0.28 ± 0.01 MPa) was applied and the shortening
of the sample was measured over time. The stress was
controlled by adjustments to the height of the movable
stage, and sample displacement was measured by the total
steps applied to raise the stage and by the displacement
meters, both of which gave consistent results. Because the
initial stress of each creep test was not always zero and the
sampling rate was less than 10−2 Hz, creep data were only
used to obtain the steady state viscosity and not any tran-
sient properties.
[9] The entire apparatus was placed in a temperature‐

controlled incubator, which was placed on a vibration‐free
tabletop. The temperature of samples during testing, which
was monitored by a thermocouple placed in the top of the

movable stage (T1) and a thermocouple in the air sur-
rounding the sample (T2), is expressed as T = (T1 + T2)/2 ±
∣T1 − T2∣/2. As discussed in the companion paper, the
temperature distribution inside the incubator represents a
playoff between the heating of some apparatus components
and the cooling of compressed air circulating through meter
housings. However, for each run, airflow was held constant
and the temperature of the entire system was allowed to
equilibrate for ∼8 h (without load), so that temporal tem-
perature deviation during testing was <0.2°C. Spatial devi-
ation ∣T1 − T2∣ was <0.6°C for all tests, except at the highest
temperature, where the deviation was approximately 2°C.

2.3. Experimental Procedures

[10] In Table 1 we summarize the experimental conditions
of this study. One notable aspect of our approach is that
mechanical tests were made on the same polycrystalline
sample at various grain sizes (“grain size tests”) and tem-
peratures (“temperature tests”). This continuity enabled a
detailed investigation of temperature and grain size depen-
dences without any fabrication influences.
2.3.1. Grain Size Tests
[11] Anelasticity and viscosity were measured at approx-

imately constant temperature in the range T = 22.4–23.7°C
and at various grain sizes from 3.4 mm to 22 mm (Figure 2).
A sample without any thermal history (“initial” in Table 1)

Table 1. Experimental Conditions for This Study

Sample
Grain Size,
da (mm)

Temp,
Ta (°C)

Thermal History,
(°C) (days)

Corrected Viscosityb

(Pa s)

Maxwell
Relaxation
Timec (tM s)

Accumulated
Straind

11 4.8 27.8(±1.5)e Initial b. 7.22 × 1012(+0.1) 3004 0.0309
15 3.35(0.15) 23.6(±0.3) Initial a. 7.80 × 1012(+0.1)

b. 2.04 × 1012 (−1.4)
937.2 0.0122

15 4.15(0.25) 23(±0.3) 30(1) a. 2.34 × 1012 (−0.2)
b. 5.28 × 1012 (−0.5)

2217.2 0.0254

15 5.06(0.24) 22.7(±0.1) 30(4) a. 5.81 × 1012 (0)
b. 8.66 × 1012 (−0.9)

3390.3 0.0304

15 7.99(0.53) 22.4(±0.2) 30(4);40(0.8) a. 8.29 × 1012 (−0.2)
b. 1.51 × 1013 (−0.4)

6263.6 0.0335

15 8.9(0.82) 22.9(±0.05) 30(4);40(2.8) a. 1.62 × 1013 (+0.2)
b. 2.63 × 1013 (−0.7)

10335 0.0349

15 15.3(0.89) 23(±0.4) 30(4);40(8.8) a. 2.54 × 1013 (+0.6)
b. 3.05 × 1013(−0.8)

12182 0.0361

15 18.7(1.29) 22.6(±0.3) 30(4);40(8.8);45(5) a. 4.12 × 1013 (+1.0) 16498 0.0381
15 22.0(0.27) 23.7(±0.2) 30(4);40(8.8);45(5);50(6) b. 5.09 × 1013 (+0.3) 20332 0.0384
15 22.0(0.27) 31.4(±0.1) 30(4);40(8.8);45(5);50(6) b. 1.96 × 1013(−0.1) 7839 0.0401
15 22.0(0.27) 41.4(±0.05) 30(4);40(8.8);45(5);50(6) b. 6.22 × 1012(+0.1) 2487 0.0423
15 22.0(0.27) 45.4(±0.1) 30(4);40(8.8);45(5);50(6) b. 5.10 × 1012(−0.05) 2039 0.0466
15Tf 21.4
16 4.3(0.2) 23.5(±0.3) Initial b. 4.09 × 1012 (−1.5) 1654 0.0102
16 6.3(0.1) 23(±0.3) 30(4) a. 4.18 × 1012 (−0.4)

b. 1.06 × 1013 (−0.3)
4250 0.0174

17 21.4(1.6) 22.5(±0.3) 60(14) b. 5.25 × 1013(+0.1) 20994 0.0263
17 21.4(1.6) 30.8(±0.05) 60(14) b. 1.90 × 1013(−0.1) 7695 0.0277
17 21.4(1.6) 39.4(±0.5) 60(14) b. 8.01 × 1012(+0.1) 3284 0.0305
17 21.4(1.6) 47.7(±1) 60(14) b. 3.37 × 1012(−0.1) 1399 0.0363
17T 23.8(0.7)

aValues in parentheses are measures of error in mm for grain size and °C for temperature.
bViscosity measured before “b” and after “a” anelasticity testing. In parentheses is temperature in degrees above or below the value of the anelasticity

test (in Temp. column).
cThe average of the before and after viscosities divided by temperature‐dependent EU.
dAt the onset of anelasticity runs, i.e., the final value of the previous creep test.
eThe temperature error of Sample 11 is large because this run is performed before improvements made to the apparatus for thermal insulation.
fT represents the grain size measurements of testing samples.
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was loaded into the sample assembly and tightly fixed to the
apparatus, a uniaxial stress (0.28 ± 0.01 MPa) was applied,
and the sample deformed for one or two days under nomi-
nally constant stress to ensure good contact with the two
end platens. In this temperature range, grain growth is neg-
ligible even for the smallest grain size samples. After mea-
suring anelasticity and viscosity at the initial grain size, the
sample was isothermally annealed at temperatures between
30°C and 60°C for various durations within a temperature‐
controlled incubator. During the anneal, the sample remained
fixed in the sample assembly, but all compressional load was
removed. Uniaxial creep tests were conducted both before
and after each series of forced oscillation tests, allowing us to
confirm that no undesired change in viscosity (due to evolu-
tion of grain size or defect structure) had occurred during the
course of the run.
[12] Grain size was measured by employing a miniature

companion sample (diameter = 15 mm; length ≈ 15 mm)
that was created with the same starting powder and at the
same conditions as the testing sample. This miniature sam-
ple shadowed the testing sample at all times and was used
to periodically monitor grain size evolution without destruc-
tion of the testing sample. Confirmation of the approach was
made via comparison of the final grain size of the testing
sample to that of its miniature. For each grain size analysis,
one face of the miniature sample was polished to a mirror
finish with amicrotome and examinedwith a high‐resolution,
real color confocal microscope (Lasertec Optelics C130).

