EESC UN3201
 Solid Earth Dynamics
 Spring 2023

Bill Menke, Instructor Lecture 3

Today:

Heat flow: Cooling

- of a house
- of a dike
- of the ground

© Temperature

house
wind wind η
outside air isothermal due to wind

$$
\Delta T=0
$$

inside air isothermal due to fan
temperature $\Delta T(t)$
house
Initial temperature of the house

$$
\Delta T(t=0)=\Delta T_{0}
$$

house cools by conduction through walls with total area, A

Conservation of energy

change in heat in house

 with time=

heat loss thru walls

Conservation of energy

$$
\begin{gathered}
\rho c_{p} V \frac{d \Delta T}{d t} \\
= \\
-A q
\end{gathered}
$$

Conservation of energy

outside air

house
Ever hear of an R-Value in connection with home insulation?

$$
\begin{gathered}
\rho c_{p} V \frac{d \Delta T}{d t} \\
= \\
-A q
\end{gathered}
$$

$$
\begin{aligned}
& =-\frac{A}{R} \Delta T \\
& \mathrm{R}=\mathrm{w} / \mathrm{k}
\end{aligned}
$$

house

Conservation of energy

$$
\frac{d \Delta T}{d t}=-c \Delta T
$$

with

$$
c=\frac{A k}{w \rho c_{p} V}
$$

Conservation of energy

$$
\frac{d \Delta T}{d t}=-c \Delta T
$$

with

$$
c=\frac{A k}{w \rho c_{p} V}
$$

"Exponential" function

$$
e^{t}=(2.71 \cdots)^{t}=\exp (t)
$$

$\frac{d}{d t} e^{t}=e^{t} \quad$ derivative is itself

$$
\frac{d}{d t} e^{-a t}=-a e^{t}
$$

Conservation of energy

$$
\frac{d \Delta T}{d t}=-c \Delta T
$$

$$
c=\frac{A k}{w \rho c_{p} V}
$$

$$
\Delta T=\Delta T_{0} \quad e^{-a t}
$$

> compatible
> with equation?

 with equation?

Conservation of energy

yes if $a=c$

$$
\Delta T=\Delta T_{0} \quad e^{-c t}
$$

$$
c=\frac{A k}{w \rho c_{p} V}
$$

small c	big c small, A small, k big W big V
big, A	
big, k	
small W	
small V	

$$
w=1 \times 10^{5} \mathrm{~m}
$$

$$
R=\underline{6.4 \times 10^{6} \mathrm{~m}}
$$

$$
\begin{aligned}
V & =\frac{4}{3} \pi R^{3} \\
A & =4 \pi R^{2} \\
\rho & =5000 \frac{\mathrm{~kg}}{\mathrm{R}^{3}} \\
k & =0.27 \frac{\mathrm{~J}}{\mathrm{sm}^{\circ} \mathrm{C}} \\
c_{p} & =950 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{C}}
\end{aligned}
$$

Earth
t_{0} : about 10 billion years

$$
\begin{aligned}
& R=6.4 \times 10^{6} \mathrm{~m} \\
& V=\frac{4}{3} \pi R^{3} \\
& A=4 \pi R^{2}
\end{aligned} \quad \begin{array}{ll}
\text { size, shape of earth } \\
\rho=5000 \frac{\mathrm{~kg}}{R^{3}} & \begin{array}{l}
\text { density of } \\
\text { deep earth rocks }
\end{array} \\
c_{p}=950 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{C}} & \begin{array}{l}
\text { heat capacity of } \\
\text { deep earth rocks }
\end{array} \\
k=0.27 \frac{\mathrm{~J}}{\mathrm{sm}^{\circ} \mathrm{C}} & \begin{array}{l}
\text { thermal conductivity } \\
\text { of lithospheric rocks }
\end{array} \\
w=1 \times 10^{5} \mathrm{~m} & \begin{array}{l}
\text { thickness } \\
\text { of lithosphere }
\end{array}
\end{array}
$$

