EESC UN3201 Solid Earth Dynamics Spring 2023

Lecture 2

Heat flow: Sources of heat, modes of heat transport

Harriman SP, New York

METAMORPHIC IGNEOUS

Harriman SP, New York

Harriman SP, New York

Strokkur geyser, Iceland

Pacaya, Guatemala

Fjallsjokull Iceland

Question?

How much Heat Energy is In the Rock?

Question?

Hard and not-very-useful question because it involves thinking about absolute zero temperature

Better Question?

How much Heat **Energy is released** from the rock as it cools from a daytime temperature (say 25 C) to a nighttime temperature (say 15 C)

Relative temperature:

ΔT

Temperature measured with respect to some "normal reference temperature" not with respect to absolute zero

We'll use 0 °C.

Heat released

Change in temperature

times

mass of rock

times

heat capacity

Change in temperature ΔT

times

heat capacity

 C_p

Heat released

$$\Delta Q = \rho c_p V \Delta T$$

$$\rho = 2500 \text{ kg/m}^3$$

$$c_p = 790 \text{ (J/kg °C)}$$

$$V = 1 \text{ (m}^3)$$

$$\Delta T = 10$$

$$\Delta Q = \rho c_p V \Delta T = 2 \times 10^7 \text{ J}$$

Heat released

$$\Delta Q = \rho c_p V \Delta T$$

$$\rho = 2500 \text{ kg/m}^3$$

 $c_p = 790 \text{ (J/kg °C)}$
 $V = 1 \text{ (m}^3)$
 $\Delta T = 10$

$$\Delta Q = \rho c_p V \Delta T = 2 \times 10^7 \text{ J} = 4700 \text{ kCal}$$

kCal – heat energy needed to raise temperature of 1 liter of water by 1 deg C

bang!

Tempid Spring

Williamstown, Massachosetts

18C

Winter day, 0 C

18 \mathbf{C}

Winter day, 0 C

How long does it take for the spring to warm up the tent by 10 C ?

air: c_p 700 J kg/C ho 1.3 kg/m³ $V = 5m^{3}$ $\Delta T = 10 C$ $\Delta Q = \rho c_p V \Delta T = 45500 J$ = 10 kCal

How long does it take for the spring to warm up the tent by 10 C ?

 c_p 700 J kg/C ho 1.3 kg/m³ $V = 5m^{3}$ $\Delta T = 10 C$ $\Delta Q = \rho c_p V \Delta T = 45500 J$ = 10 kCal

$$t = \Delta Q/q = 1.25 \text{ s}$$

you can see why water is frequently used to transfer heat "advection"

Moving heat energy by moving hot material

characteristic time

Quantity divided by flux

 $t = \Delta Q/q$

"conduction"

heat flow from _____ to ____

(without the material moving)

"conduction"

heat flow from <u>Hot</u> to <u>Cold</u>

(without the material moving)

heat flux, q, in a solid:

heat energy crossing a surface with unit are per second

heat flux, q, in a solid:

heat flows from cold to hot

k: thermal conductivity

Solid rod with insulated surface

insulated = no heat flux

Solid rod with insulated surface

Heat Reservoir

Approximation:

Temperature varies only along length of rod Heat flux is along length of rod

ends have area, A χ $x_L + \Delta x$ χ_L T(x)q(x)

$$\frac{d\Delta Q}{dt} = q(x_L) - q(x_L + \Delta x)$$

$$q(x_L)$$

$$x_L$$

$$x_L$$

$$T(x)$$

$$q(x)$$

$$\frac{d\Delta Q}{dt} = Aq(x_L) - Aq(x_L + \Delta x)$$

$$\rho c_p A \Delta x \frac{d \Delta T}{dt} = Aq(x_L) - Aq(x_L + \Delta x)$$

$$\rho c_p \frac{d\Delta T}{dt} = -\frac{dq}{dx}$$

$$\frac{d\Delta Q}{dt} = Aq(x_L) - Aq(x_L + \Delta x)$$

$$\rho c_p A \Delta x \frac{d \Delta T}{dt} = Aq(x_L) - Aq(x_L + \Delta x)$$

Equilibrium temperature $\frac{d\Delta Q}{dt} = 0$

heat energy generated per unit volume per second

heat energy generated per unit volume per second

granite $s = 5 \times 10^{-6} W/m^3$

$$\frac{d\Delta Q}{dt} = Aq(x_L) - Aq(x_L + \Delta x) + A\Delta xs$$

$$\rho c_p A \Delta x \frac{d \Delta T}{dt} = Aq(x_L) - Aq(x_L + \Delta x) + A \Delta xs$$

$$\rho c_p \frac{d\Delta T}{dt} = -\frac{dq}{dx} + s$$

$$\rho c_p \frac{d\Delta T}{dt} = k \frac{d^2 \Delta T}{dx^2} + s$$

Equilibrium temperature $\frac{d\Delta Q}{dt} = 0$

intuitive thinking

intuitive thinking parabola

$$\Delta T = c \ x(L - x)$$
$$= c \ (Lx - x^2)$$

$$\Delta T = c \ x(L - x)$$
$$= c \ (Lx - x^2)$$

intuitive thinking

$$\Delta T = c \ (Lx - x^2)$$

$$\frac{d\Delta T}{dx} = c (L - 2x)$$
$$\frac{d^2 \Delta T}{dx} = -2c$$

$$dx^2$$

yes, if $c = s/(2k)$

 $\Delta T = \frac{S}{2k} x(L-x)$

longer bar hotter/colder maximum?

 $\Delta T = \frac{S}{2k} x(L - x)$

if you make it too long, it will melt

solid chunk of granite uniform heating

To what extent can this serve as a simple mode of the Earth?

solid chunk of granite uniform heating