Slight sublimation at grain boundaries at ambient pressure
and temperature obviated the need for etching (Figure 2).
Images containing no fewer than 100 grains were analyzed to
measure mean grain size using the line intercept method with
a correction factor of 1.5 [Gifkins, 1970]. Two researchers
analyzed each specimen in at least two positions each and the
values obtained were averaged. The grain size error listed in
Table 1 constitutes the deviation from this mean.
2.3.2. Temperature Tests
[13] After the grain size tests were completed, coarse‐

grained samples were used to measure anelasticity and vis-
cosity at constant grain size (d = 22 mm) and at various
temperatures from 22 to 48°C, which represent homologous
temperatures 0.61 < T/Tm < 0.68. Considering the relatively
long anneal times and elevated temperatures used for grain
growth during the grain size testing stage, grain growth
during the temperature tests was predicted to be negligibly
small. That results from temperature tests pertain to con-
stant microstructure was confirmed by the reproducibility of
anelasticity and viscosity once the specimen was returned
to low temperature, as well as by microstructural analysis of
the miniature and testing samples once the temperature tests
were completed.
2.3.3. Linearity Tests
[14] To ensure the linearity of our data, tests were per-

formed on a fine grain sample to determine Young’s mod-
ulus and attenuation as functions of stress/strain amplitude.
A series of sinusoidal cycles at decreasing frequencies, with
only one oscillation frequency per decade, was applied to
a sample (in addition to the constant offset stress) at T =
27.8°C. The series was repeated for a total of four different
stress/strain amplitudes, in random order.

2.4. Data Analysis

[15] Several formulae used in this section assume linearity
of the samples, which was confirmed in the experiments.
2.4.1. Forced Oscillation Tests
[16] Typical raw experimental data are shown in Figure 3.

The monotonic upward trend of the strain data (contrac-
tion positive) is steady state creep associated with the offset

Figure 2. Light microscope images of pure borneol sam-
ple (sample 15)with grain sizes of approximately (a) 3mm (ini-
tial), (b) 5 mm, (c) 15 mm, and (d) 22 mm. The sample shown in
Figures 2b–2d experienced controlled grain growth via high‐
temperature annealing.

Figure 3. Typical raw data of stress and strain for borneol
aggregates at f = 10−3 Hz and T = 23°C (compression and
contraction positive). The linear trend of the strain data shows
creep in the sample due to the offset stress. The linear trend
of the stress curve shows the gradual relaxation of the offset
stress due to the sample creep.
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stress and the monotonic downward trend of the stress data
(compression positive) is the relaxation of the offset stress
due to such creep. These linear trends were removed from
the data by determining the slope during each cycle based
on the change in value of a specific point in adjacent cycles.
With this method, any variation of slope from one cycle to
the next can be taken into account. However, this method
cannot be used when the slope changes within one cycle,
as is often the case in early cycles of very low frequency
testing (<10−3 Hz) of samples with small grain size or at
high temperatures (i.e., conditions in which the sample is
very soft). In such cases, these cycles were removed from
the analysis. At the lowest frequency (10−4 Hz), removal of
any portion of the already short data set (only 2.4 cycles)
can affect the experimental results. The error associated with
this procedure is discussed in more detail in section 3.1.
[17] Once the linear trends are removed from the data,

stress and strain can be expressed as

� tð Þ ¼ �0 cos ! t � Φ�ð Þ ð1Þ

" tð Þ ¼ "0 cos ! t � Φ"ð Þ ð2Þ

where w = 2p f. Amplitudes s0 and "0 and phases Φs and Φ"

were determined by least squares fitting of equations (1)
and (2) to s(t) and "(t), respectively. Detailed equations
used in this calculation are presented in Appendix A of the
companion paper [Takei et al., 2011]. Using the assumption
of constant volume, a correction was applied to sample
length and area to account for accumulated strain, the mag-
nitude of which is provided in Table 1. Young’s modulus E
and inverse quality factor Q−1 are calculated by

E ¼ �0

"0

Q�1 ¼ tan �

8<
: ð3Þ

where d = Φ" − Φs represents the phase lag of strain from
stress. We further introduce the complex compliance J*( f )
given by

J* fð Þ ¼ J1 fð Þ þ iJ2 fð Þ ¼ "0
�0

ei� ð4Þ

the real and imaginary parts of which are termed the
“storage compliance” and “loss compliance,” respectively,
defined by

J1 fð Þ ¼ "0
�0

cos � ¼ 1

E fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q�1 fð Þð Þ2

q
J2 fð Þ ¼ "0

�0
sin � ¼ Q�1 fð Þ

E fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q�1 fð Þð Þ2

q

8>>>>><
>>>>>:

: ð5Þ

[18] The present tests were performed under " = "zz, s =
szz and sxx = syy = 0. To emphasize these experimental
conditions, Q−1 and J* introduced above can be written as
QE
−1 and J*E, respectively, where subscript E represents

Young’s modulus. When Q−1 and J* corresponding to bulk
and shear moduli are written as Qk

−1, Qm
−1, J*k, and J*m, J*E is

related to J*k and J*m by J*E = J*k /9 + J*m/3. Therefore, QE
−1 =

J2
E/J1

E is related to Qk
−1 = J2

k/J1
k and Qm

−1 = J2
m/J1

m as

Q�1
E ¼ �Q�1

k þ 1� �ð ÞQ�1
� ð6Þ

where

� ¼ J k1
J k1 þ 3J�1

: ð7Þ

Factor x depends on the Poisson’s ratio. Using the Poisson’s
ratio of borneol at ultrasonic frequency (0.37) [Takei, 2000],
we obtain x = 0.086. Therefore QE

−1 contains very little
contribution from bulk attenuation and is a good approxi-
mation of Qm

−1.
2.4.2. Creep Tests
[19] With constant stress s and strain rate _", steady state

viscosity is calculated as h = s/ _". As in section 2.4.1, a
correction was applied to the data to account for the change
in sample length and area as a result of accumulated strain,
the magnitude of which is provided in Table 1. Viscosity
h can be described through a combined power law and
Arrhenius equation of the form

� ¼ �0
d

dr

� �m

exp
U

R

1

T
� 1

Tr

� �� �
ð8Þ

where d is grain size, m is the grain size exponent, U is
the activation energy for creep, R is the gas constant, T is
temperature, and subscript r refers to the reference grain size
and temperature. Just as in section 2.4.1, h for this study
can be written as hE, and is related to shear viscosity hm as

�E ¼ 3�� ð9Þ

where bulk viscosity hk is assumed to be infinite.

