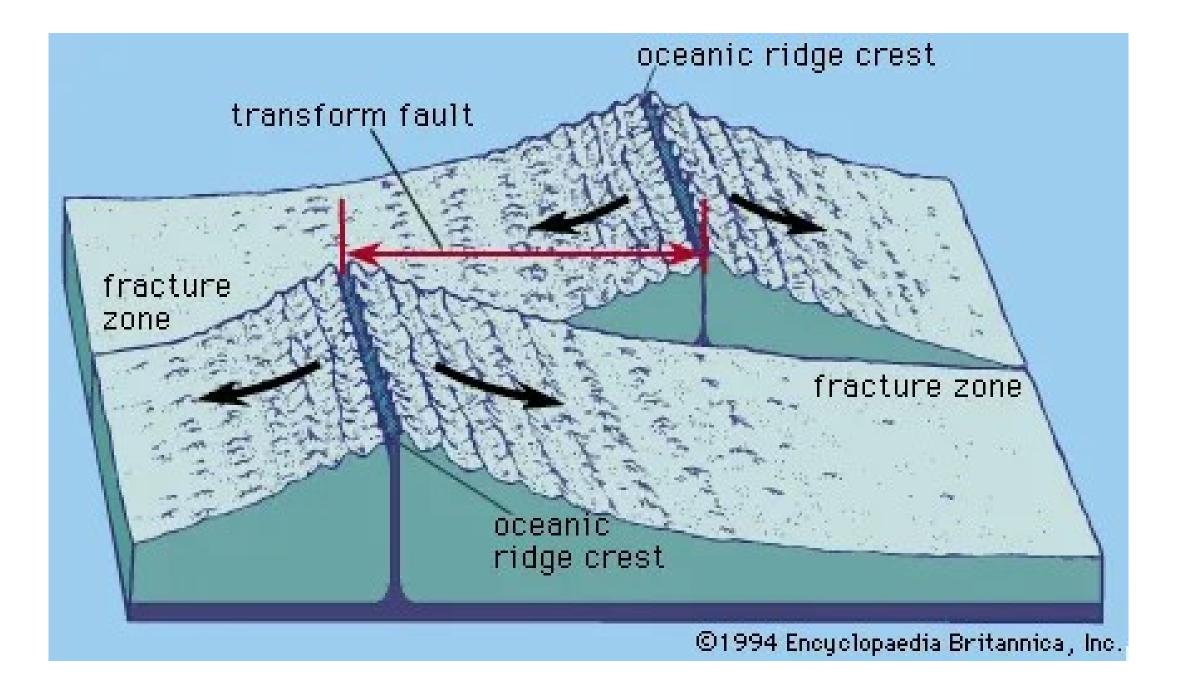
Solid Earth Dynamics

Bill Menke, Instructor

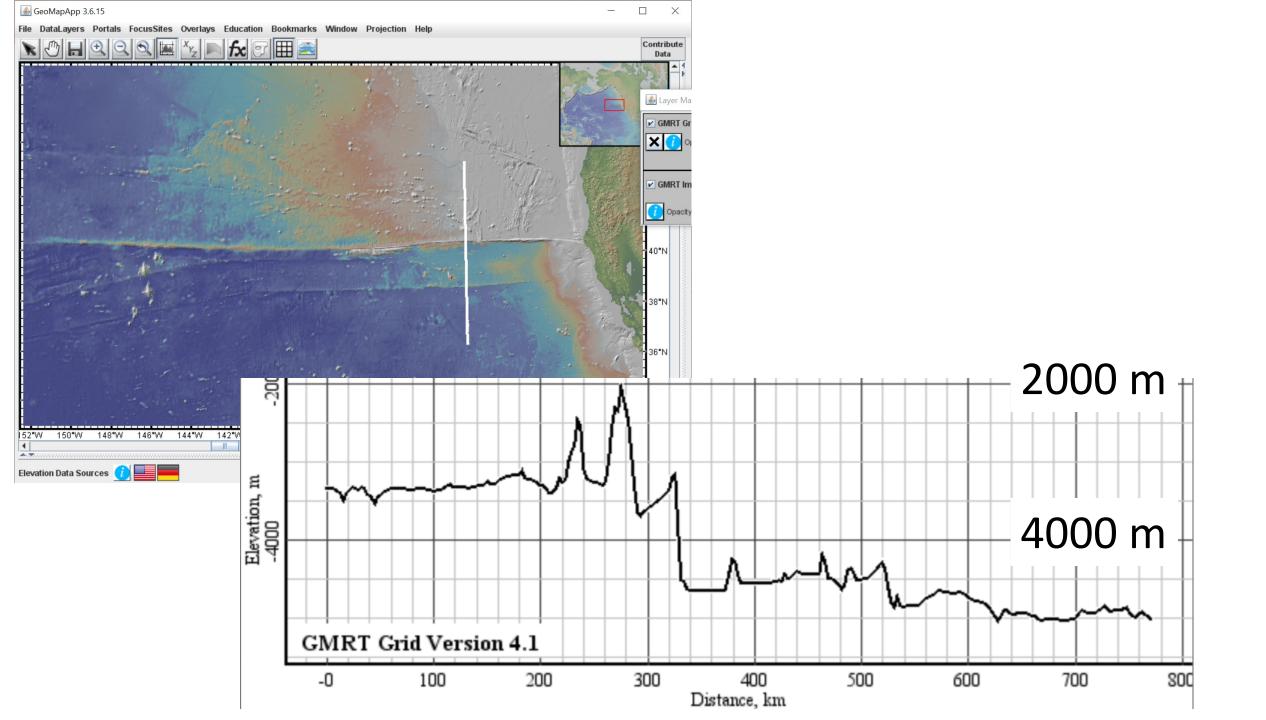
Lecture 4

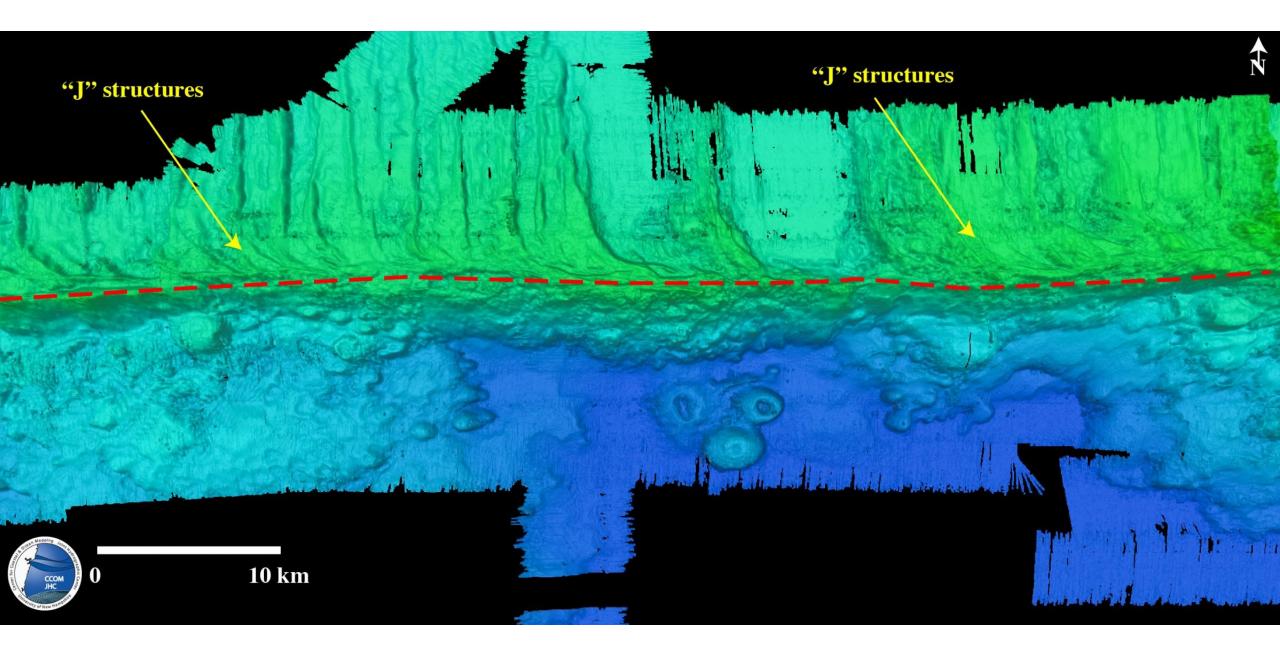
Today:

Depth - Age

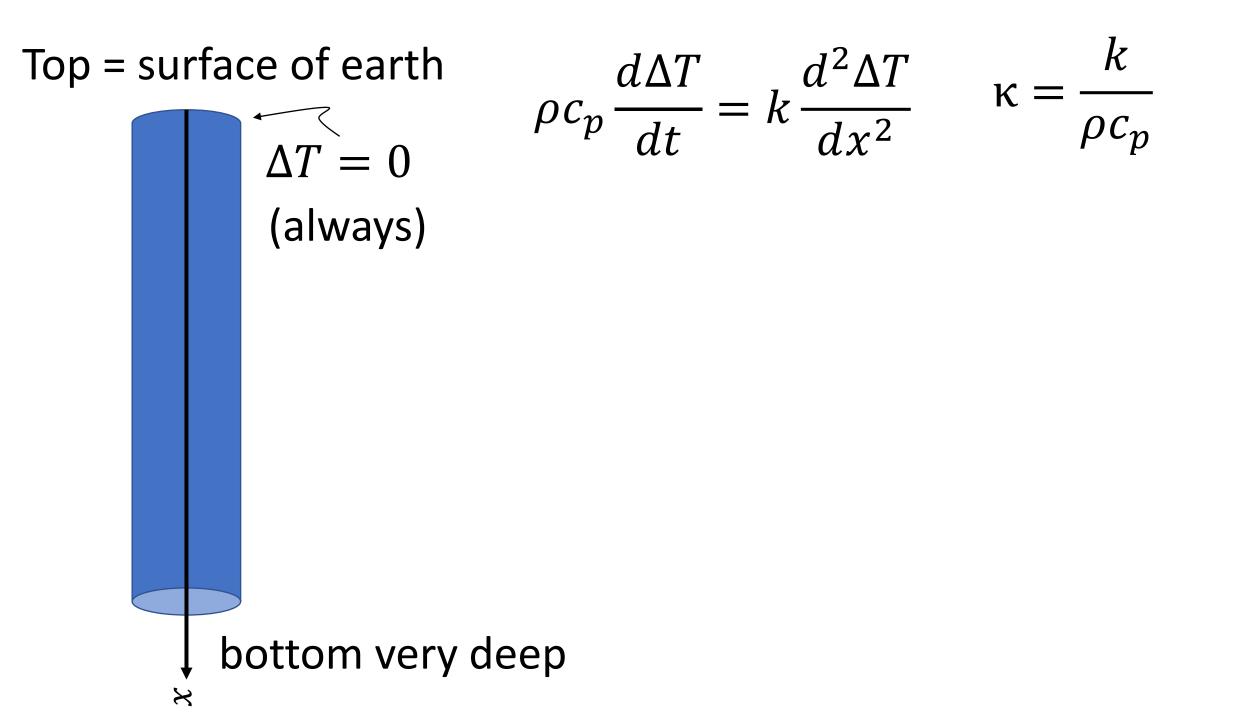


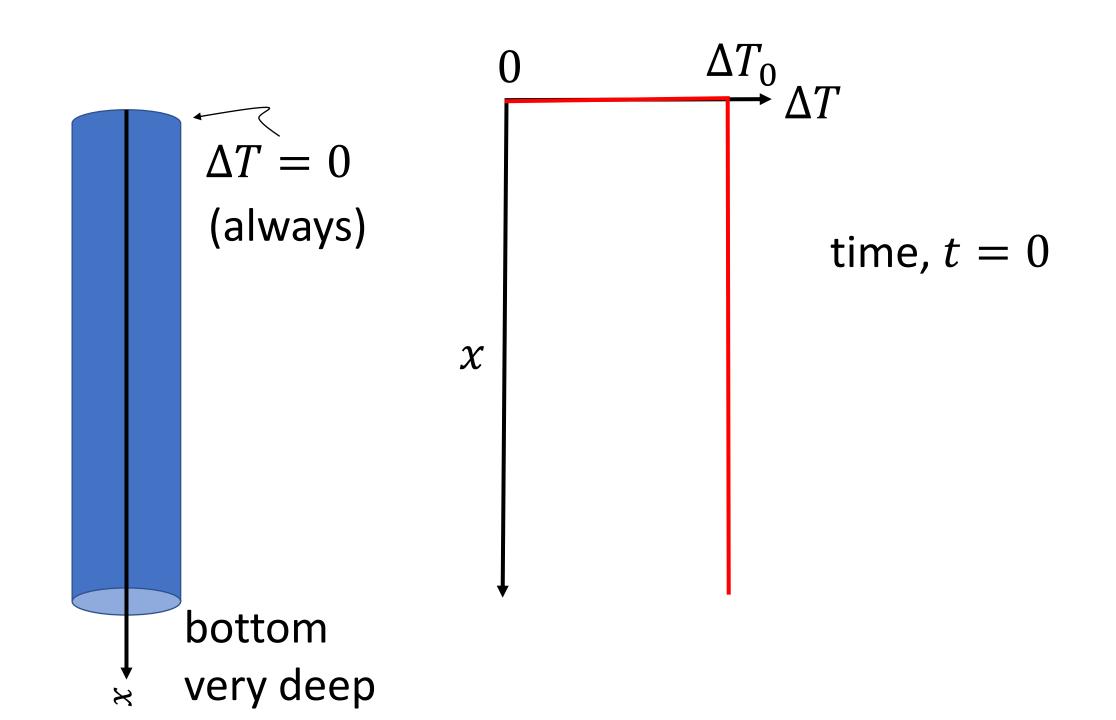
Mendicino fracture zone

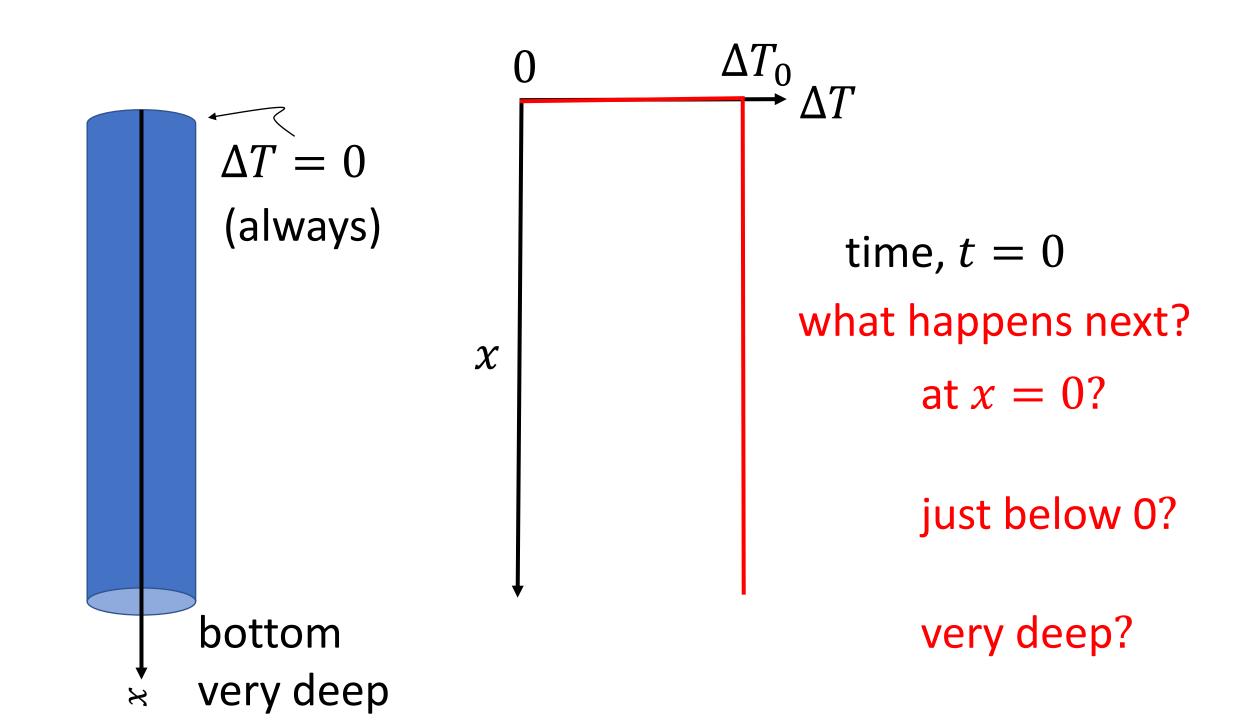


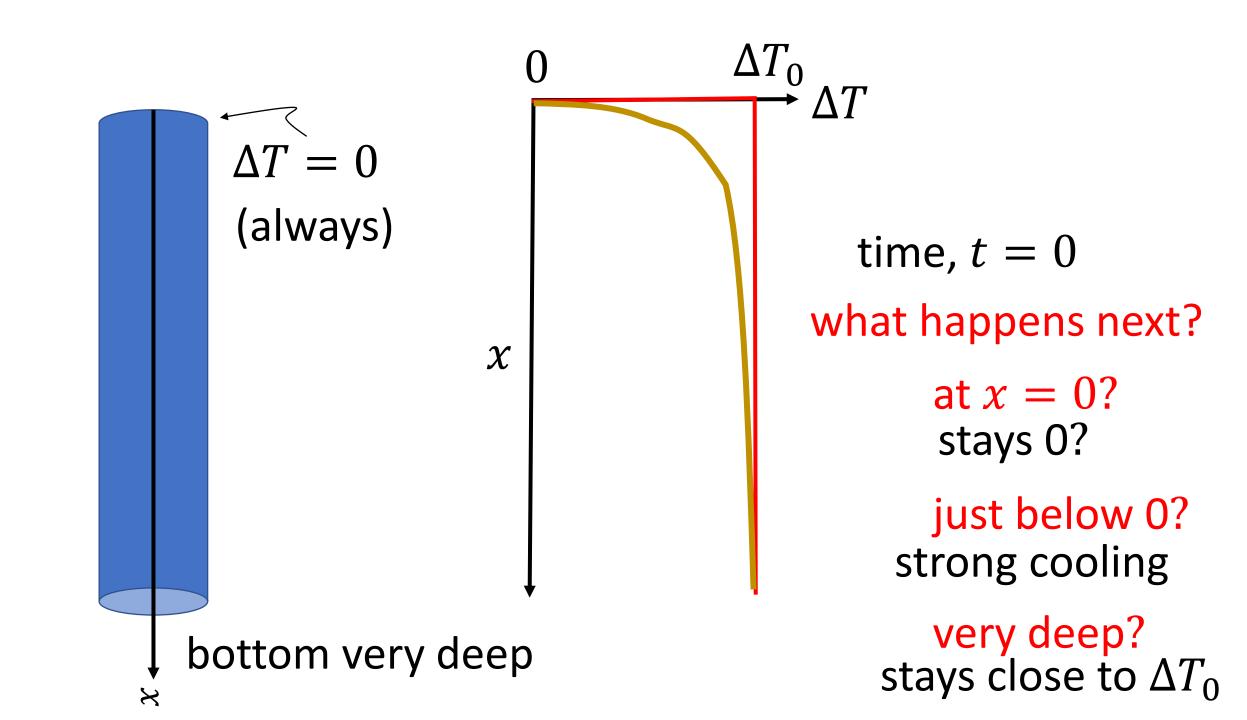


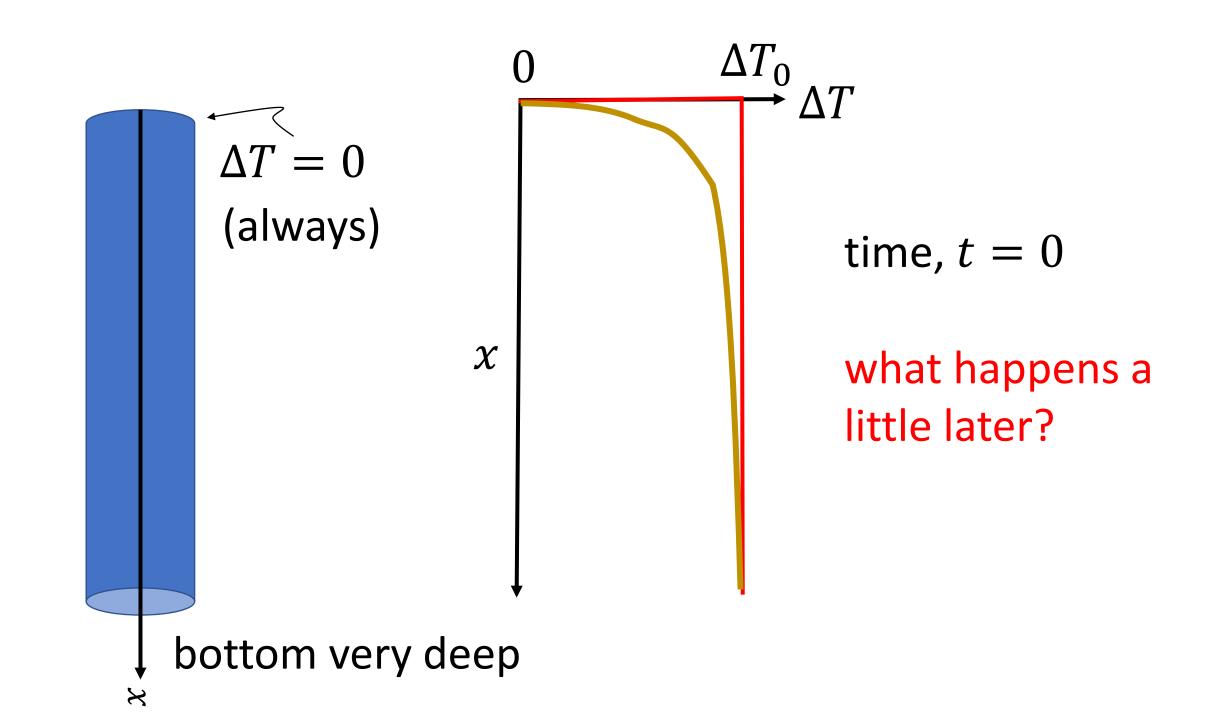
Back to the rod











 ΔT_0 ΔT $\Delta T = 0$ (always) time, t = 0 $\boldsymbol{\chi}$ what