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Summary

We present a new method for determining anisotropic earth models using

observations of split shear waves (such as SKS).  The method consists of first

constructing two timeseries, x(t) and y(t), that contain information about both the

observed seismograms and a hypothetical earth model, and then varying the earth

model so as to minimize the misfit, e(t)=x(t)−y(t).  The timeseries are defined by the

rules, x(t)=hpre(m,t)*V obs(t) and y(t)=vpre(m,t)*Hobs(t), where Vobs(t) and Hobs(t) are

the observed radial−horizontal and tangential−horizontal component seismograms,

respectively, vpre(m,t) and hpre(m,t) are the radial−horizontal and tangential−horizontal

impulse responses, respectively, predicted by some earth model, m, and * denotes

convolution.  The best−fitting earth model is the one that minimizes ||e(t)||2 with

respect to m, where ||.|| is an amplitude−normalized L2 norm.  This definition of misfit

is insensitive to the source wavelet, and thus eliminates that unknown quantity from

the problem.  We show that this method yields estimates of one−layer splitting

parameters that are very similar to those achieved through traditional means, but that

unlike those traditional methods it can be applied to more complicated models (e.g.

multi−layer anisotropy) without recourse to approximate “apparent splitting”

parameters.  We apply the method to synthetic SKS pulses generated for two−layer
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anisotropic earth models, and show that it can successfully recover information about

both layers.  We then apply the method to SKS and PKS data from PFO (Piñon Flat,

California) on the San Andreas fault.  This station has been studied previously by
�

zalaybey and Savage (1995), Liu et al. (1995) and Polet and Kanamori (2002), who

provide two−layer solutions based on modeling of the azimuthal variation of apparent

splitting parameters.  Our results are broadly consistent with theirs, but provide

additional information about the statistical significance of the two−layer solution.  By

this measure, neither solution is significantly better than a one−layer solution,

although all fit the waveform data better than the best−fitting one layer solution. This

result is consistent with the interpretations of  
�

zalaybey and Savage (1995) and Liu

et al. (1995), who provide similar assessments of the their two−layer solutions.  The

fact that neither our one−layer nor two−layer solutions does very well at reducing the

overall misfit strongly suggests that some process other than two−layer anisotropy is

affecting SKS and PKS waveforms at PFO.

Introduction

TheEarthis anisotropicto seismicwavepropagationon a broadrangeof scales,from

the scale of the whole earth (as measured,say, by normal mode oscillations)

(Anderson & Dziewonski, 1982) to the scale of rock handsamples(due to

petrofabrics)(Ben Ismail andMainprice,1998).In theshallowcrust,anisotropymay

reflect systems of fluid−filled cracks and sedimentary layers with alternating

velocities(BabuškaandCara,1991).At depthswherecracksclosedueto lithostatic

pressure,anisotropyis likely due to interlayeringof rocks with different properties,
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e.g.causedby intrusionof dikes(Holliger andLevander,1994)aswell asto intrinsic

anisotropyof foliated metamorphicrockssuchasmetapelites(Burlini andFountain,

1998).Systematicorientationof olivine crystalsby deformation(ZhangandKarato,

1995) is a dominantcauseof anisotropyin the uppermantle.Anisotropywithin and

below the transition zone, and at the core−mantle boundaryhave been proposed

(Montagner, 1998; Kendall and Silver, 1998), although mechanismsremain

enigmatic.Finally, the inner core of the planet is anisotropic,most likely due to

systematic arrangement of constituent iron crystals (Creager, 2000).

Upper−mantle seismic anisotropy is thought mainly to be causedby systematic

alignmentof olivine crystals(“lattice preferredorientation”,LPO) andis thusrelated

to mantledeformationprocesses.It is of particularinterestdueto its likely connection

with pastand presentgeodynamicprocesses(Vinnik et al, 1992;Silver, 1996; Park

and Levin, 2002). The shear−wave splitting techniquestandsout amongmethods

designedto detectupper−mantleanisotropybecauseof easeof useand potentially

powerful interpretations(Savage,1999). Thetechniqueis baseduponthebehaviorof

a shear wave, which splits into two componentsas it propagatesthrough an

anisotropicmedium.Onecomponentis polarizedin the planeof the “fast” direction

of the anisotropicmaterial,andpropagateswith a relatively fast velocity. The other

componentis polarizedin the orthogonalplane(the”slow” direction),andpropagates

with a relatively slow velocity. A common method of quantifying the effect of

anisotropyon ashearwaveis to determineits two “splitting parameters”,φ andτ. The

parameterφ denotesthe azimuth of the polarization of the “fast” shearwave. In

olivine−dominatedmantle rocks the fast direction is the preferredorientation of
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alignment for the “a” axes of olivine crystals (Christensen, 1984; Ben Ismail and

Mainprice, 1998). The orientation of this crystalographic axis reflects, to the first

order, the direction of solid flow in the material (Zhang and Karato, 1995; Kaminsky

and Ribe, 2001). The parameter, τ, is the time delay between the “fast” and the “slow”

components. The value of τ serves as a rough measure of the thickness for the

anisotropic region sampled by a subvertical raypath. Assuming an average anisotropy

of 4% (Silver, 1996), a τ of 1s roughly corresponds to a 100 km thick anisotropic

layer.

Core−refracted teleseismic shear waves (SKS, SKKS, PKS and similar phases) are

especially useful since they are affected by anisotropy only on the “receiver−side” of

their path. Their passage across the core−mantle boundary removes "source−side"

splitting. Furthermore, they have a known initial polarization. At the start of their

ascent from the core−mantle boundary these phases are purely radially−polarized,

with particle motion in the vertical plane of the source and receiver. Finally, they

ascend almost vertically through the mantle, and thus sample upper−mantle

anisotropy at near−normal incidence, which is simpler to interpret than a shallow

angle.