2.5. Application of the Kramers‐Kronig Relations

[20] Compliances J1 and J2 introduced in section 2.4.1 are
related by the Kramers‐Kronig relations as

J1 !ð Þ ¼ JU þ
Z �¼∞

�¼0
X �ð Þ 1

1þ !�ð Þ2
d�

�

J2 !ð Þ ¼
Z �¼∞

�¼0
X �ð Þ !�

1þ !�ð Þ2
d�

�
þ 1

!�

8>>><
>>>:

ð10Þ

where JU is the unrelaxed elastic compliance and X(t)
represents the so‐called relaxation spectrum at time scale t
[Nowick and Berry, 1972, p. 78]. Parameter JU is related to
the unrelaxed Young’s modulus EU as JU = 1/EU. Because
J1 and J2 are measured almost independently from ampli-
tude ratio and phase delay, respectively, this theoretical rela-
tionship can be used to check the internal‐consistency of the
data. In previous studies, this relationship was used in lim-
ited form in the Andrade model and an extended Burgers
model, which assume X(t) as power law (ta) and box‐car ×
power law functions, respectively, with a constant power a
[e.g., Tan et al., 2001; Jackson et al., 2002; Gribb and
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Cooper, 1998]. In this study, we introduce an alternate
method in which a functional form of X(t) is not postulated
a priori but is instead obtained directly from J1 and J2 data
via the Kramers‐Kronig relations. By assuming that X is a
continuous function smoothly varying with respect to lnt,
the factors in equation (10) are well approximated by a step‐
function and a delta‐function, as

1

1þ !�ð Þ2 ¼ H � ln � � ln!ð Þ
!�

1þ !�ð Þ2 ¼
�

2
� ln � þ ln!ð Þ

8>><
>>: ð11Þ

such that

J1 pð Þ ¼ JU þ
Z �¼p=2�

�¼0
X �ð Þ d�

�

J2 pð Þ ¼ �

2
X � ¼ p

2�

� �
þ p

2��

8>><
>>: ð12Þ

where p = 1/f is period [Nowick and Berry, 1972]. From
equation (12), J1 and J2 can be related by

J1 pð Þ þ p� pr
�2�

¼ J1 prð Þ þ 2

�

Z p′¼p

p′¼pr

J2 p′
	 
 dp′

p′
ð13Þ

where J1(pr) represents an initial value of J1 for the inte-
gration of equation (13) at an arbitrarily taken reference

period pr. We apply equation (13) to measured J1 and J2
curves to check the internal‐consistency of the data and to
estimate h. Then, by substituting J2 and h into the second
equation of equation (12), we estimate X(t). The only
assumption made with our method, in addition to linearity,
is that X(t) is smooth. As shown in section 3.3, this method
enables us to observe that the time scale dependence of X(t)
is not constant.

3. Experimental Results

3.1. Reproducibility and General Form

[21] Figure 4 shows experimental data for three samples
with similar grain sizes (4.15–4.8 mm) and temperatures
(23–27.8°C) evidencing the reproducibility of both modulus
and attenuation data. As discussed in the companion paper,
the discrepancy in the absolute value of E that is attributed
to random error of the apparatus (likely due to meter sen-
sitivity) is 5–6% over all frequencies. The discrepancy in E
between similar samples (e.g., at f = 2.15 Hz in Figure 4) is
consistent with this random error, the magnitude of which
must therefore exceed any sample fabrication or assemblage
error. Over the range of testing conditions, the modulus
relaxes by ∼60% of the published unrelaxed modulus.
[22] Although random error affects E, it does not affect

Q−1. The error in determination of Q−1 is primarily dependent
on error in measuring the phase lag, which is very small.
Consistently, Q−1 measurements are highly reproducible and
extremely robust. Even the small discrepancy in Q−1 between
samples 15 and 16 in Figure 4 is not attributed to scattering
but rather can be supported by the small difference in the
modulus dispersion. The error bars shown in Figure 4 rep-
resent the uncertainty produced by removal of linear trends
from the data. As discussed in section 2.4.1, this error can be
large at f = 10−4 Hz but nearly zero for f ≥ 0.000464. The
general form of Q−1 is that of a moderate power law rela-
tionship with frequency that accelerates slightly at low fre-
quency and flattens at high frequency. The coverage of the
data set allows us to see a smooth function over more than
four decades of frequency, with no visible Debye peaks.

Figure 4. E and Q−1 for three borneol samples at nearly
constant grain size and temperature. The multiple symbols
for sample 16 correspond to tests conducted on successive
days (closed symbol was first). Error bars correspond to
the average and standard deviation of three separate calcula-
tions of E and d using various windows of time.

Figure 5. E and Q−1 versus strain amplitude at several
fixed frequencies showing linearity of anelastic response
independent of strain amplitude at the conditions of testing.
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3.2. Linearity of the Viscoelastic Response

[23] Figure 5 shows that, for a suite of tests conducted on
sample 11 at constant grain size (d = 4.8 mm) and constant
temperature (T = 27.8°C) for multiple stress/strain ampli-
tudes (s0 ffi 0.077, 0.055, 0.030, and 0.0045 MPa), the
measured modulus and attenuation are independent of strain
amplitude. In a separate study, steady state uniaxial creep
experiments performed on a borneol aggregate under similar
conditions to our creep experiments (d = 3.6 mm; T = 20°C;
s = 0.11–0.38 MPa) showed a stress exponent of nearly one
[Watanabe, 2011]. Therefore, the mechanical linearity of
the viscoelastic response can be deduced for all frequencies
studied. The amplitude independence justifies our use of a
single value of driving stress amplitude (s0 = 0.055 MPa)
for the rest of this study. The linearity of the response also
justifies application of the Kramers‐Kronig relations to our
data.

3.3. Application of the Kramers‐Kronig Relations

[24] To analyze the quality of each data set, J1 and J2
curves were calculated using equation (5). Figure 6a dis-
plays representative curves from sample 16 at d = 4.3 mm
and T = 23.5°C (black symbols). Both J1 and J2 increase
monotonically with decreasing frequency. The right hand

side of equation (13) is calculated based on the J2 data and
J1 (pr = 1 s) and is plotted in Figure 6a as the “predicted J1”
(gray symbols). The difference between the two curves of J1
is (p − pr)/p

2h and thus, when plotted against period p − pr,
viscosity h is estimated from the slope as h = 3.16–4.0 ×
1012 Pa s (Figure 6c). We compare this viscosity obtained
from the anelasticity data to the independently obtained
viscosity measurements from creep tests (hffi 4.1 × 1012 Pa s,
Table 1, sample 16, d = 4.3 mm) and see good agreement
between the two. Generally, h estimated from the anelasticity
data has larger error than h determined from creep tests,
especially when there is a large error bar in the data at the
lowest frequency ( f = 10−4 Hz; Figure 4).
[25] In Figure 6d we compare J2 obtained from directly

measured E and Q−1 data (black) to J2 after removal of
the viscosity term p/2ph (gray). The second equation of
equation (12) shows that J2 corrected for the viscosity term
represents (p/2)X(t = 1/2p f ), the purely anelastic response.
In Figure 6b, we compare the measured J1 (black) to the
predicted J1 (gray), which was calculated using the cor-
rected J2. The good agreement between the two J1 curves in
Figure 6b confirms the consistency between the J1 and J2
data (or E and Q−1 data) with respect to the Kramers‐Kronig
relations.

Figure 6. Application of the Kramers‐Kronig (K‐K) relations to anelasticity data. (a) “Measured” J1 and
J2 obtained from the measured E and Q−1, which are compared to the “predicted” J1 calculated from mea-
sured J2. (b) Measured J1 compared to the predicted J1 calculated from J2 corrected for the viscosity term.
Data are shown inversely to correspond to units of modulus. (c) The difference between the measured and
predicted J1, when plotted against period, provides viscosity. (d) Measured J2 compared to J2 corrected
for the viscosity term.
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[26] In the above mentioned method, the relaxation spec-
trum X(t) can be estimated directly from the data without
assuming any specific functional form (Figure 6d, gray
symbols). After correction for the viscosity term, the power
law relationship shows a nearly constant slope at low fre-
quency. However, at higher frequencies the slope decreases
considerably.