happens a little later? thickness of cooled region increases bottom very deep X

solution

 $\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$ the error function

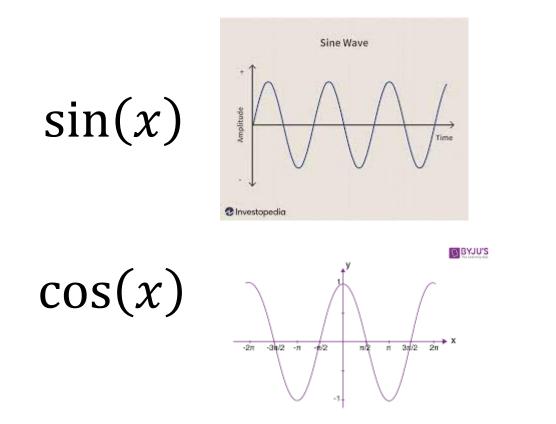
named function

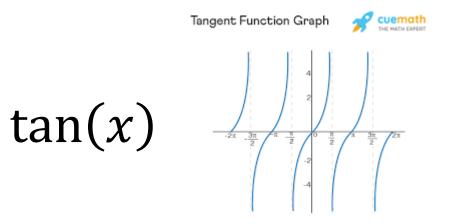
useful properties, more complicated than polynomials

which are the ones you study in trigonometry?

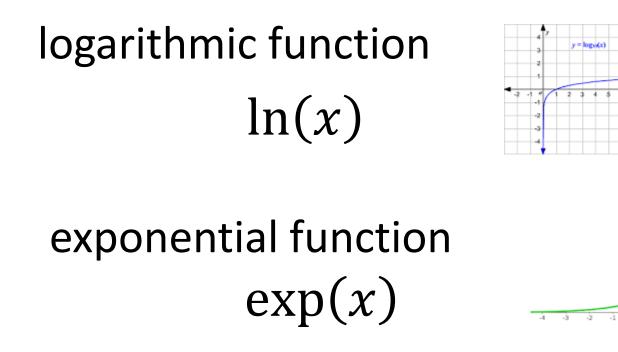
named function

useful properties, more complicated than polynomials

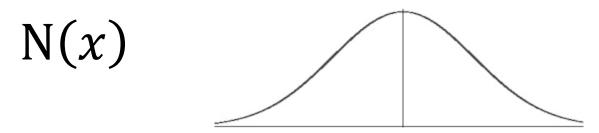




here are some others you've probably used



Normal or Gaussian function



 $f(x) = 2^{x}$

have you encountered any others?

have you encountered any others?