The splitting parameter method was initially developed for application to long−period

seismic data (Vinnik et al, 1984; Silver and Chan, 1988), and makes 2 significant

assumptions about the mechanism of anisotropy: 1) that only one anisotropic

symmetry system is present along the path; and 2) that two of the 3 symmetry axes

4



are in the horizontal plane. The first assumption is due to the fact that a splitting

parameter is only well defined when the one symmetry is present. The second

assumption is needed to justify the averaging of a set of splitting parameters,

determined for different angles of incidence and backazimuths, into a single splitting

determination. It can be relaxed if the individual measurements are used as input to an

inversion for a best-fitting anisotropic tensor (Savage 1999). The method is relatively

insensitive to the type of symmetry (e.g. hexagonal or orthorhombic). A direct

outcome of the above assumptions is the uniformity of shear−wave splitting

parameters, φ and τ , expected for observations from any direction (say, as quantified

by the backazimuth to the source), as long as all shear waves have near−normal

incidence. This expectation is sometimes not born out by actual observations when a

broad range of directions is sampled. Instead, significant variation of observed shear−

wave splitting parameters with direction is observed (e.g., Silver and Savage, 1994;
�

zalaybey and Savage, 1995; Levin et al, 1999; Hartog and Schwartz, 2000). 

Violation of either of the initial assumptions about the structure of anisotropy along

the path leads to the expectation that the fast axis, θ, and delay, τ, vary with

backazimuth, φ. (Rumpker and Silver, 1998; Levin et al., 1999; Saltzer et al, 2000;

Hartog and Schwartz, 2000). Figure 1 demonstrates how parameters of shear−wave

birefringence measured in the expectation of a single symmetry axis depend on the

direction of the incoming wave if two different anisotropic systems are sampled

instead. Except for special case of wave propagation exactly along the symmetry axis

of one of the layers in the medium, each pair of (θ, τ) values reflects contribution
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from both. It is thereforeinaccurateto relateindividual measurementsdirectly to the

anisotropicstructurealong the path.Rather,these(θ, τ) pairsmay be thoughtof as

“apparent”splitting parameters,with the implication that they must be examinedin

the context of their directional behaviour (e.g., Saltzer et al., 2000).

Commonly, strategies for resolving depth-dependent and/or non-horizontal

anisotropic structure from shear-wave splitting observations utilize systematics in the

variation of apparent splitting parameters with backazimuth to infer anisotropic

properties. Analytic expressions describing direction systematics may be derived for

layered structures with hexagonal symmetry of anisotropy and horizontal axes (Silver

and Savage, 1994; Rümpker and Silver, 1998; Saltzer et al., 2000). Alternatively,

synthetic seismogram computations may be performed in a set of trial models, with

subsequent visual evaluation of resulting waveforms and estimation of shear wave

splitting parameters (e.g., Levin et al., 1999, Hartog and Schwartz, 2001). Another

approach, by Ozalaybey and Savage (1994), was to find an analytic splitting operator

that would “remove” the effects of two anisotorpic layers from observed waveforms.

Like its parent technique, the splitting operator method of Silver and Chan (1991),

this approach has the mechanism of waveform perturbation built in.

This paper developsa more generalmethodologythat is not basedon apparent

splitting parameters,and does not contain prior assumptionsabout the process

affecting the waveformsWe show that it is possibleto interrogatewaveformsof

individual shearwavesfor evidenceof complexanisotropybeingpresentalongtheir

path.Our approachhereis to developa dataanalysismethodthat assesseswhether

seismic waveforms are consistent with a particular one−layer or multi−layer
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anisotropicearthmodel.We aremotivatedby what we seeas a flaw in approaches

that rely uponmeasurementsof apparentsplitting parameters.Thesemethodsforcea

fit to a simpleone−layer modelthat might very well be poor,andwhich in any case

may be insensitiveto importantfeaturesin datathat don't fit a one−layer model. In

movingawayfrom apparentsplitting measurements,we mustsetasideaninsight that

was important in the early developmentof the field, namelythat anisotropycan be

recognizedby thepresenceof two waveformsof the sameshape,with perpendicular

polarizationand onedelayedwith respectto the other. Instead,we must recognize

that whencomplicatedanisotropyis present,the wavefield is itself complicatedand

no simplesetof parameterscanadequatelydescribethatcomplication.Our approach

thenis to applya standardwaveform−matchingprocedure,to first assesswhetherthe

predictionsof a given anisotropicearthmodel is consistentwith a givenshear−wave

splitting dataset,and second,to usethat assessmentas part of a systematicmodel−

fitting exercise that determines a best−fit anisotropic model.

The general idea of minimizing an error associatedwith mismatchedseismic

waveformsis inherent in most splitting-parameterestimationtechniques,such as

Silver andChan's(1991).What is new hereis our way of defining that error so that

themethodcanbegeneralizedto multilayeredmedia.Of course,if we werewilling to

computecompletesyntheticseismogramsthat could be comparedwith the data,we

could use existing waveform inversion methods(e.g. Mellman 1980) to invert for

anisotropy.However, the calculationof completesynthetic seismogramsis time−

consuming and requires information about the earthquake,such as its focal

mechanismand sourcetime function, that are often unknown. The method we
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describe here does not require source information.

Methodology

Suppose that a seismic station detects several teleseismic phases, such as SKS, from a

variety of sources with different angles of incidence and azimuths.  Let the radial−

horizontal and tangential−horizontal seismograms be denoted, Viobs(t), and, Hiobs(t),

respectively.  Here the subscript, i, indexes the N phases.  We assume that these

seismograms have been windowed to isolate the phase of interest.  We can represent

each seismogram as the convolution of a “source” wavelet, si(t), with the radial and

tangential impulse response functions, vi(t) and hi(t). These response functions

quantify the effect of near−receiver structure on the phase:

Viobs(t) = sitrue(t) * vitrue(t) (Eqn. 1)
Hiobs(t) = sitrue(t) * hitrue(t) (Eqn. 2)

We use the superscript “true” to indicate that in the absence of noise the observed

seismograms are related to the actual source wavelet and impulse responses.  The

term, s(t), is a “source” wavelet in the sense that it characterizes the waveform of the

phase before it interacts with the near−receiver structure.  It describes both the effects

of the earthquake source itself and subsequent modification by structure far from the

receiver.  An important aspect of these equations is that the same source wavelet

appears in both equations.