Earth

$$
\begin{aligned}
& R=6.4 \times 10^{6} m \\
& V=\frac{4}{3} \pi R^{3} \\
& A=4 \pi R^{2}
\end{aligned}
$$

$$
\rho=5000 \frac{\mathrm{~kg}}{\mathrm{R}^{3}} \quad \text { density of }
$$

deep earth rock

$$
c_{p}=950 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{C}}
$$

$$
k=0.27 \frac{\mathrm{~J}}{\mathrm{sm}^{\circ} \mathrm{C}}
$$

$$
w=1 \times 10^{5} m
$$

$$
\begin{aligned}
R & =6.4 \times 10^{6} \mathrm{~m} \\
V & =\frac{4}{3} \pi R^{3} \\
A & =4 \pi R^{2} \\
\rho & =5000 \frac{\mathrm{~kg}}{R^{3}} \\
c_{p} & =950 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{C}}
\end{aligned}
$$

deflection
of seafloor $k=0.27 \frac{\mathrm{~J}}{\mathrm{sm}^{\circ} \mathrm{C}}$
thickness
of lithosphere

measuring heat flow
escaping heat, q in $-k \frac{W}{m^{2}}$

measuring heat flow

$$
\text { escaping heat, } q=-k \frac{d \Delta T}{d z}
$$

measuring heat flow

escaping heat, $q=-k \frac{d \Delta T}{d z} \underbrace{}_{\text {measure on piece of rock }}$
 borehole

$\{$ lithosphere

average heat flow of Earth

$$
q=0.06 \frac{W}{m^{2}}
$$

$t_{E}=5.6$ billion years

back of the envelope estimate of age of the Earth
neglects radioactive heating
dependent on $\Delta T_{0}=1500$ (melting point of mantle rocks)
assumes lithosphere doesn't thicken with time

Back to the rod

$$
\begin{aligned}
\rho c_{p} \frac{d \Delta T}{d t} & =k \frac{d^{2} \Delta T}{d x^{2}} \\
\frac{d \Delta T}{d t} & =\kappa \frac{d^{2} \Delta T}{d x^{2}} \quad \kappa=\frac{k}{\rho c_{p}}
\end{aligned}
$$

thermal diffusivity

Back to the rod

$$
\frac{d \Delta T}{d t}=\kappa \frac{d^{2} \Delta T}{d x^{2}}
$$

away from the ends of the bar, at time, $t=$ now

higher or lower?
narrower or wider?
center position?

higher or lower? lower narrower or wider? wider center position?
 same

$$
\begin{gathered}
\Delta T=\frac{Q_{0}}{2 \pi \rho c_{p} \sqrt{2 \kappa t}} \exp \left\{-\frac{x^{2}}{4 \kappa t}\right\} \\
\Delta T \xrightarrow{t=0} \begin{array}{c}
t=\text { now } \\
t=\text { later }
\end{array}
\end{gathered}
$$

Bell Curve or Gaussian Curve or Normal Curve

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}\right\}
$$

width or standard deviation
in the cooling formula, width grows as $\sigma=\sqrt{2 \kappa t}$ area under Bell Curve $f(x)$ is 1
area under $\rho c_{p} \Delta T(x)$ is Q_{0} is constant; "heat is conserved"

put in words?

put in words?

initially widens very quickly, then slows down
then slows way down

Time to double width ... proxy for time to cool significantly

$$
\begin{array}{lll}
\sigma_{1}=\sqrt{2 \kappa t_{1}} & \sigma_{1}^{2}=2 \kappa t_{1} & t_{1}=\frac{\sigma_{1}^{2}}{2 \kappa} \\
2 \sigma_{1}=\sqrt{2 \kappa t_{2}} & 4 \sigma_{1}^{2}=2 \kappa t_{2} & t_{2}=\frac{2 \sigma_{1}^{2}}{\kappa} \\
t_{2}-t_{1}=\frac{2 \sigma_{1}^{2}}{\kappa}-\frac{\sigma_{1}^{2}}{2 \kappa}=\frac{3 \sigma_{1}^{2}}{2 \kappa} &
\end{array}
$$

Time to double width

$$
\Delta t=t_{2}-t_{1}=\frac{3 \rho c_{p} \sigma_{1}^{2}}{2 k}
$$

for $\sigma_{1}=1 \mathrm{~m}$ Bell Curve of hot rock (a "dike")

Time to double width

$$
\Delta t=t_{2}-t_{1}=\frac{3 \rho c_{p} \sigma_{1}^{2}}{2 k}
$$

for $\sigma_{1}=1 \mathrm{~m}$ Bell Curve of hot rock (a "dike")

$$
\begin{aligned}
& \rho=2500 \mathrm{~kg} / \mathrm{m}^{3} \quad \Delta t=\frac{3 \rho c_{p} \sigma_{1}^{2}}{2 k}=\frac{3 \times 2500 \times 800 \times 1}{2 \times 3.1} \\
& k=3.1 \mathrm{~J} / \mathrm{sm}^{\circ} \mathrm{C} \\
& c_{p}=800 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}
\end{aligned}
$$

$\Delta t=968000 \mathrm{~s}$

 about 11 days