Anger function

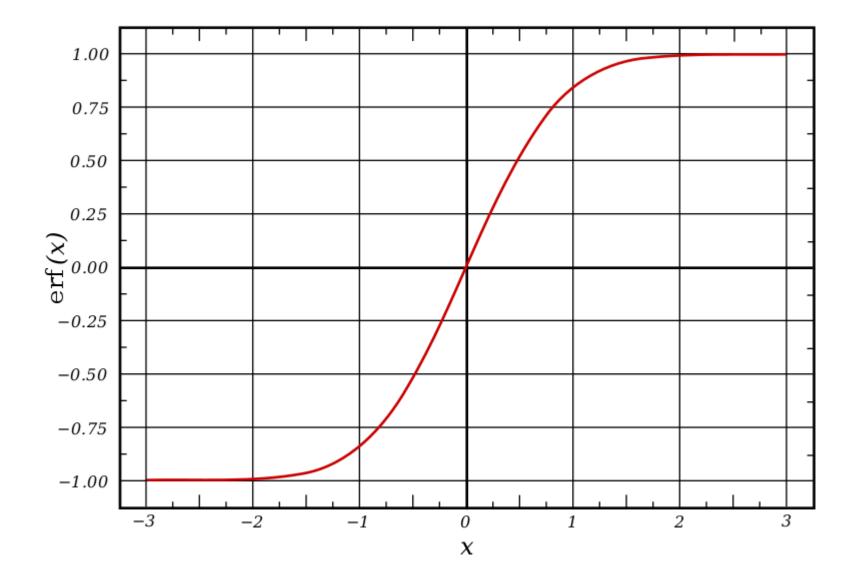
Bessel Function

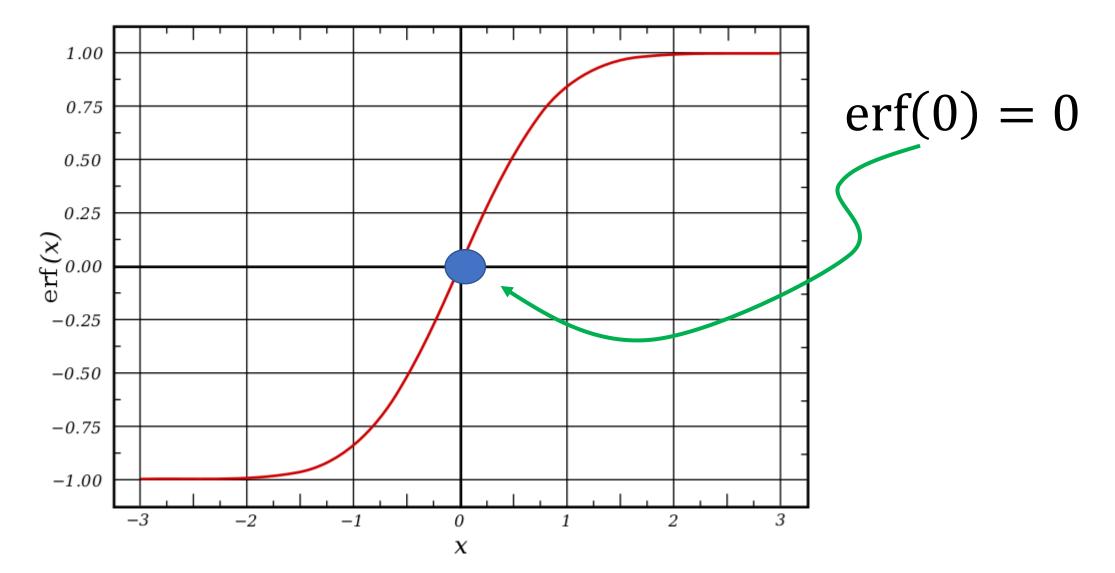
Chi-squared function

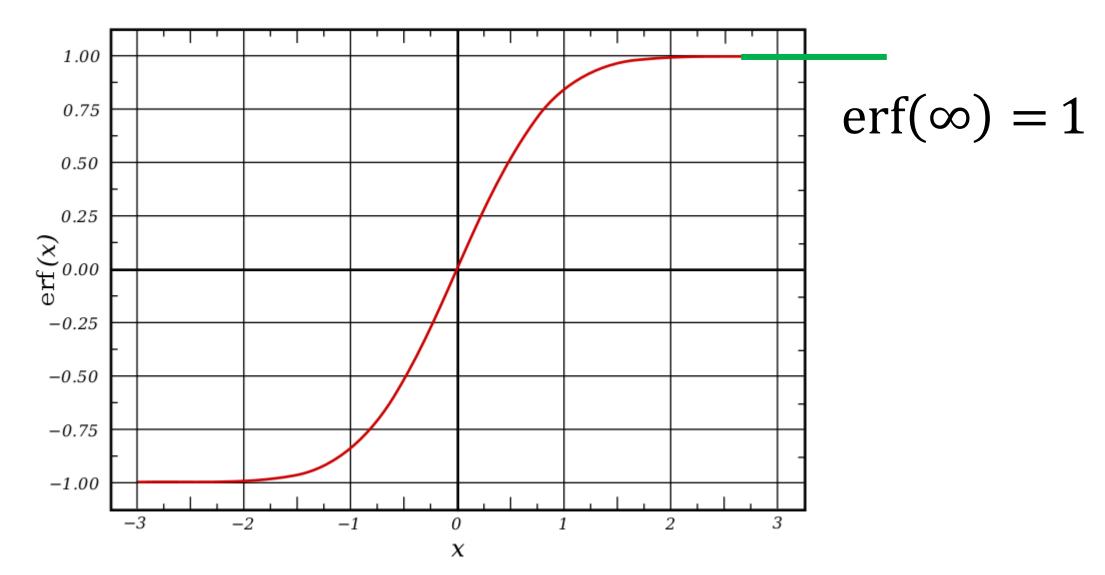
Dawson Function

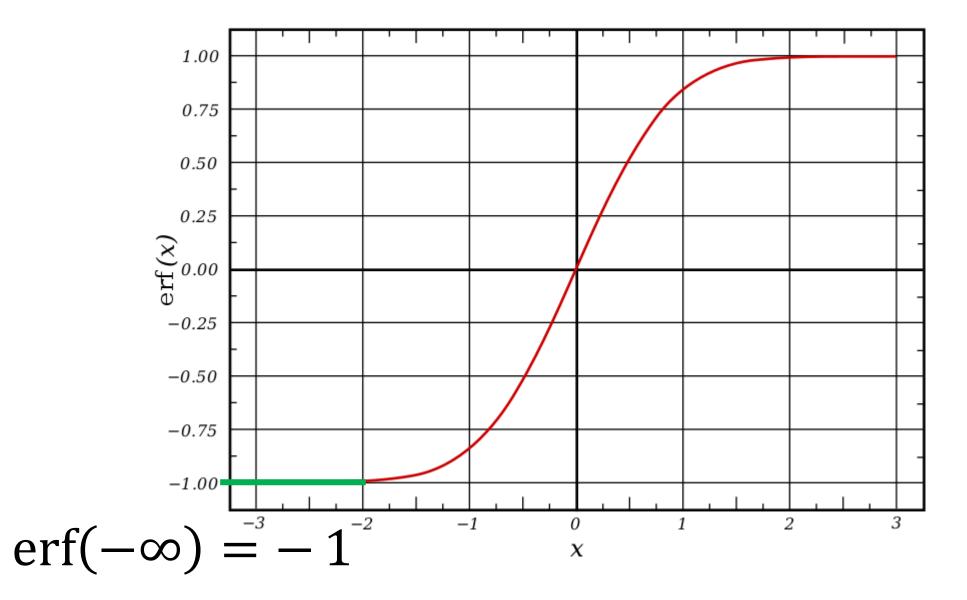
• • •

Zeta function

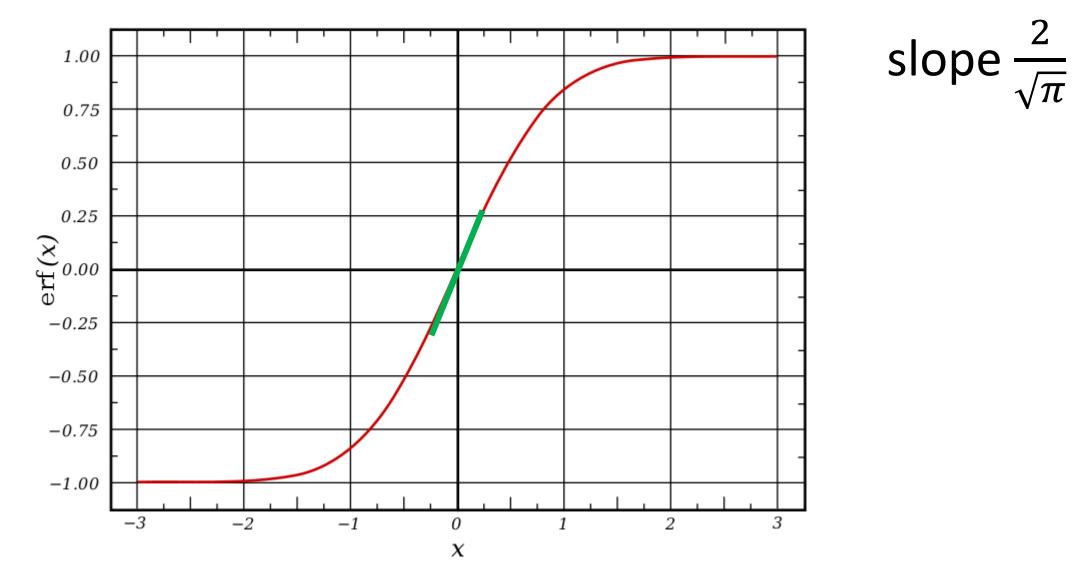






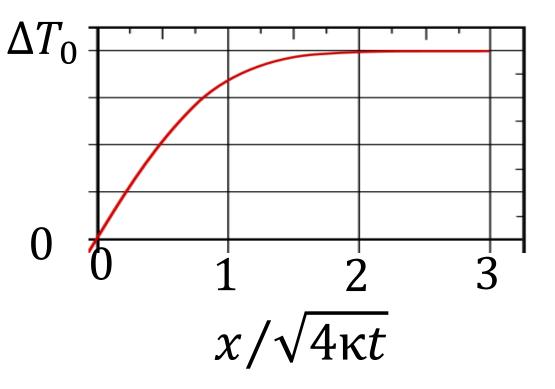


steepest near origin



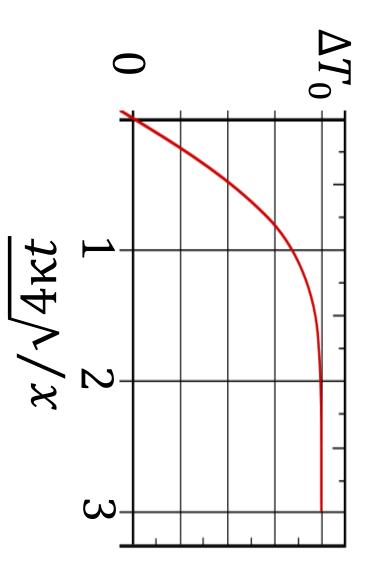
$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

we only care about the positive-x part



$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

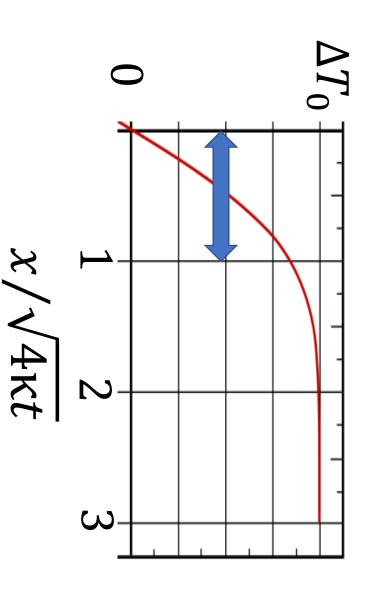
and we turn it sideways



$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

the "cooled part" with

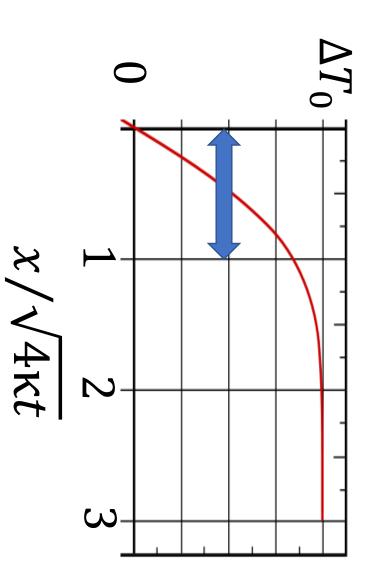
$$0 \le \frac{x}{\sqrt{4\kappa t}} \le 1$$



$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

"bottom of cooled part at"

$$x = \sqrt{4\kappa t}$$



$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

"bottom of cooled part at"