Suppose that we have a model, m, for the near−receiver earth structure.  Here the

vector, m, denotes whatever parameters might be needed to define that model.  For
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example, in the simple case of one−layer anisotropy, m=[τ,θ]T, would represent the

splitting delay, τ, and azimuth, θ, of the fast anisotropic axis.  In more complicated

cases it might include additional parameters that describe additional anisotropic

layers, crustal thickness, interface dip, etc.  We assume that a method of predicting the

impulse responses vipre(m,t) and hipre(m,t) of the earth model, m, is available.  Then

the predicted seismograms are:

Vipre(t) = sitrue(t) * vipre(m,t) (Eqn. 3)
Hipre(t) = sitrue(t) * hipre(m,t) (Eqn. 4)

Here the superscript, “pre”, stands for “predicted”.  We would now like to select a

model, m, that best matches the predicted seismograms to the observed ones.  The

presence of the source wavelet term in these equations is an impediment to this goal,

since it is, in general, unknown.

We pursue the following strategy for removing the source wavelet from these

equations:  Convolve Eqn. 1 by hipre(m,t) and Eqn. 2 by vipre(m,t):

hipre(m,t) * Viobs(t) = sitrue(t) * vitrue(t) * hipre(m,t) (Eqn. 5)
vipre(m,t)* Hiobs(t) = sitrue(t) * hitrue(t) * vipre(m,t) (Eqn. 6)

If the model, m, is a good one, we ought to have vipre(m,t) � vitrue(t) and hipre(m,

t) � hitrue(t). The right hand sides of Eqns. 5 and 6 are then approximately equal. By

equating the left hand sides we find that:

hipre(m,t) * Viobs(t) �   vipre(m,t) * Hiobs(t) (Eqn. 7)

Least−squares minimization of the error in Eqn. 7 can now be used to find an estimate

of the model:
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find the mest that minimizes
E(m) = (1/N) Σi=1N || hipre(m,t) * Viobs(t) − vipre(m,t) * Hiobs(t) ||2

with respect to m (Eqn. 8)

Here the superscript “est” denotes “estimated” and ||.||2 denotes some measure of the

difference between the two timeseries.  One possible choice is:

||xi(t)−yi(t)||2 = 
�
[xi(t)−yi(t)]2 dt / [

�
xi2(t)dt+

�
yi2(t)dt] (Eqn. 9)

Here xi(t)=hipre(m,t)*Viobs(t) and yi(t)=vipre(m,t)*Hiobs(t). Eqn. 9 is based on the

commonly−used L2 norm, and has been normalized so that the terms in Eqn. 8 are of

similar size (i.e. all phases are treated equally, regardless of the overall amplitude of

the seismograms). The misfit, E(m), is zero if all the seismograms are exactly

matched and is of order unity if all the fits are poor.

The special case of an isotropic material needs discussion. In the absence of noise,

both the observed tangential−component seismograms, Hiobs(t), and the timeseries,

yi(t), are exactly zero. The best fitting model is obtained by minimizing  Σi=1N  ||xi(t)||,

which is to say by choosing the model, m, such that hipre(m,t)=0 for all i. This

procedure correctly selects the isotropic model.  However, when noise is present, it

will tend to select an anisotropic model that 'fits the noise'.  This case can be

recognized by testing the statistical significance of the error reduction.  Alternatively,

one could use a different coordinate system (i.e., north and east instead of radial and

tangential) that doesn't suffer from this problem.

We will refer to this procedure for determining near−receiver structure from seismic
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waveforms as the “cross−convolution method”.  It has a close relationship to

procedures commonly used to interpret  “receiver functions” (Phinney 1964, Burdick

and Langston 1977), which are used to recover crustal and upper mantle layering.

The receiver function method typically uses vertical and radial−horizontal component

seismograms of a P wave and its reverberations, not the radial and tangential

components of SKS that are used here to infer anisotropy.  This difference can be

accommodated by re−identifying v(t) and V(t) with the vertical component, and h(t)

and H(t) with the radial−horizontal component. Then the receiver function method

begins by solving Eqns. 1 and 2 for the source wavelet:

sitrue(t) = Viobs(t) * vi−1true(t) = Hiobs(t)  * hi−1true(t) (Eqn. 10)

Here v−1iobs(t) and h−1iobs(t) are the inverse functions to Viobs(t) and Hiobs(t),

respectively, in the sense that v−1iobs(t)*viobs(t)=h−1iobs(t)*hiobs(t)=δ(t), where δ(t) is the

Dirac delta function). The equality in Eqn. 10 is then rearranged to yield:

 hitrue(t) * v−1itrue(t) = Hiobs(t) * V−1iobs(t)  = Ri(t) (Eqn. 11)

The observed receiver function, Riobs(t), can be constructed by deconvolving one of

the observed seismogram components from the other: Riobs(t)=Hiobs(t)*V−1
iobs(t). It

can be compared with a receiver function, Ripre(m,t)=hipre(m,t)*v−1ipre(m,t), predicted

from some earth model, m.  Once again, least−squares can be used to select a best−

fitting model:

find the mest that minimizes
E(m) = Σi=1N || Riobs(t) �  Ripre(m,t) ||2

with respect to m (Eqn. 12)
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The cross−convolution method that we develop here and apply to

estimating anisotropy from split shear waves can equally well be applied to

determining isotropic layering from P wave coda, and is thus an alternative to

traditional receiver function analysis. A major advantage of this cross−convolution

method over the receiver function method is that no deconvolution need be

performed. Deconvolution is undesirable because it suffers from instability when the

timeseries are band−limited. Furthermore, it avoids the embarrassing problem that not

every conceivable layered earth model has a well−defined receiver function (i.e., the

receiver function is singular if the spectrum of vi(t) has a zero).

Application to One and Two Layer Anisotropy

Suppose that a radially−polarized phase, such as SKS, traverses a single anisotropic

layer located beneath the source.  Furthermore, suppose that the anisotropy is

“azimuthal”, in the sense that the fast axis is horizontal, with an azimuth, θ. Then the

impulse response of the layer to a normally−incident shear wave from below is

approximately:

vipre(m,t) =  a1  δ(t) +  a2  δ(t−τ)
hipre(m,t) =  b1 δ(t) + b2  δ(t−τ)

a1 = cos2(θ−φ)
a2 = sin2 (θ−φ)
b1 = −b2 = cos(θ−φ) sin(θ−φ)

(Eqn. 13)

Here we have defined the radial−horizontal direction to point back towards the source
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and the tangential−horizontal direction to be 90° counterclockwise from the radial−

horizontal direction, and the azimuth of the radial direction (i.e., the backazimuth of

the source) to be φ. The fast shear wave arrives at the station at time, t=0, and the slow

shear wave is delayed by a splitting time, τ.  This model has two parameters, m=[τ,θ]T

. Note that the application of this formula to actual SKS phases is only approximate,

since their propagation path is not exactly vertical.  While this problem could be

corrected by using a more complicated formula than Eqn. 13, the approximation will

later be shown to be sufficiently accurate for the analysis given here.

