EESC UN3201 Solid Earth Dynamics Spring 2023

Lecture 2

Heat flow:
 Sources of heat, modes of heat transport

Harriman SP, New York

Strokkur geyser, Iceland

Hellishedi, Iceland

Fjallsjokull Iceland

Question?

How much Heat Energy is In the Rock?

Question?

Hard and not-very-useful question because it involves thinking about absolute zero temperature

Better Question?

How much Heat Energy is released from the rock as it cools from a daytime temperature (say 25 C)
to a nighttime temperature (say 15 C)

Relative temperature:

ΔT

Temperature measured with respect to some "normal reference temperature" not with respect to absolute zero

We'll use $0^{\circ} \mathrm{C}$.

Heat released

Change in temperature

times
mass of rock
times
heat capacity

Heat released ΔQ

Change in temperature $\quad \Delta T$

times
mass of rock
$\rho=$ density
$V=$ volume
times
heat capacity
c_{p}

Heat released

$$
\Delta Q=\rho c_{p} V \Delta T
$$

$$
\rho=2500 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
c_{p}=790 \quad\left(\mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)
$$

$$
V=1 \quad\left(\mathrm{~m}^{3}\right)
$$

$$
\Delta T=10
$$

$$
\Delta Q=\rho c_{p} V \Delta T=2 \times 10^{7} \mathrm{~J}
$$

Heat released

$$
\Delta Q=\rho c_{p} V \Delta T
$$

$\rho=2500 \mathrm{~kg} / \mathrm{m}^{3}$

$$
c_{p}=790 \quad\left(\mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)
$$

$$
V=1 \quad\left(\mathrm{~m}^{3}\right)
$$

$$
\Delta T=10
$$

$$
\Delta Q=\rho c_{p} V \Delta T=2 \times 10^{7} \mathrm{~J} \quad=4700 \mathrm{kCal}
$$

Tempid Spring

Williamstown, Massachosetts

18C

Winter day, 0 C

Winter day, 0 C

Winter day, 0 C

Winter day, 0 C
$5 \mathrm{~m}^{3}$ tent
How long does it take for the spring to warm up the tent by 10 C ?
air:
$c_{p} 700 \mathrm{~J} \mathrm{~kg} / \mathrm{C}$
$\rho 1.3 \mathrm{~kg} / \mathrm{m}^{3}$
$V=5 \mathrm{~m}^{3}$
$\Delta T=10 C$

$$
\begin{aligned}
\Delta Q=\rho c_{p} V \Delta T & =45500 \mathrm{~J} \\
& =10 \mathrm{kCal}
\end{aligned}
$$

Winter day, 0 C
$5 \mathrm{~m}^{3}$ tent
we know that water stores 1 kCal of heat per liter per degree C
spring:
$\Delta T=8^{\circ} \mathrm{C}$
flux of heat
$\mathrm{q}=\Delta Q$ per second $=8 \mathrm{kCal} / \mathrm{s}$

Winter day, 0 C
$5 \mathrm{~m}^{3}$ tent
How long does it take for the spring to warm up the tent by 10 C ?
air:
$c_{p} 700 \mathrm{~J} \mathrm{~kg} / \mathrm{C}$
$\rho 1.3 \mathrm{~kg} / \mathrm{m}^{3}$
$V=5 \mathrm{~m}^{3}$
$\Delta T=10 \mathrm{C}$
spring:
$\Delta T=8{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
\Delta Q=\rho c_{p} V \Delta T & =45500 \mathrm{~J} \\
& =10 \mathrm{kCal}
\end{aligned}
$$

flux of heat
$q=\Delta Q$ per second $=8 \mathrm{kCal} / \mathrm{s}$

$$
t=\Delta Q / q=1.25 \mathrm{~s}
$$

"advection"

Moving heat energy by moving hot material

characteristic time

Quantity divided by flux

$$
t=\Delta Q / q
$$

"conduction"

heat flow from ___ to
(without the material moving)

"conduction"

heat flow from __Hot__ to __Cold___

(without the material moving)

heat flux, q, in a solid:
heat energy crossing a surface with unit are per second

$$
q: \frac{J}{m^{2} s}
$$

heat flux, q, in a solid:

heat flows from cold to hot

$$
q=-k \frac{d T}{d x}
$$

k : thermal conductivity

$$
\begin{array}{cc}
q= & -k \frac{d T}{d x} \\
\frac{J}{m^{2} s} & \frac{J}{m s^{\circ} \mathrm{C}} \frac{{ }^{\circ} \mathrm{C}}{m} \\
\frac{W}{m^{\circ} \mathrm{C}}
\end{array}
$$

thermal conductivity rock $k=3 \frac{m^{\circ}}{m^{\circ} \mathrm{C}}$

Solid rod with insulated surface

insulated $=$ no heat flux

Solid rod with insulated surface

Heat Reservoir

Approximation:

Temperature varies only along length of rod Heat flux is along length of rod

Conservation of heat energy

$$
\frac{d \Delta Q}{d t}=q\left(x_{L}\right)-q\left(x_{L}+\Delta x\right)
$$

$q\left(x_{L}\right) \quad q\left(x_{L}+\Delta x\right)$
x_{L}

$$
\begin{aligned}
& T(x) \\
& q(x)
\end{aligned}
$$

Conservation of heat energy

$$
\begin{aligned}
& \frac{d \Delta Q}{d t}=A q\left(x_{L}\right)-A q\left(x_{L}+\Delta x\right) \\
& \rho c_{p} A \Delta x \frac{d \Delta T}{d t}=A q\left(x_{L}\right)-A q\left(x_{L}+\Delta x\right) \\
& \rho c_{p} \frac{d \Delta T}{d t}=-\frac{d q}{d x}
\end{aligned}
$$

Conservation of heat energy

$$
\begin{aligned}
& \frac{d \Delta Q}{d t}=A q\left(x_{L}\right)-A q\left(x_{L}+\Delta x\right) \\
& \rho c_{p} A \Delta x \frac{d \Delta T}{d t}=A q\left(x_{L}\right)-A q\left(x_{L}+\Delta x\right) \\
& \rho c_{p} \frac{d \Delta T}{d t}=-\frac{d q}{d x} \quad \rho c_{p} \frac{d \Delta T}{d t}=k \frac{d^{2} \Delta T}{d x^{2}}
\end{aligned}
$$

Equilibrium temperature $\frac{d \Delta Q}{d t}=0$

$$
\rho c_{p} \frac{d \Delta T}{d t}=k \frac{d^{2} \Delta T}{d x^{2}} \quad \square \quad 0=\frac{d^{2} \Delta T}{d x^{2}}
$$

$$
\Delta T=\frac{10}{L} x \underbrace{}_{\text {compatible? }} \quad 0=\frac{d^{2} \Delta T}{d x^{2}}
$$

$$
\Delta T=\frac{10}{L} x
$$

$$
0=\frac{d^{2} \Delta T}{d x^{2}}
$$

does it depend on the type of rock?
heat source, s :
heat energy generated per unit volume per second

volume $1 \mathrm{~m}^{2}$

$$
\frac{W}{m^{3}}
$$

heat source, s :
heat energy generated per unit volume per second

Conservation of heat energy

$$
\begin{aligned}
& \frac{d \Delta Q}{d t}=A q\left(x_{L}\right)-A q\left(x_{L}+\Delta x\right)+A \Delta x s \\
& \rho c_{p} A \Delta x \frac{d \Delta T}{d t}=A q\left(x_{L}\right)-A q\left(x_{L}+\Delta x\right)+A \Delta x s
\end{aligned}
$$

$$
\rho c_{p} \frac{d \Delta T}{d t}=-\frac{d q}{d x}+s
$$

$$
\rho c_{p} \frac{d \Delta T}{d t}=k \frac{d^{2} \Delta T}{d x^{2}}+s
$$

Equilibrium temperature $\frac{d \Delta Q}{d t}=0$

$$
\rho c_{p} \frac{d \Delta T}{d t}=k \frac{d^{2} \Delta T}{d x^{2}}+s \quad \square 0=\frac{d^{2} \Delta T}{d x^{2}}+s / k
$$

Cold ΔT

uniform heating, $s=$ constant

Cold $\Delta T=0$

intuitive thinking

intuitive thinking parabola

$$
\begin{aligned}
\Delta T & =c x(L-x) \\
& =c\left(L x-x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta T & =c x(L-x) \\
& =c\left(L x-x^{2}\right)
\end{aligned}
$$

compatible?

$$
0=k \frac{d^{2} \Delta T}{d x^{2}}+s
$$

intuitive thinking

$$
\Delta T=\frac{s}{2 k} x(L-x)
$$

longer bar
hotter/colder maximum?

$$
\Delta T=\frac{s}{2 k} x(L-x)
$$

if you make it too
long, it will melt

To what extent can this serve as a simple mode of the Earth?

solid chunk of granite uniform heating