$$x = \sqrt{4\kappa t}$$

the bottom of the cool part deepens with the square root or time

$$x = \sqrt{4\kappa t} = \sqrt{\frac{4kt}{\rho c_p}}$$

granite

$$\rho = 2500 \frac{kg}{m^3}$$
$$c_p = 720 \frac{J}{kg^{\circ}C}$$
$$k = 3.1 \frac{J}{sm^{\circ}C}$$

how thick is the cooled zone after 100 million years?

$$1 \text{ yr} = 3.1 \times 10^7 \text{ s}$$

$$10^8 yr = 3.1 \times 10^{15} s$$

$$x = \sqrt{\frac{4kt}{\rho c_p}} \qquad k = 3.1 \frac{J}{sm^{\circ}C} \qquad c_p = 720 \frac{J}{kg^{\circ}C}$$

$$\gamma = \sqrt{\frac{4kt}{\rho c_p}} \qquad \rho = 2500 \frac{kg}{m^3} \qquad t = 3.1 \times 10^{15} \text{ s}$$

$$x = \sqrt{\frac{4 \times 3.1 \times 3.1 \times 10^{15}}{2500 \times 720}} \frac{J \times m^3 \times s \times kg^{\circ}C}{sm^{\circ}C \times kg \times J}$$
$$x = \sqrt{2.14 \times 10^{10}m^2} = 146000 \text{ m} = 146 \text{ km}$$

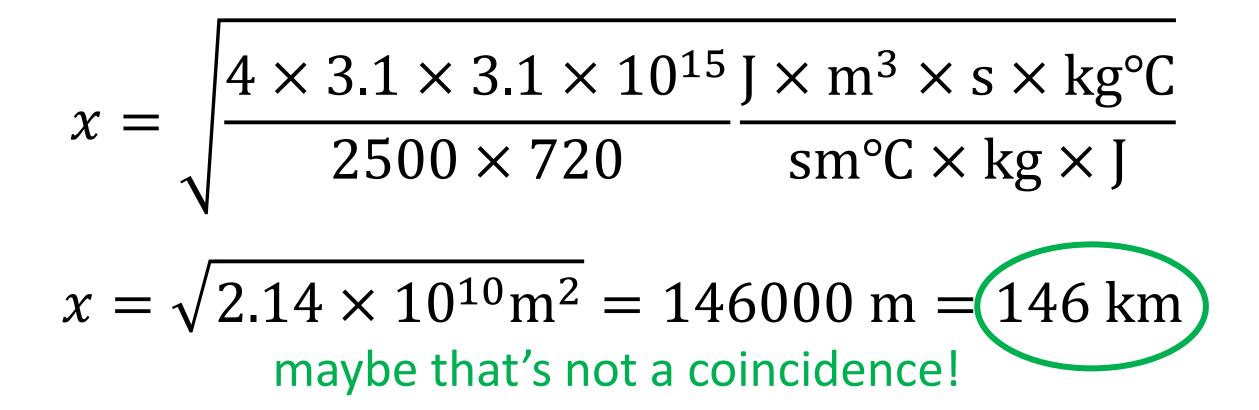
$$x = \sqrt{\frac{4kt}{\rho c_p}} \qquad k = 3.1 \frac{J}{sm^{\circ}C} \qquad c_p = 720 \frac{J}{kg^{\circ}C}$$