If the station were underlain by two anisotropic layers, then the impulse response
would be:

vipre(m,t) =  a1 δ(t) +  a2  δ(t−τ2) +  a3  δ(t−τ1) +  a4  δ(t−τ1−τ2)
hipre(m,t) =  b1 δ(t) +  b2  δ(t−τ2) +  b3  δ(t−τ1) +  b4  δ(t−τ1−τ2)

a1 = cos2(θ−φ) cos2 (� −φ) + cos(θ−φ) sin(θ−φ) cos(� −φ) sin(� −φ)
a2 = cos2 (θ−φ)  sin2 (� −φ)  − cos(θ−φ) sin(θ−φ) cos(� −φ) sin(� −φ)
a3 = sin2 (θ−φ)  cos2 (� −φ)  − cos(θ−φ) sin(θ−φ) cos(� −φ) sin(� −φ)
a4 = sin2 (θ−φ)  sin2 (� −φ)  + cos(θ−φ) sin(θ−φ) cos(� −φ) sin(� −φ)

b1 = cos2(θ−φ) cos (� −φ) sin(� −φ) + cos(θ−φ) sin(θ−φ) sin2(� −φ)
b2 = −cos2 (θ−φ)  cos(� −φ) sin(� −φ)  + cos(θ−φ) sin(θ−φ) cos2(�  −φ)
b3 = sin2 (θ−φ)  cos(� −φ) sin(� −φ)  − cos(θ−φ) sin(θ−φ) sin2(� −φ)
b4 = −sin2 (θ−φ)  cos(� −φ) sin(� −φ)  − cos(θ−φ) sin(θ−φ) cos2(�  −φ)

(Eqn. 14)

The model has four parameters, m=[τ1,θ, τ2, � ]T , with the bottom layer having

splitting delay time, τ1, and a fast axis with azimuth, θ, and the top layer having

splitting delay time, τ2, and fast axis with azimuth, � . As before, this model assumes

normal incidence.
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We use an exhaustive grid search to solve both the one−layer and two−layer

problems. This approach is computationally intensive, but avoids the problems

associated with linearized inversions (e.g. mistaking local minima in E(m) for the

global minimum). We use a five−degree sampling interval on the interval 0−180° for

angles and 0.1s for splitting delay on the interval 0−5s, so that about E(m) need be

evaluated about 36×50=1800 times for 1−layer models and about (36×50)2 ≈ 3×106 for

2−layer models.  The one−layer problem (2 model parameters) can be solved

relatively rapidly (i.e. a few CPU−minutes on a fast workstation).  The two−layer

problem (4 model parameters) takes much longer (about a CPU−day).  We note that

the grid−search algorithm is highly parallelizable, so these computation times could

be very significantly reduced on a computer with multiple processors.

More complicated models are, of course, plausible.  One could allow a more

complicated form of anisotropy, say with a dipping fast axis, in which case the dip

would be a model parameter. And one could include a horizontal or dipping surface

layer that modeled crustal reverberations.  A linearized inversion would probably be

necessary to solve such problems, given the larger number of model parameters.

Note that both the one−layer and two−layer impulse response functions (Eqns. 13 and

14) have the same form. They both consists of a small number (say, L) of spikes, with

the spikes occurring at the same times on both the radial and tangential components:

vipre(m,t) =  Σj=1L aj  δ(t−Tj)
hipre(m,t) =  Σj=1L bj  δ(t−Tj) (Eqn. 15)
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Here aj and bj are the amplitudes of the spikes and Tj is their time of occurrence. Note

T1 can be taken to be zero, and L is twice the number of layers. Instead of viewing the

coefficients, aj(m) and bj(m) as functions of the model, m (as we do above), we could

instead consider them as model parameters and solve for them (along with the times,

Tj) directly.  This approach places fewer preconceptions on the form of impulse

response functions, and provides a way of examining whether, for example, the best−

fitting coefficients really vary with backazimuth, φ, in the way predicted by Eqns. 13

or 14.  For instance, in the one−layer case we could test whether:

−b2/b1=1
and
b1/(a12+a22)1/2=cos(θ−φ)sin(θ−φ) (Eqn. 16)

as predicted by Eqn. 13.

The least−squares estimation problem for (aj, bj, Tj) in Eqn. 15 has 3L−1  unknowns

(i.e. 5 for the 1−layer case and 11 in the 2−layer case), larger than for the Eqs. 13 and

14 (2 for the 1−layer case and 4 for the 2−layer case).  However, the larger number of

unknowns is offset by an underlying simplicity of the structure of the problem: For

any given set of pulse times, Tj, the problem of finding the best−fitting coefficients, aj

and bj, is completely linear, and only requires solving a small (2L×2L) matrix

equation for the aj and bj (Menke, 1989, Section 12.2).  (Actually, the constraint Σj=1L

aj=1 must also be included, since Eqn. 11 places no requirements on the absolute

amplitude of the impulse response). The problem can be solved by a grid search over

the (L−1) pulse times, Tj, alone.  Our experience is that solutions up to about L=5 are

practical.
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Test on Synthetic Data

We construct two simple earth models, one with a single anisotropic layer in the

upper mantle, and the other with 2 such layers.  Each model has a 30 km thick

isotropic crust, with a shear velocity of 3.76. km/s, overlaying an anisotropic mantle.

The 1−layer model has a mantle consisting of a  single anisotropic layer of 8%

anisotropic peridotite, with a thickness of 100 km, a mean compressional velocity of

4.56 km/s, a fast axis azimuth of φ=112° and a splitting delay of 2.2s.  The two−layer

model has two anisotropic mantle layers of equal 100 km thickness, but with a lower

layer with an azimuth of φ1=68° and an upper layer with an azimuth of φ2=112°.