3.4. Grain Size Results

[27] Anelasticity data at various grain sizes (3.35–22 mm)
and at approximately constant temperature (22.4–23.6°C)
are shown in Figure 7a, which demonstrates the notable
effect of grain size on the anelastic response of polycrys-
talline borneol (sample 15; see Table 1 for details). As grain
size increases, modulus dispersion and attenuation generally
decrease. However, the grain size sensitivity of modulus dis-
persion and attenuation is not constant over the entire range
of frequencies tested; there is considerable grain size effect
observed at low frequency with little to no effect at high
frequency. Similar results were also obtained for sample 16,
the data from which we provide in Appendix A to demon-
strate the reproducibility of the grain size tests (Figure A1a).
[28] Figure 8 shows unidirectional (steady state) creep data

at various grain sizes, (3.35–22 mm) and at approximately
constant temperature (22.4–23.6°C). The results show that
as grain size increases, steady state viscosities increase sig-
nificantly. A logarithmic plot of viscosity versus grain size
was calculated in which two distinct relationships can be
observed (Figure 8b). At small grain size (d < 7 mm) a cubic

relationship is shown (i.e., m = 3 in equation (8)), whereas at
larger grain size, this grain size relationship decreases to a
shallower slope. The cubic relationship is consistent with
steady state creep that is rate‐controlled by grain boundary
diffusion. That the sample was deforming by grain boundary
diffusion creep was also supported by a separate study in
which a stress exponent of nearly one was obtained with
this same material under similar experimental conditions
[Watanabe, 2011].

3.5. Temperature Results

[29] Data for anelasticity at various temperatures in the
range 23.7 to 45.4°C (T/Tm = 0.62–0.67) and at nearly
constant grain size (22 mm) are shown for sample 15 in
Figure 9a. As temperature increases, modulus dispersion
and attenuation increase. Similar results were obtained for
sample 17, the data from which we provide in Appendix A
to demonstrate the reproducibility of the temperature tests
(Figure A2a). Figure 10 shows unidirectional creep data
at various temperatures and at constant grain size for
sample 15. From the Arrhenius plot in Figure 10b, an acti-
vation energy (i.e., U in equation (8)) of ∼85 kJ mol−1 was
calculated.

3.6. Normalization Results

[30] In both grain size tests and temperature tests, strong
correlation between anelasticity and viscosity was obtained;
modulus dispersion and attenuation tend to increase with
decreasing viscosity. Therefore, we normalized data from each

Figure 7. (a) Anelasticity data showing grain‐size sensitivity of Young’s modulus and attenuation for
sample 15, under approximately constant temperature T = 22.4–23.6°C. The sample has been annealed
for various durations (listed in Table 1) to achieve the grain sizes listed. (b) Same data from Figure 7a,
as functions of frequency normalized by the Maxwell frequency.
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grain size d and temperature T by the Maxwell relaxation
frequency:

fM d; Tð Þ ¼ EU Tð Þ
�E d; Tð Þ ð14Þ

determined from directly measured viscosities and the unre-
laxed Young’s modulus from ultrasonic measurements. The
value of tM = 1/fM used for each data set is provided in Table 1.
In Figure 7b, E and Q−1 from grain size tests are plotted as
functions of normalized frequency f / fM, showing the collapse
of curves to a single master curve. (The relatively large
scatter in modulus data is discussed below.) In Figure 9b, E
normalized to EU(T) and Q−1 from temperature tests on
sample 15 are plotted as functions of normalized frequency
f/fM, again showing the collapse to a single master curve for
each. A similar collapse of modulus and attenuation data for
samples 16 and 17 is demonstrated in Figures A1b and A2b.
[31] Modulus data from grain size tests of sample 15

(Figure 7b, top) display considerable scatter. At fixed nor-
malized frequency, the discrepancy is about 10%, with E
tending to decrease with increasing grain size. This scatter
can be attributed to the formation of porosity due to grain
growth in the absence of confining pressure. Microstructural
analysis of sample 15 after all mechanical tests were com-
pleted revealed an increase in porosity by several percent
(Figure 11), which was found to be greater in the center of

the sample and decreased radially. Miniature samples
showed little to no porosity. That measured grain sizes of
the inner (d = 21.4 mm) and outer (d = 21.6 mm) portions of
the testing sample and the relatively pore‐free miniature
sample (d = 22 mm) were consistent confirms that porosity
did not affect grain growth. Based on the effective medium
theory, assuming spherical cavities [Berryman, 1995], a
10% decrease in Young’s modulus is predicted with a
porosity of 5%. As shown in Figure 11, this amount of
porosity is roughly consistent with microscopic observation.
Consequently, without a change in porosity, modulus data,
too, are expected to collapse onto a single curve. This
hypothesis is also supported by the perfect collapse of the
modulus data from temperature tests (Figures 9b and A2b),
which are considered to be at constant grain size (i.e.,
constant porosity). Scattering of attenuation spectra is much
smaller than modulus data (Figure 7b), indicating that the
effect of porosity on attenuation is small.
[32] Figure 12 shows normalized modulus E/EU(T) and

attenuation Q−1 from both grain size tests and temperature
tests as functions of normalized frequency for sample 15.
All attenuation spectra collapse to a single master curve,
demonstrating that both grain size and temperature effects
can be captured by this simple Maxwell frequency scaling.
The modulus data from temperature tests collapse onto the
data from the larger grain sizes of the grain size tests, which
again suggests that without porosity change, modulus data
from both tests would collapse onto a single master curve.

4. Discussion

4.1. Similarity and Universality of Anelasticity

[33] The results of our study have demonstrated that both
grain size and temperature effects on anelasticity are cap-
tured by the Maxwell frequency scaling. We found, too, that
similitude in the anelastic response extends to samples with
gross material differences. Figure 13 shows Q−1 spectra
versus normalized frequency of various olivine‐dominated
aggregates measured in torsion [Tan et al., 2001; Jackson
et al., 2002; Gribb and Cooper, 1998], in addition to those
of organic aggregates from this study. Maxwell frequencies
for the torsion experiments were calculated by fM = mU/hm,
using the following values: mU = 63 GPa for T = 1200°C
[Isaak, 1992]; hm = 6.28 × 1013 Pa s for d = 23.6 mm and T =
1200°C [Tan et al., 2001, #6261]; hm = 0.72 × 10

13 Pa s for d =
2.9 mm and T = 1200°C [Jackson et al., 2002, #6381]; and
1/fM = 414/4 s and 59/4 s for d ≈ 3 mm and T = 1200°C
and 1250°C, respectively [Gribb and Cooper, 1998]. The
consistency among the various normalized spectra is
remarkable. The efficacy of this simple scaling demonstrates
the true universality of the master curve to polycrystalline
materials and also validates our use of borneol as an ana-
logue to olivine in attenuation studies. Here, a direct com-
parison of modulus data was not performed because
modulus data are generally subject to larger error than Q−1

data. However, in section 4.3, our modulus results are dis-
cussed in comparison with those of Jackson et al. [2002].
[34] These findings can be expressed as a “similarity

rule.” Whereas the Q−1 spectrum represents a mixed effect
of anelastic relaxation, modulus dispersion, and viscous
deformation, the relaxation spectrum X(t) introduced in

Figure 8. Unidirectional creep data showing the grain size
sensitivity of (a) creep curves for sample 15 and (b) viscos-
ity (samples 15, 16, and 17), at T = 22.4–23.6°C and in all
cases under a quasi‐static applied stress of 0.28 ± 0.01MPa.