$$\sqrt{\frac{4kt}{\rho c_p}} \qquad \rho = 2500 \frac{kg}{m^3} \qquad t = 3.1 \times 10^{15} \text{ s}$$

$$x = \sqrt{\frac{4 \times 3.1 \times 3.1 \times 10^{15} \text{ J} \times \text{m}^3 \times \text{s} \times \text{kg}^\circ\text{C}}{2500 \times 720}} \frac{\text{J} \times \text{m}^3 \times \text{s} \times \text{kg}^\circ\text{C}}{\text{sm}^\circ\text{C} \times \text{kg} \times \text{J}}}$$
$$x = \sqrt{2.14 \times 10^{10} \text{m}^2} = 146000 \text{ m} = 146 \text{ km}$$
roughly the same thickness as the lithosphere

$$x = \sqrt{\frac{4kt}{\rho c_p}} \qquad k = 3.1 \frac{J}{sm^{\circ}C} \qquad c_p = 720 \frac{J}{kg^{\circ}C}$$

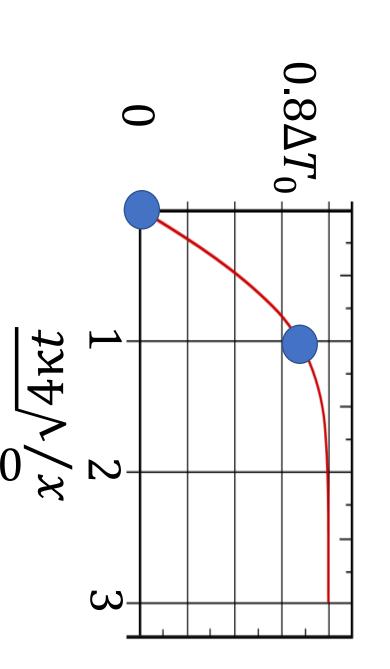
$$\sqrt{\frac{4kt}{\rho c_p}} \qquad \rho = 2500 \frac{kg}{m^3} \qquad t = 3.1 \times 10^{15} \text{ s}$$



$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

what's the average temperature of the "cooled part"?

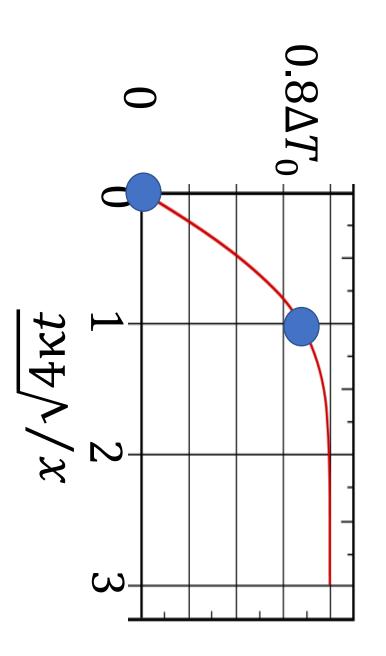
bottom 0 top about $0.8\Delta T_0$ pretty linear in between



$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

what's the average temperature of the "cooled part"?

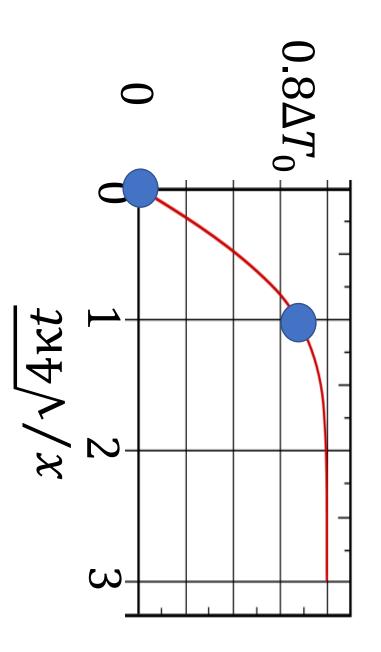
so about top about $0.4\Delta T_0$



$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

How much did it cool?

started at ΔT_0 cooled on average to about $0.4\Delta T_0$

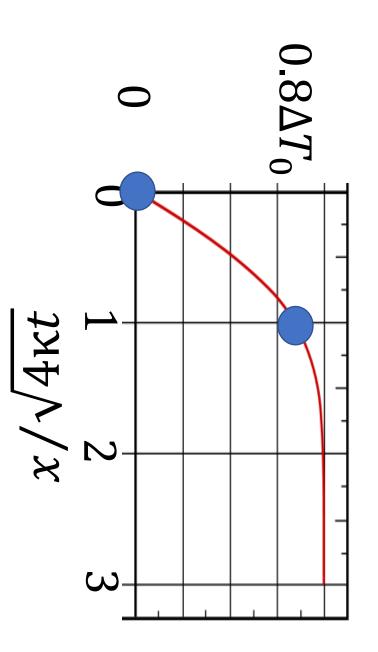


$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

How much did it cool?

started at ΔT_0 cooled on average to about $0.4\Delta T_0$

so cooled $0.6\Delta T_0$



Thermal expansion and contraction

fractional change in length L of a material is proporpional to the chance in temperature