We then computed synthetic seismograms for a receiver on the free surface of each

model from SKS waves from a suite of backazimuths at 5° increments, all with a

horizontal phase velocity of 20 km/s.  We used the SPLITTING MODELER software

(Menke 2000) to calculate the exact impulse response (i.e., including free surface

effects and internal multiples), and then convolved them with a long−period (5s)

source wavelet. Sample seismograms are shown in Figs. 2A and 3A.  We then

estimated the anisotropic model parameters from these seismograms.

The one−layer estimator (i.e. based on Eqn. 13) performs well, both when applied to

individual seismograms (i.e. N=1 in Eqn. 8) or to the whole suite of backazimuths

(i.e. N=37) (Fig. 4).  The solutions account for about 99% of the error, with the

residual 1% being mainly due to the unmodelled crustal reverberation (Fig 2B). The

estimated fast axis azimuth agrees with the true value to within a degree.  The
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estimated delay time time also agrees with the true delay time, but shows some

systematic scatter of about ±0.4s.  This scatter correlates well with the shape of the

minimum in the whole−suite error, E(m) (Fig. 5).  The accuracy of these results

justify the use of the approximate impulse response of Eqn. 13, which omits crustal

reverberations and which assumes normal incidence.

The two−layer estimator (i.e. based on Eqn. 14) also performs well, both when

applied to individual seismograms (i.e. N=1) and to the whole suite (i.e. N=37) (Fig.

6).  The solutions account for about 99% of the error, with the residual 1% again

being due to the unmodelled crustal reverberations (Fig 3C). The estimated azimuths

of the fast axes agree with the true values to within a degree.  The estimated delay

time also agrees with the true delay times, again with systematic scatter of about

±0.4s.  The error surface is shown in Fig. 7.

When the one−layer estimator is applied to the two−layer data, the overall fit is much

poorer, with error reduction only in the 30−60% range (Fig. 3B). The estimated

single−seismogram azimuth fluctuate strongly with backazimuth (Fig. 8).  This

“sawtooth” pattern has been noted previously by other authors ( Silver and Savage,

1994; Rümpker and Silver, 1998; Saltzer et al., 2000) using “apparent spliting

parameter” based methods, and cited as evidence for multiple anisotropic layers.  The

estimates for individual seismograms scatter significantly far from the minimum of

the whole−suite error, E(m) (Fig 9).

Finally, we compute general, two−pulse operators and perform the two tests of Eqn
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16.  The results show that the best−fitting two−pulse response functions have the

properties expected of one−layer anisotropic impulse response functions (Fig. 10).

We thus have further confidence that the contribution of unmodelled processes (e.g.

interface dip) is small.

Nonuniqueness of Two−Layer Estimates

If the data are in fact consistent with a one−layer model, then an interesting non−

uniqueness arises when they are fit with a two layer model.  This effect is associated

with the fact that two layers of equal thickness and “crossed” polarization do not split

normally−incident shear waves, regardless of their initial polarization.  When the slow

axis of one layer is exactly aligned with the fast axis of the other (and vice versa),

then the components of the shear wave in these directions have exactly the same net

traveltime through the layers. No net splitting occurs; all splitting from the first layer

is undone by the second.  Thus if the data are consistent with a single layer solution,

m(1)=[τ, θ]T, then they are also equally consistent with the two−layer solution,

m(2)=[τ+α, θ, α, θ+π/2]T  and also with the different two−layer solution,  m(2)=[α,

θ+π/2, τ+α, θ]T , where α is an arbitrary delay time. In other words, one layer can be

made arbitrarily thicker, if one chooses the polarization of the other layer to “cancel

out” the increase.

Suppose now that the data are consistent with a one−layer model, m(1)=[τ, θ]T , but

that they also contain noise.  It is entirely possible that a two−layer solution that is

close to  m(2)=[τ+α, θ, α, θ+π/2]T  or  m(2)=[α, θ+π/2, τ+α, θ]T  will have smaller
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error than the best−fitting one layer solution. The reduction in error would not be

significant; the two−layer solution has merely fit the noise.  This “nearly one−layer”

two−layer solution can be recognized by having two dissimilar delays and fast axes

that are nearly 90° apart.

This type of nonuniqueness does not arise if the data really are consistent with a two

layer model, as long as the  fast directions are not 90° apart, since the azimuths of

both layers would be constrained by the data and could not be “crossed”.  It would

arise, however, if the two−layer data were fit with a three−layer model.

Application to  Piñon Flat (PFO) Seismic Station

To test the performance of our new method on a real data set, we chose station PFO

(Piñon Flat, California), near the San Andreas fault in southern California, that has

recorded over a decade of broadband digital data. 

Shear wave splitting observations at this station have been reported by Liu et al.

(1995), by  Özalaybey and Savage (1995) and by Polet and Kanamori (2002). Only

Liu et al. (1995), by Özalaybey and Savage (1995) report single−layer solutions.

Their studies found similar single layer solutions for the splitting data, with φ ∼90º

and  τ of 1.2 and 1.45 sec, respectively. While Polet and Kanamori (2002) do not give

a specific one−layer solution, their Figure A2 indicates about 1s of splitting at PFO,

with a more−or−less east−west direction .  It is thus generally compatible with the

other studies. The results of the three studies diverge in estimating 2−layer solutions
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to the data available at the time, and none reported a strong preference for the 2−layer

solution in terms of data fit.

By adding data from five more years of observations (1992−1999) we were able to

assemble a data set with broader coverage, and could use only the larger, clearer

events. Our dataset contains 41 seismograms of SKS and PKS phases (Fig. 11

)observed at PFO for a broad suite of backazimuths (Fig. 11, inset and Table 1).  The

broadband data was bandpass filtered between 0.01 and 0.1 Hz, windowed to exclude

extraneous phases, decimated to 10 samples/s and rotated to radial and tangential

components.

We first compare the cross−convolution method to several other commonly−used

methods of determining splitting parameters.  The first of these relies on the

assumption that the SKS wave is radially−polarized before it traverses the anisotropic

region. The radial direction is known, because it is assumed to be given by the

backazimuth. A good choice of anisotropic parameters is therefore one that minimizes

the energy on the tangential component, once the predicted effect of the anisotropy is

removed. We will call this the  “Minimum tangential, fixed initial polarization”

method (Method A).