MCCARTHY ET AL.: POLYCRYSTAL ANELASTICITY: 2 B09207B09207

9 of 18



section 2.5 represents the strength of a purely anelastic
relaxation at time scale t. Because modulus dispersion and
viscous deformation are significant in experimental studies,
the use of X to describe similarity rather than Q−1 greatly
simplifies the formulation. We first introduce a normalized
relaxation spectrum Xn, defined by

Xn ¼ X

JU T ;Pð Þ ð15Þ

so that the formulation is applicable to any P‐T condition in
the Earth. Unrelaxed compliance JU is considered known as
a function of T and P. Subscript n is used to denote nor-
malized quantities. The similarity rule for anelasticity can be
formulated such that the normalized relaxation spectrum Xn,
which generally depends on time scale t, grain size d,
temperature T, and pressure P, is a unique function of the
normalized time scale tn:

Xn �; d; T ;Pð Þ ¼ Xn �nð Þ ð16Þ

where tn is defined by using a reference time scale tr as

�n �; d; T ;Pð Þ ¼ �

�r d; T ;Pð Þ : ð17Þ

The nature of the reference time scale tr dependence on d, T,
and P provides valuable information about the mechanism
causing the anelastic relaxation. We introduce tr indepen-
dently from the Maxwell relaxation time scale tM, so that

the present formulation is applicable to the studies of
Jackson et al. [2002] and Faul and Jackson [2005], in
which tr ≠ tM.
[35] An important consequence of the similarity rule is a

mutual relationship between the frequency, grain size,
temperature, and pressure dependences of anelasticity: by
substituting equations (16) and (17) into the Kramers‐
Kronig relations (equation (12)), we obtain

J1 f ; d; T ;Pð Þ ¼ JU T ;Pð Þ 1þ
Z �n¼ 2�fnð Þ�1

�n¼0
Xn �nð Þ d�n

�n

( )

J2 f ; d; T ;Pð Þ ¼ JU T ;Pð Þ �

2
Xn �n ¼ 1

2�fn

� �
þ 1

2�f �M

� �
8>>><
>>>:

ð18Þ

where normalized frequency fn is defined by

fn f ; d; T ;Pð Þ ¼ f � �r d; T ;Pð Þ: ð19Þ
By taking the partial derivative of measureable quantities J1
and Q−1 ( = J2/J1) with respect to each of f, d, T, and P, we
obtain

@ ln J1
@ ln x

� �
y;z;w

¼ @ ln JU T ;Pð Þ
@ ln x

� �
y;z;w

� 2

�
Q�1 @ ln fn

@ ln x

� �
y;z;w

@ lnQ�1

@ ln x

� �
y;z;w

¼ � 	� 2

�
Q�1

� �
@ ln fn
@ ln x

� �
y;z;w

8>>>>><
>>>>>:

ð20Þ

Figure 9. (a) Anelasticity data showing the temperature dependence of Young’s modulus and attenua-
tion for sample 15 with constant grain size (d = 22 mm). (b) Same data as in Figure 9a, as functions of
frequency normalized to the Maxwell frequency.
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where parameter x for differentiation represents any one of
the four variables f, d, T, and P, while the other three are
shown by fixed variables y, z and w. Factor a is defined by

	 ¼ d lnXn �nð Þ
d ln �n

ð21Þ

which represents the time scale exponent of the normalized
relaxation spectrum or, in other words, the slope of the lnXn

versus lntn curve. In equation (20), the effect of viscous
deformation onQ−1, which is negligible at seismic frequency
in the Earth, was neglected for simplicity.
[36] Once explicit functional forms of tr(d, T, P) and

Xn(tn) are given, modulus and attenuation for any condition
of f, d, T, and P can be calculated by equation (18) and the
individual dependences of these can be calculated by
equation (20). The explicit forms of tr(d, T, P) and Xn(tn)
are provided in sections 4.2 and 4.3, respectively. The
present formulation is general in that equations (15)–(21)
can be used regardless of whether parameters X, J*, Q−1,
h, and tM represent XE, J*E QE

−1, hE, and tM
E , respectively,

or Xm, J*m Qm
−1, hm, and tM

m , respectively, and so on.

4.2. Reference Time Scale and Underlying Mechanism

[37] Although similitude in the anelastic response of
polycrystalline materials has been recognized in previous
studies [Gribb and Cooper, 1998; Jackson et al., 2002;
Morris and Jackson, 2009a], determination of the appro-
priate reference time scale tr is still under debate. Charac-
terization of the reference time scale is essential to
identifying the underlying mechanism of anelasticity and

Figure 10. Unidirectional creep data showing the tempera-
ture sensitivity of (a) creep curves for sample 15 and (b) vis-
cosity in samples 15 and 17 (Table 1).

Figure 11. Light microscope image of borneol sample 15
post‐deformation showing porosity (∼6%) that has formed
during the testing. Faint spots of light are interpreted as
pores in the near subsurface. This image is from the center
of the specimen. Porosity decreased with distance from
the center.

Figure 12. Normalized E and Q−1 data for all grain sizes
and temperatures for sample 15, as functions of frequency
normalized to the Maxwell frequency.
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also to extrapolating experimental data to a geophysical
context. In this section we discuss the reference time scale,
which we scrutinize for the operative mechanism of
anelasticity. Implications for seismology are discussed in the
next section.
[38] The experimental results of our study demonstrate

that the reference time scale is a Maxwell time scale that is
defined in terms of the steady state viscosity of diffusion
creep (equation (8)):

�r d; T ;Pð Þ ¼ �M d; T ;Pð Þ ¼ JU T ;Pð Þ�0 d

dr

� �m

� exp U

R

1

T
� 1

Tr

� �� �
exp

V

R

P

T
� Pr

Tr

� �� �
ð22Þ

where the additional factor to equation (8) describes the
pressure effect on viscosity with activation volume V and
reference pressure Pr. Using equation (22), the unspecified
factors in equation (20) are explicitly written as

@ ln fn
@ ln x

� �
y;z;w

¼

1 for x ¼ f

m for x ¼ d

@ ln JU
@ ln T

� �
P

�U þ PV

RT
for x ¼ T

@ ln JU
@ lnP

� �
T

þPV

RT
for x ¼ P

8>>>>>>>>>><
>>>>>>>>>>:

: ð23Þ

That the anelastic relaxation follows the same scaling as
steady state diffusion creep points to a physical process that
is due to the same diffusional mechanism [e.g., Raj, 1975;
Gribb and Cooper, 1998]. This requirement is met by
“diffusionally accommodated grain boundary sliding,”
which explains well many other experimental observations.
Grain boundary sliding (“GBS”) is generally obstructed by
grain edges and/or atomic‐scale steps along the grain

boundaries, causing local stress concentrations to build.
With diffusionally accommodated GBS, relaxation of these
stress singularities by diffusive matter transport through
grain boundaries and/or grains is considered to be the rate‐
limiting step to sliding. Evolution of the stress state
involving a wide range of diffusion path lengths from the
atomic scale to the grain scale explains well the continuous
and peakless shape of the relaxation spectrum [e.g., Raj and
Ashby, 1971; Morris and Jackson, 2009b]. Additionally, the
large modulus reduction (60%) observed in this study is
consistent with this mechanism [e.g., Zener, 1941].
[39] As Figure 13 demonstrates, the attenuation data for

olivine aggregates at various temperatures and grain sizes,
from various source regions and various laboratories, col-
lapse onto a single curve when normalized by the Maxwell
relaxation frequency. In each study, the obtained activation
energy was similar to that of diffusion creep. Thus, we
propose that diffusionally accommodated GBS is operative
in all of the studies shown in Figure 13. Any variations in
the observed grain size dependences from one study to the
next can be explained by equations (20) and (23). Specifi-
cally, the observation of approximately equal frequency and
grain size exponents of Q−1 in the work of Jackson et al.
[2002] is thoroughly consistent with equation (23) and
their observed grain size exponent of viscosity of nearly one
(m ≈ 1).
[40] This interpretation deviates slightly from that of

previous researchers. At higher frequencies (and/or lower
temperatures), grain boundary sliding is accommodated not
by diffusion but instead by local elastic deformation of
grains. This elastically accommodated GBS is considered to
be rate limited by “grain boundary viscosity.” Although
relatively well known in metal and ceramics, this process is
poorly understood for rocks, and the relaxation strength and
reference time scale tr are difficult to estimate. A simple
elastic rebound model, for instance, predicts tr / d. Based
on such a model, the observation of approximately equal
frequency and grain size dependences of Q−1 data in the
work of Jackson et al. [2002] was attributed to elastically
accommodated GBS [Jackson et al., 2002; Karato, 2008].
As such, formulae with tr ≠ tM were used for the extrapo-
lation of these data to mantle conditions [Faul and Jackson,
2005]. Contrary to this treatment, our experimental results
show that the Maxwell frequency scaling is applicable for
viscosities with a grain size exponent m = 3 (d < 7 mm),
as well as for viscosities with a grain size exponent m ≈ 1
(d > 7 mm), at all frequencies explored. Although m ≈ 1 is
contrary to what one would expect for diffusion creep, the
nearly identical spectra obtained for fine grained (m = 3) and
coarse grained (m ≈ 1) samples do not indicate a drastic
difference in mechanisms between the two regimes. Further,
we see no indication in our data of a Debye peak that is
associated with elastically accommodated GBS in metals
and ceramics. In our assessment, for all frequencies and
grain sizes tested, the need to attribute spectra to a separate
mechanism, which relies on a poorly constrained parameter
of grain boundary viscosity, is unwarranted.
[41] Because elastically accommodated GBS occurs at

higher frequencies than diffusionally accommodated GBS,
there exists the possibility that the rate‐limiting process of

Figure 13. Measured Q−1 versus normalized frequency f/
fM from studies with gross material differences. For Gribb
and Cooper [1998] T = 1200 and 1250°C; d = 3 mm. For
Tan et al. [2001] T = 1200°C; d = 23.6 mm. For Jackson
et al. [2002] T = 1200°C; d = 2.9 mm. These studies used
olivine‐dominated aggregates, whereas this study (black
circles) used borneol aggregates at T = 22.4–45.4°C and d =
3.4–22 mm. The shaded area demonstrates that the normal-
ized seismic frequency range is currently outside the range of
experimental data.
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relaxation changes at higher normalized frequencies than
the experimental coverage. Indeed, attempts to detect such
change have been performed [Jackson and Faul, 2010;
Sundberg and Cooper, 2010]. In this study, the observa-
tion that the pore‐free (d ∼ 3.4 mm) modulus data approach
EU at high frequency (Figure 12) suggests that anelastic
relaxation between ultrasonic and forced oscillation experi-
ments is not strong. However, as discussed in section 4.3,
this intermediate frequency range is important for seismo-
logical application and has to be assessed in more detail.

4.3. Application to Seismology

[42] Proving that the Maxwell frequency is the universal
scaling factor for anelasticity allows for extrapolation of
laboratory data to mantle conditions. In the upper mantle,
the Maxwell frequency is estimated as 1011Pa/1020Pa s =
10−9 Hz. Therefore, the normalized frequency correspond-
ing to the seismic frequency range (f = 1–10−3 Hz) is f/fM =
106 − 109. Figure 13 shows that in normalized frequency
space, experimental data cover a considerable range lower
than, but do not include, the “seismic frequency range.”
Although previous experimental studies in the range f = 1–
10−3 Hz have been considered to directly measure “seismic
frequency,” the much smaller grain sizes and much smaller
viscosities of those experimental samples correspond to a
significantly higher Maxwell frequency than that of mantle
materials. To appropriately scale experimental data to seis-
mology, it is important to measure anelasticity at higher
frequencies, so that the detailed shape of the master curve
can be revealed at f/fM = 106 − 109. The extent to which the
observed mechanism and scaling law are applicable at high
normalized frequencies is not evident, and must be assessed
as well. With typical laboratory viscosities in the range of
1012−1013 Pa s, this corresponds to f = kHz, which is
unfortunately between the current coverage of typical forced
oscillation and ultrasonic (∼MHz) tests, but is covered by a
resonance method [Lakes, 1999]. Higher normalized fre-
quencies can also be achieved at lower temperatures and/or
larger grain sizes, though direct measurement of viscosity
becomes difficult. More research, in the form of experiments
and/or modeling, is needed.
[43] Nevertheless, strong efforts have been made to utilize

laboratory measurements for interpreting regional and
global seismological data [e.g., Dalton et al., 2009; Condor
and Wiens, 2006]. The studies primarily rely on the exper-
imentally based model of Faul and Jackson [2005], which is
particularly useful because it provides a generalized empir-
ical formula for the frequency, grain size, and temperature
dependences that allow extrapolation to upper‐mantle con-
ditions. Therefore we, too, generalize our present experi-
mental results and extrapolate to mantle conditions. The
findings of Faul and Jackson [2005] suggest that low‐
velocity and high Q−1 can be achieved by temperature
variations alone. Because this model is being widely used in
seismology, in particular to contest the need for partial melt,
we feel it is important to carefully dissect the findings from
that study and articulate the similarities and differences that
we find with our results.
[44] Seismology is primarily concerned with relaxation of

shear modulus m, causing dispersion and attenuation of
seismic shear waves. Shear wave velocity VS and shear

wave attenuation QS
−1 can be directly calculated from J1

m and
J2
m as

VS ¼ 1ffiffiffiffiffiffi

J�1

p

Q�1
S ¼ J�2

J�1

8>><
>>: Q�1

S � 1
	 
 ð24Þ

where r is density. (A more general form of equation (24),
without the assumption of QS