One possible problem with this method is that lateral heterogeneity far from the

receiver might deflect the initial polarization of the SKS wave away from the radial

direction. While the SKS wave may still be linearly polarized, its polarization

direction would not be exactly the radial direction. This possibility can be taken into
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account simply by removing the predicted effect of anisotropy, and solving for the

best−fitting direction of linear polarization.  The best−fitting splitting parameters

minimize the energy on the other, orthogonal horizontal component.  We will call this

the  “Minimum tangential, variable initial polarization” method (or Method B).

Another method relies on the fact that if the initial polarization is linear, then in a

rotated coordinate system parallel to the anisotropic axes, the pulse shapes at the

receiver have exactly the same shape, but are delayed with respect to one another.

The best−fitting splitting parameters are therefore those that maximize the cross−

correlation of the rotated components. We will call this the  “Maxmum cross−

correlation” method (or Method C).

Both the “minimum tangential, variable initial polarization” and “maximum cross

correlation” methods make no assumption about the orientation of the initial

polarization, and both determine that direction as part of the solution process (Fig.

12).  These resulting estimates can be compared to the backazimuth direction.  For

SKS, any disagreement may reflect noise, phase misidentification or mantle

heterogeneity.

One−layer solutions, computed by each of these methods, as well as the new cross−

convolution method (Method D) are shown in Table 2 and Fig. 13.  The whole−suite

solutions determined by the different methods are all reasonably consistent with one

another, and with the values published by 
�

zalaybey & Savage (1995) and Liu et al,

(1995). The estimated delay time ranges from 0.9 to 1.5 s, and the estimated fast axis

21



azimuth from 75−89°.

The individual−seismogram estimates show much greater variability. The variablity in

fast azimuth is associated with “sawtooth” pattern of variation with backazimuth.

This pattern is discernible for all methods, but is most pronounced for Method C (Fig.

14). Methods A, B, and D tend to have individual delays biased to larger values than

the whole−suite estimate, while Method C tends to have individual delays biased to

smaller values.

We have computed general two−pulse operators for the individual SKS waves, using

the technique described in Eqn. 15, and used them to assess the degree to which the

general operators behave like the one−layer anisotropic ones (i.e. by evaluating Eqn.

16) (Fig. 15).  The results are poor, with large scatter about the expected pattern.  This

result indicates that the SKS seismograms contain significant features that cannot be

explained by the simple one−layer model.  This conclusion is supported by the fact

that the overall variance reduction (with respect to the no−anisotropy case) of the

various one−layer estimates is rather poor: 16%, 23%, 8%, and 55% for methods A,

B, C, and D, respectively.  We have examined selected individual seismograms by

eye.  Most have a significant tangential−component pulse that coincides with what is

clearly the SKS pulse on the radial component, and which cannot therefore be

“ground noise”.  On the other hand, its shape is not always what one would expect

from a simple one−layer model. Some other, unmodelled process is also occurring.
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The two−layer cross−convolution method provides a unique two−layer solution

(Table 3), but the overall variance reduction, when compared to the result of the one−

layer method, is small (only 3.7%).  This is in contrast to the synthetic example

above, where the variance reduction is much larger − about 93%. In order to apply the

F−test to estimate the significance of this error reduction, we need to estimate the

number of degrees of freedom of the two estimates.  The one−layer estimate is based

on 41 seismograms, each with two components of 1000 samples, a bandwidth of 2.5%

and two model parameters, so it has ν1=2048 degrees of freedom.  The two−layer

estimate is based on the same data, but has four model parameters, so ν2=2046. After

consulting a table of the F−distribution, we find that the level of significance is about

80%, considerably less than the 95% standard that is commonly applied in judging

significance.  Therefore the fit of the two−layer model is not significantly better than

the fit of the one−layer model.

The best−fit two−layer cross−convolution solution has a bottom layer with properties

similar to those in the two−layer models published by � zalaybey & Savage (1995)

and Polet and Kanamori (2002), which are based on fitting the azimuthal variability in

parameters estimated by a one−layer method similar to our Method A.  The upper

layer, however, is significantly different, and is somewhat thicker.  The best−fit

cross−convolution solution has two layers of rather unequal thicknesses and axes that

are 83° apart.  It is therefore of the “nearly one−layer” variety discussed in the

previous section.
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� zalaybey & Savage's (1995) solution has smaller error, as judged by the cross

convolution method, than the one−layer solution (Fig. 16).  Furthermore, when the

fast direction values are constrained equal to � zalaybey & Savage's, the cross−

convolutional method predicts delay times that are similar to � zalaybey & Savage's

(see “sub optimal” solution #1 in Table 3).  This similarity indicates the � zalaybey &

Savage's methodology, which is based on interpreting the backazimuthal behavior of

apparent splitting parameters, is indeed modeling some of the underlying anisotropic

behavior of the wavefield. A similar exercise for the solution of Liu et al., (1995)

yields estimates of delays in the lower and upper  layers of 1.4 and 0.2 sec,

respectively (Table 3). This differs from their reported values. However, given that

fast directions in this solution are only 19º apart, it is instructive to compare the

cumulative delay from two layers to that of the single layer solution. Both in the study

of Liu et al. (1995) and in the present study with cross−convolution technique a 1−

layer solution delay is very close to the cumulative delay of two layers, when their

fast direction are constrained to Liu et al's (1995) values of 79° and 98°. Differences

in these cumulative estimates  (1.2 s in Liu et al. (1995)  vs. 1.5 s in our study) likely

result from differences in data sets.

Conclusions

We have developed a waveform fitting technique that allows the testing of shear

waves (e.g., SKS and similar phases) for splitting, as predicted by anisotropic earth

models. Synthetic tests show that the technique can successfully recover orientation

and magnitude parameters for one or more layers of anisotropy, either from individual
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seismograms or from suites of observations that include a broad range of

backazimuths. The original model is successfully recovered when an appropriate

model operator is applied, e.g.,  when synthetics generated in a 2−layer model are fit

with a 2−layer operator. Use of the wrong model leads to a significant degradation of

the solution (e.g., as measured by overall variance reduction), making it possible to

determine the minimal number of distinct anisotropic layers in a model. Such

determinations are always subject to nonuniqueness associated with   “cross−

polarized” anisotropic layers, since their effects on the waveforms cancel out.