−1 « 1, is presented in
Appendix B). When wave frequency f, grain size d, tem-
perature T, and pressure P are given, J1

m and J2
m can be cal-

culated from equation (18), in which explicit functional
forms of tr (f, d, T, P) and Xn(tn) are needed. Here, we
present these explicit forms by generalizing our experimental
results. The explicit form of tr is given by equation (22),
where dr = 1 mm, m = 3, Tr = 1473 K, U = 505 kJ mol−1, V =
1.2 × 10−5 m3 mol−1, and h0 = 6.6 × 1019 Pa s. These para-
meters are selected such that the experimental conditions for
grain size and viscosity can be continuously connected to
upper mantle conditions. The unrelaxed shear modulus of
olivine is 1/JU

m(T, P) = mU(T, P) = 82 (GPa) + 1.8 × P(GPa) −
0.0136 (GPa/K) × T(K) [Isaak, 1992]. The explicit form of
Xn(tn) is obtained from curve fitting to the master curve
which yields

Xn �nð Þ ¼
0:32� �

0:39�0:28= 1þ2:6��0:1nð Þ
n

1853� �0:5n

�n � 10�11

�n < 10�11

8><
>: ð25Þ

and is shown in Figure 14 as “fit1.” (Because QE
−1 ≅ ∣Qm

−1 in
this study, Xn obtained for E is comparable to Xn obtained for
m.) In the seismic range (shaded region), this curve agrees
quite well with the value of Xn

m(∼2p−1QS
−1) expected from

seismological QS ( = 80 in PREM; thick straight line)
[Dziewonski and Anderson, 1981].
[45] For the ease of the reader, we provide a normalized J1

curve that can be used to directly formulate VS. The curve of
J1/JU versus fn calculated from Xn of “fit1” can be closely fit
to a sixth‐degree polynomial of ln fn:

JU T ;Pð Þ
J1 f ; d; T ;Pð Þ ¼

Xk¼6

k¼0

ak ln fnð Þk

1

fn � 1013

fn > 1013

8><
>: ð26Þ

with a0 = 0.55097, a1 = 0.054332, a2 = −0.0023615, a3 =
−5.7175 × 10−5, a4 = 9.9473 × 10−6, a5 = −3.4761 × 10−7,
and a6 = 3.9461 × 10−9. This polynomial has perfect
agreement with the original curve shown in Figure 15.
Therefore, when f, d, T, and P are given, by substituting fn
calculated from equations (19) and (22) into equation (26),
and also by using a known value of JU(T,P), J1 (and
therefore VS) can be estimated easily. Also, by calculating
J2 from equations (18) and (25), QS

−1 can be estimated.
Finally, by substituting QS

−1 into equation (20), partial
derivatives can be estimated as well. Now, we have pro-
vided all information required to predict VS and QS

−1 as
functions of f, d, T, and P. Before applying these predictions
to the mantle, we compare the formulae with those of Faul
and Jackson [2005], and also to our experimental data.
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[46] In Faul and Jackson [2005], the grain size exponent
of tr is nearly one (1.09) and is different from that of tM. As
a consequence, when scaled by tM, the Xn proposed by Faul
and Jackson [2005] is no longer a unique function of nor-
malized time scale, but explicitly depends on grain size.
Figure 14 demonstrates that relaxation strength Xn at the
seismic range (shaded range) is considerably smaller in this
study than it is in Faul and Jackson [2005] for d = 1 mm,
whereas both are very close under the experimental condi-
tion (d = 10 mm). In other words, in this study the difference
between laboratory attenuation and seismic wave attenua-
tion comes from the difference in viscosity by about 106,
whereas in Faul and Jackson [2005] it comes from the dif-
ference in grain size by about 102×1.09. Whilea (equation (21))
depends on tn in our study, a is a constant (0.27) in Faul and
Jackson [2005]. In summary, the largest difference between
the two studies is in tr and a.
[47] In order to compare the proposed extrapolation of Xn

to our own experimental data, we substitute equation (25)
into equation (18) to calculate predicted J1/JU and J2/JU as
functions of fn (Figure 15; solid lines), which we compare to
our experimental data for d = 8 mm (Figure 15; symbols).
Since J1 represents the integration of Xn(tn) from tn = 0, it
contains short time scale information of Xn(tn) that is out-
side the experimental range. Figure 15 shows that although
predicted and measured J2/JU agree well, predicted J1/JU is
systematically larger than measured J1/JU. If we reverse our
methodology and instead look for an extrapolation of Xn that
has good agreement to the measured J1/JU, such a spectrum
is shown in Figure 14 as “fit2.” The only difference between
fit1 and fit2 is the time scale at which the relaxation spec-
trum transitions to tn

0.5, which we call the “short‐time‐scale
cut‐off.” In fit1, the cut‐off occurs at tn = 10−11, while in

fit2 it is at tn = 5 × 10−6. Justification for cut‐off times
comes from a separate study, in which a theoretical model to
describe the physics of diffusionally accommodated grain
boundary sliding was developed [Takei and McCarthy,
2010]. In that model, GBS is obstructed by grain edges
and atomic‐scale steps along grain boundaries such that the
cut‐off time scale is determined by the size of each grain
boundary step. The cut‐offs in the mantle (fit1) and in the

Figure 15. Plot of normalized frequency versus normalized
J1 and J2 that were calculated using equation (18) and Xn(tn)
given by fit1 and fit2 in Figure 14. Symbols show our data
(d = 8 mm).

Figure 14. Normalized relaxation spectrum Xn obtained from our data is extrapolated toward shorter
time scales by curve fitting. Fit1 corresponds to the large grain size in the mantle and fit2 corresponds
to the fine grain size in the experiment (see text for more detail). Fit1 predicts a relaxation consistent
to that of seismic observations, labeled PREM. For comparison, Xn by Faul and Jackson [2005] is
shown (dashed lines). In this study, Xn is a unique function of the time scale normalized by the Maxwell
relaxation time tM. In the work of Faul and Jackson [2005], Xn has a different reference time scale than
tM and explicitly depends on grain size in this plot by t/tM.
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experimental sample (fit2) are consistent with the prelimi-
nary result of this model that the cut‐off time scale is about
100 Hz for a step size of about 10 nm. That fit2 has a
considerably narrower band width than fit1 is a consequence
of the fine grain size of experimental samples being closer to
the step size (10 nm).
[48] Figure 16 shows the temperature dependences of VS

and QS
−1 for f = 0.01 Hz, d = 1 mm and P = 1.5 GPa pre-

dicted by this study (Figure 16, middle) and Faul and
Jackson [2005] (Figure 16, bottom). Because this study
predicts smaller Xn (Figure 14), the predicted QS

−1 and
anelastic effect on VS are significantly smaller than those of
Faul and Jackson [2005]. Compared to the seismologically
observed VS (Figure 16, top) [Priestley and McKenzie,
2006], the predicted temperature dependence of VS is
slightly larger even at T < 900°C, where the slope is
determined by the anharmonic effect alone. However, the
steepening of the slope at about 1050°C observed in the
seismological data can be explained fairly well by the devi-
ation from the anharmonic effect due to the anelastic effect
predicted by this study. As demonstrated in Figure 16, the
results of Faul and Jackson [2005] have an “extra anelastic
effect” which does not exist in our results. Unlike our data,
modulus data of Jackson et al. [2002] were found to have a
temperature dependence that could not be reconciled with

simple anharmonic temperature sensitivity; with normaliza-
tion their modulus data do not collapse onto a single master
curve. Thus, their model incorporates an adjustment term.
Such a finding implies that similitude for anelasticity breaks
down at higher frequencies than 1 Hz in their study. Recently,
however, Jackson and Faul [2010] showed that new data
collected after an improvement was made to their experi-
mental system could be analyzed without this extra effect.
Therefore, we can state that so far no experimental data have
clearly indicated a break down of similitude. Even without
any experimental data, however, similitude for anelasticity
has long been assumed in seismology [e.g., Anderson and
Given, 1982]. With similitude, as shown by equation (20),
only anharmonic and anelastic effects exist, both of which can
be evaluated accurately from experimentally measured
unrelaxed modulus and seismologically measured Q−1,
respectively [e.g., Karato, 1993].

5. Future Directions

[49] The results from this study demonstrate the universal
behavior of polycrystalline materials in response to a peri-
odic load in which the offset stress and periodic stress
amplitude were small enough that the sample behaved lin-
early in both viscosity and anelasticity. By keeping stresses
small we ensured a minimal amount of dislocations were
created during the experiment and thus the observed
response was due primarily to the diffusionally accommo-
dated grain boundary sliding mechanism discussed herein.
Not included in our experiment, or in our discussion, is
relaxation due to dislocations, the contribution from which
is considered to be in addition to the relaxation at grain
boundaries. Characterization of that mechanism remains for
future studies.
[50] The role of partial melt in dissipation and dispersion

was also omitted from this study but represents a goal of our
ongoing research. Experiments have already commenced in
which we take advantage of eutectic phase relationships in
the binary system borneol‐diphenylamine [Takei, 2000] to
obtain partial melt at temperatures as low as 43°C.

6. Conclusions

[51] Using a custom fabricated forced oscillation appara-
tus, linear anelasticity of an organic analogue material at
high homologous temperature (T/Tm = 0.61–0.67) was
measured accurately over a wide frequency range (2.15–
10−4 Hz). Systematic effects of temperature and grain size
on anelasticity were investigated, together with these effects
on the steady state viscosity. At least for fine grain samples
(d < 7mm), the creep mechanism could be identified as
grain‐boundary diffusion creep (m = 3). Using the directly
measured viscosity, the Maxwell frequency was calculated
as a function of temperature and grain size. Once frequency
is normalized by the Maxwell frequency, modulus disper-
sion curves and attenuation spectra for various grain sizes
and temperatures collapse onto a single master curve
(similitude). With this simple scaling, attenuation spectra of
olivine‐dominated aggregates collapse onto the same master
curve, showing a universality of anelasticity for polycrys-
talline materials. A new method to estimate the detailed
shape of the relaxation spectrum X(t) directly from modulus

Figure 16. Schematic demonstrating the differences in
temperature dependences of shear wave velocity and seismic
attenuation between this study and Faul and Jackson
[2005]. The temperature sensitivities of both VS and QS

−1

in the latter study are significantly greater than in our study.
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and attenuation data was proposed by assuming smoothness
of X(t), whereas previous data analyses using Burgers model
and Andrade model assume X ∼ ta with constant a. Our
results show that a is not constant, but instead gradually
decreases with decreasing time scale t. The efficacy of the
Maxwell frequency scaling, a continuous and peakless shape
of the attenuation spectrum, and the large modulus reduction
suggest that the dominant mechanism for the measured
anelasticity is diffusionally accommodated grain boundary
sliding. We generalize the obtained similitude and extrapo-
late the experimental data to mantle conditions. This Max-
well frequency scaling predicts a considerably smaller
anelastic effect on seismic waves than in previous studies.

Appendix A: Reproducibility of Findings

[52] In Figures 7 and 9 we show results from grain size
and temperature tests, respectively, on a single polycrys-
talline sample (15 in Table 1). In order to test the veracity of
these results, we repeated experiments at various grain sizes
and temperatures for two additional samples (16 and 17).
Here, we provide Figure A1 to demonstrate the reproduc-
ibility of the grain size results. The anealasticity of sample
16 was measured at two grain sizes (4.5 and 6.2 mm) and at
approximately constant temperature (23–23.5°C). Normali-
zation by the Maxwell frequency resulted in good conver-
gence of modulus data (very little scatter or porosity effects)
and a near perfect collapse of attenuation data.
[53] In Figure A2, the reproducibility of temperature

results is evidenced by the anelasticity data of sample 17 at

various temperatures in the range 22.5–47.7°C (T/Tm =
0.61–0.67) and at nearly constant grain size (21.4 mm). As
in Figure 9, the normalized modulus and attenuation data
from temperature tests collapse onto single master curves.

Appendix B: Relationship Between Elastic Wave
Properties and Material Properties

[54] In order to relate shear wave velocity VS and shear
wave attenuation QS

−1, we solve for the propagation of a
plane wave in a linear solid. For simplicity, we consider a
shear wave propagating in the x direction being polarized in
the y direction. Then, the equation of the wave is given by


€uy ¼ �
@2uy
@x2

ðB1Þ

where m represents the shear modulus and r represents the
density. By considering a wave with angular frequency w
and wave number k, uy can be written as

uy ¼ u0y exp �i !t � kxð Þð Þ: ðB2Þ

Expressing m as 1/J*(w) in the frequency domain, we obtain

!

k

� �2
¼ 
J* !ð Þ: ðB3Þ

Figure A1. (a) Anelasticity data showing grain‐size sensitivity of Young’s modulus and attenuation for
sample 16 under approximately constant temperature T = 23–23.5°C. The sample has been annealed
(listed in Table 1) to achieve the grain sizes listed. (b) Same data from Figure A1a, as functions of
frequency normalized to the Maxwell frequency.
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Solving equation (B3), we obtain

uy ¼ u0y exp �!xJ2



2ðJ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 21 þ J 22

p
Þ

 !1
2

2
4

3
5

� exp �i! t � 

1
2

J1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 21 þ J 22

p
2

 !1
2

x

0
@

1
A

2
4

3
5: ðB4Þ

[55] Phase velocity VS and quality factor QS of waves are
defined as [e.g., Aki and Richards, 1980]

uy ¼ u0y exp � !x

2VQS

� �
exp �i! t � x

V

� �h i
: ðB5Þ

By comparing equations (B4) and (B5), VS and QS
−1 are

given by

VS ¼ 
J1ð Þ�1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J2=J1ð Þ2

q
2

0
@

1
A

�1
2

Q�1
S ¼ J2

J1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J2=J1ð Þ2

q
2

0
@

1
A

�1

8>>>>>>>><
>>>>>>>>:

: ðB6Þ

[56] Therefore, when QS
−1 � 1 (or J2/J1 � 1), we obtain

equation (24). Note that when QS
−1 is not small, QS

−1 ≠ Qm
−1.
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