We have tested our technique with a waveform data from station PFO (Piñon Flat,

CA), with the following results:

 

1) Under the assumption of a single layer of anisotropy, our technique yields results

similar to other commonly used methods of determining splitting parameters.

Furthermore, results obtained with our new technique agree well with previously

published findings that were based on different subsets of data.

2) Our new technique identifies a region in the model space of 2−layered anisotropic

solutions that contains solutions that are better, in a formal sense, then a one−layered

solution. This region includes models with anisotropy directions identified by

previous studies by  � zalaybey and Savage (1995), Liu et al. (1995) and Polet and

Kanamori (2002). Differences in sets of analyzed data likely lead to deviations in

layer−specific delays identified through our method. Our best−fitting two−layer

model is of the “nearly one−layer” type.
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3) The overall variance reduction of the two−layer fit for PFO  is only marginally

better for the 2−layer solution than the 1−layer solution (judged to be at the 80%

confidence level by the F−test).  This results is consistent with the low degrees of

significance estimated by � zalaybey and Savage (1995) and Liu et al. (1995).

The new waveform−fitting method presented here provides means to test whether

observed data (e.g. SKS and PKS waveforms) conform to expectations of class of

anisotropic earth models (such as the one−layer and two−layer models). In case of the

PFO dataset, the misfit is large. The generally poor fit of a one−layer anisotropic

model to the PFO data, as judged both by the new method and traditional ones,

strongly suggests the presence of some other process is occurring.  However, since the

two−layer models only minimally improves the fit, this process is probably not

dominated by two−layered anisotropy.  We have not formally ruled out models with

larger number of anisotropic layers, but neither do we believe that attempting to fit the

data with models containing a large number of layers will be a fruitfull approach. The

whole idea of mantle layering is probably a significant oversimplification of its actual

structure, so that if complicated models are indeed to be used, they should probably

include the effects of scattering as well as anisotropy.

We reach an overall conclusion that, while waveforms of teleseismic shear waves

observed at PFO reflect the presence of anisotropy along their paths, they are also

influenced by other processes that are of similar intensity. Consideration of these

other processes is of primary concern, as they might strongly influence the outcomes
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of shear−wave splitting studies, and bias their interpretation in terms of geodynamic

processes.
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yyyy.jdy.hr.mn phase lat lon depth dist baz

1992.073.17.41 SKS 39.71 39.6 27 103.41 18.72

1999.316.17.20 SKS 40.76 31.16 10 99.87 24.32

1995.326.04.34 PKS 28.83 34.8 10 111.89 27.01

1995.326.04.38 SKS 28.83 34.8 10 111.89 27.01

1995.166.00.38 SKS 38.4 22.28 14 98.44 31.5

1992.255.04.17 PKS −6.09 26.65 11 136.14 59.48

1993.270.14.00 SKS −53.65 −51.62 33 103.65 146.49

1994.169.03.47 SKS −42.96 171.66 14 100.82 225.08

1993.222.01.14 SKS −45.28 166.93 28 104.93 225.11

1992.044.01.50 SKS −15.89 166.32 10 88.54 249.76

1999.095.11.29 SKS −5.59 149.57 150 96.4 267.52

1997.356.02.27 SKS −5.5 147.87 179 97.76 268.54

1993.286.02.28 SKS −5.89 146.02 25 99.51 269.22

1993.298.10.49 SKS −5.91 145.99 30 99.55 269.22

1998.198.09.12 SKS −2.96 141.93 10 101.31 273.99

1998.210.18.23 SKS −2.69 138.9 33 103.67 275.95

1995.079.00.16 SKS −4.18 135.11 33 107.64 276.86

1992.355.21.16 SKS −6.58 130.39 78 112.88 277.53

1996.048.06.22 SKS −0.89 136.95 33 104.27 278.61

1996.048.20.41 SKS −0.92 136.23 32 104.88 279.01

1996.048.14.44 SKS −0.57 135.84 19 105 279.54

1992.270.22.39 SKS 1.29 129.12 28 109.38 285.22

1994.153.18.36 PKS −10.48 112.83 18 129.4 285.27

1993.220.08.56 SKS 12.98 144.8 59 89.94 285.61

1994.021.02.47 SKS 1.01 127.73 20 110.66 285.86

1993.343.04.55 SKS 0.49 126 15 112.36 286.53

1997.329.12.38 SKS 1.24 122.54 24 114.64 289.48

1998.245.09.00 SKS 5.41 126.76 50 108.75 290.19

1996.204.14.43 SKS 1 120.45 33 116.42 290.71

1996.001.08.29 SKS 0.73 119.93 24 117 290.84
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1992.138.10.12 SKS 7.24 126.64 33 107.7 291.77

1995.111.00.32 SKS 12.01 125.66 20 105.42 296.26

1995.125.04.16 SKS 12.63 125.3 16 105.29 296.98

1996.163.18.45 SKS 12.61 125.15 33 105.4 297.07

1999.345.18.26 SKS 15.77 119.74 33 107.19 303.17

1995.279.18.29 PKS −2.04 101.44 33 132.58 303.54

1998.091.18.15 PKS −0.54 99.26 56 132.95 307.1

1994.144.04.23 SKS 23.96 122.45 16 99.69 307.45

1994.156.01.32 SKS 24.51 121.9 11 99.66 308.21

1995.312.07.33 PKS 1.83 95.05 33 133.79 313.65

1992.232.02.27 SKS 42.14 73.57 27 103.69 352.36

Table 1. Core−refracted shear−polarized phases observed at Piñon Flat during
1992−1999.
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method delay, s azimuth, deg

� zalaybey & Savage, 1995 1.45 89

Liu et al., 1995 1.2 92

Polet & Kanamori, 2002 Not given Not given

Minimum tangential, fixed
initial polarization 0.9 78

Minimum tangential,
variable initial polarization 0.9 78

Maximum Cross
Correlation 1.1 75

Minimize Cross−
Convolution Error 1.5 80

Table 2. One−layer solutions for Station PFO, computed for the whole suite of data.
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method bottom
delay, s

bottom
azimuth,

deg

top delay, s top azimuth,
deg

variance
reduction,

%

One−layer
cross
convolution 1.5 80 55.46

Two−layer
cross−
convolution 3.0 69 1.8 152 57.09

�
zalaybey &

Savage
(1995) 1.2 70 0.60 110

Liu et al.,
(1995) 0.5 79 0.70 98

Polet and
kanamori
(2002) 1.2 80 0.50 140

Sub−optimal
(#1) two−
layer cross−
convolution 1.4 70 0.40 110 56.36

Sub−optimal
(#2)   two−
layer cross−
convolution 1.4 79 0.20 98 55.68

Table 3. One−layer and two−layer solutions for Station PFO. Variances reduction are
given relative to the case of no anisotropy. The sub−optimal solutions 1 and 2
constrain the axes to the directions given by 

�
zalaybey & Savage (1995) and Liu et

al. (1995), respectively.
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Fig. 1.  Shear wave splitting in one and two−layer media.  Bottom left: A linearly
polarized shear wave pulse enters an anisotropic layer and is split into two
components that propagate at different velocities.  The polarization direction of the
faster component is parallel to the fast anisotropic axis of the layer.  Top Left:
Graphical depiction of the splitting parameters for radially−polarized shear waves of
different backazimuths, φ, and angles of incidence.  The orientation of the line
segment indicates fast azimuth azimuth, θ, and its length is proportional to delay time,
τ.  The position of the line segment on the polar diagram indicates backazimuth and
angle of incidence, with the 10, 20 and 40 km/s circles shown..  Note that with the
exception of a few “null” directions (circles) where splitting parameters cannot be
determined, all the estimates are similar.  Bottom right: Two−layer case.  The true
response has four pulses.  The “apparent splitting” method approximates these four
pulses with a best−fitting set of two pulses.  Top tight: The resulting pattern of
estimated apparent splitting parameters varies strongly with backazimuth. See Levin
et al. (1999) for a detailed description of the anisotropic models.
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Fig. 2. A) Synthetic seismograms for an earth model with one anisotropic layer.
Radial−horizontal, V(t), and tangential−horizontal, H(t) components for a
backazimuth of φ=0° are shown. B) The fit obtained by the one−layer cross−
convolution modeling procedure is excellent.

37

V(t)

H(t)

10 seconds

h(t)*V(t)

v(t)*H(t)

SKS pulse

crustal
reverberation

A) Data

B) Fit



Fig. 3. A) Synthetic seismograms for an earth model with two anisotropic layers.
Radial−horizontal, V(t), and tangential−horizontal, H(t) components for a
backazimuth of  φ=0° are shown. B) The fit obtained by the one−layer cross−
convolution modeling procedure is poor. C) The corresponding two−layer fit is
excellent.
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Fig 4. Results of one−layer cross−convolution method applied to synthetic data
calculated from an earth model with one anisotropic layer.  Top: Estimated azimuth,
θ, of the fast axis vs. backazimuth, φ. Bottom. Estimated delay, τ, vs. backazimuth.
Lines depict the whole−suite estimates, circles, the individual seismogram estimates.
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Fig 5. Whole−suite error surface for the one−layer cross−convolution method appied
to synthetic seismograms from the one anisotropic layer model. Star: global
minimum.Circles: Individual seismogram estimates.
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Fig. 6. Results of two−layer cross−convolution method applied to synthetic data
calculated from earth model with two anisotropic layers.  Top: Estimated azimuths, θ
and � , of the fast axes of the bottom and top layers vs. backazimuth, φ. Bottom.
Estimated delays, τ1 and τ2, vs. backazimuth.  Lines depict whole−suite estimates,
circles and triangles, the individual seismogram estimates.
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Fig 7. Whole−suite error surface for the two−layer cross−convolution method applied
to synthetic seismograms from the two anisotropic layer earth model. All regions
where the error is greater than the best−fitting one−layer solution are shown in white.
Darker shades correspond to smaller errors. Star: global minimum.
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Fig. 8. Results of the one−layer cross−convolution method applied to synthetic data
calculated from earth model with two anisotropic layer.  Top: Estimated azimuth, θ,
of the fast axis vs. backazimuth, φ. Bottom. Estimated delay, τ, vs. backazimuth.
Lines depict the whole−suite estimates, circles, the individual seismogram estimates.
Note the “sawtooth” pattern in the individual seismogram fast−axis estimates.
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Fig. 9. Whole−suite error surface for the one−layer cross−convolution method applied
to synthetic seismograms from the two anisotropic layers earth model. Star: global
minimum.Circles: Individual seismogram estimates. Note wide scatter of individual
estimates.
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Fig 10.  Tests of conformance to a one−layer interpretation, which uses the results of
the two−pulse operator method.  Lines: predicted values. Circles: Values estimated
from individual synthetic seismograms from one anisotropic layer earth model. See
text for further discussion.
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Fig 11. Radial−horizontal component, V(t), (bold) and tangential−horizontal
component, H(t), (solid) from 41 earthquake sources with a broad range of
backazimuths, φ. Note that the scale of the two components differ by a factor of 5.
Inset: Map of sources (circles) centered on PFO (triangle).
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Fig. 12. Azimuth of the initial polarization direction (circles) at station PFO,
compared with the expected radial direction (line). A) Method B. B) Method C.
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Fig. 13.  Whole−suite error surfaces (contours) for several methods for estimating
one−layer splitting parameters, with individual−seismogram estimates (circles). A)
Minimum tangential component method with fixed initial polarization. B) Minimum
tangential component method with variable initial polarization. C) Maximum cross−
correlation method. D) Cross−convolution method.
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Fig. 14. One−layer estimates of the azimuth, θ, of the fast axis at PFO vs.
backazimuth, φ, of the source.  A) Method A. B) Method B. C) Method C. D) Method
D. Note “sawtooth” pattern.
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Fig 15. Tests of conformance to a one−layer interpretation, that uses the results of the
two−pulse operator method.  Lines: predicted values. Circles: Values estimated from
individual PFO seismograms. See text for further discussion.
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Fig. 16. Whole−suite error surface for two−layer cross−convolution method, as a
function of the azimuth of the fast axes of the two anisotropic layers. All regions
where the error is greater than the best−fitting one−layer solution is shown in white.
Darker shades correspond to smaller errors.
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