$$\frac{\Delta L}{L} = \alpha \Delta T$$

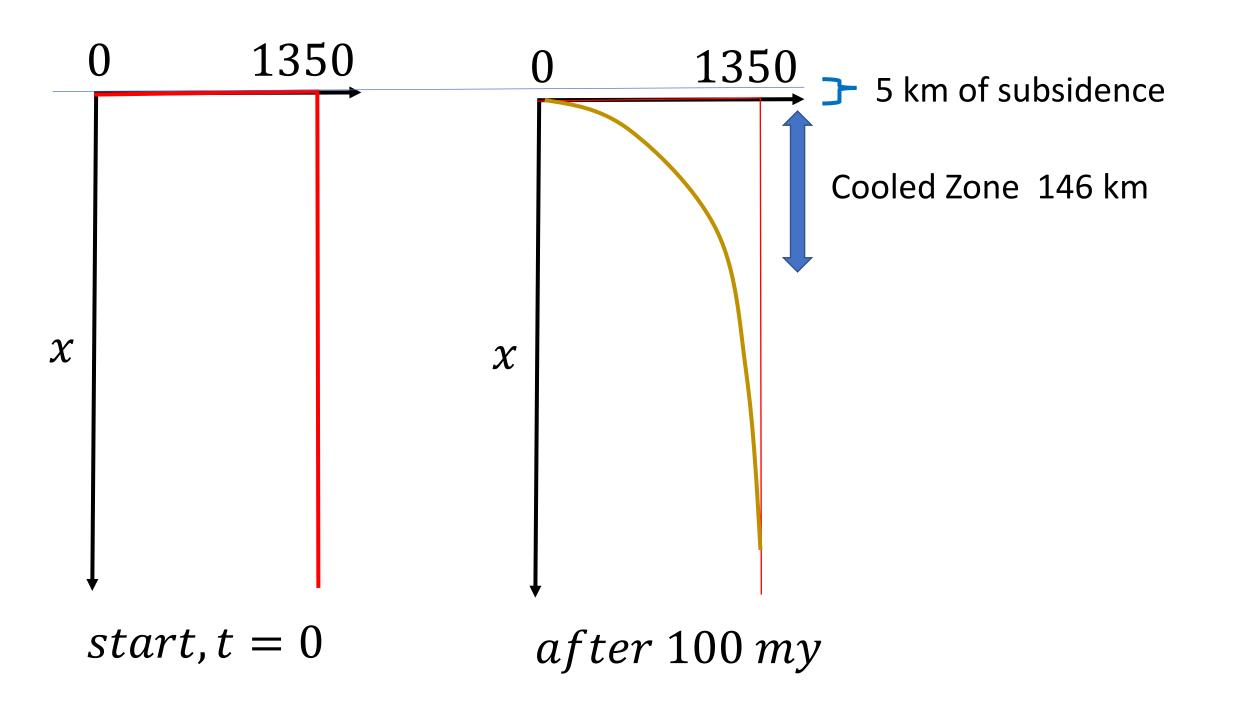
coefficient of thermal expansion α

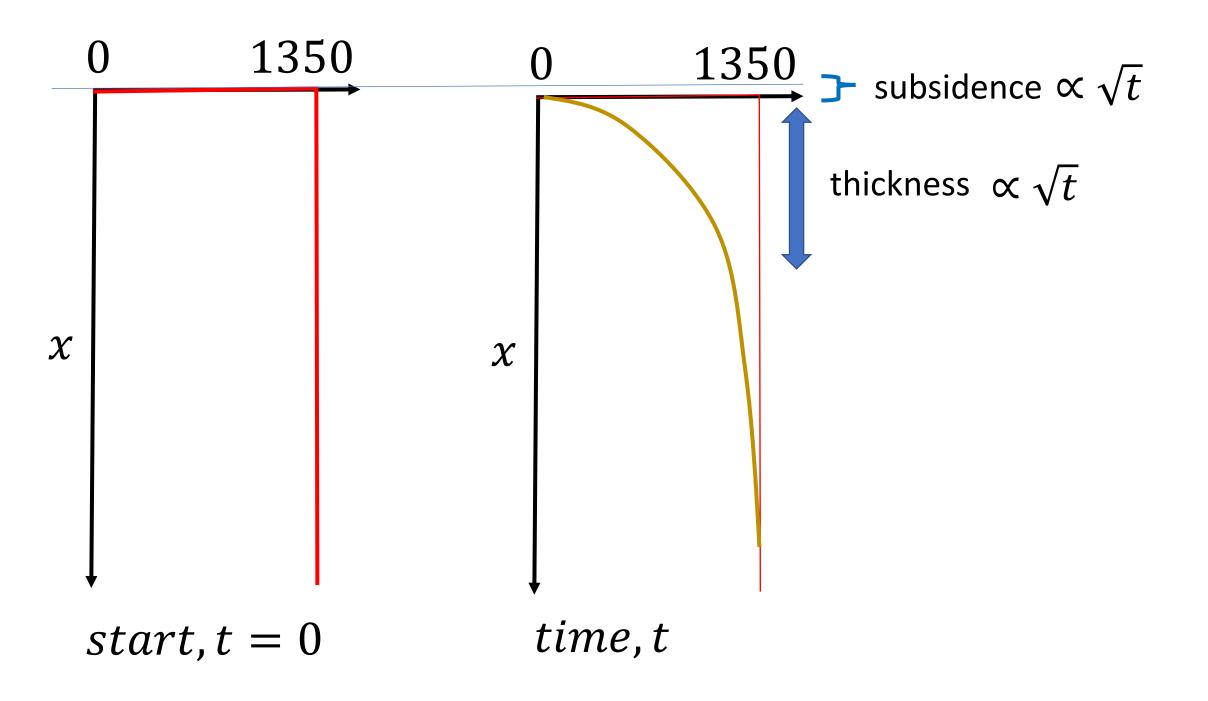
for granite
$$\alpha = 4 \times 10^{-5} \frac{1}{\circ C}$$

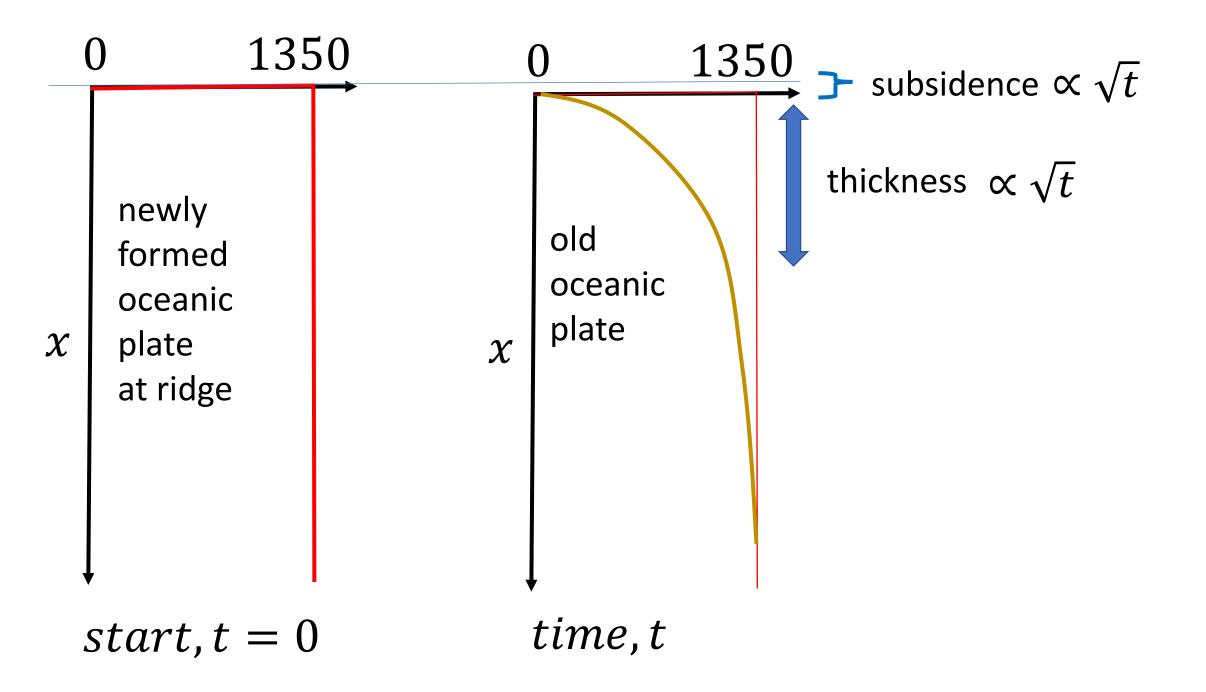
starting at $\Delta T_0 = 1350$ °C after 100 million years

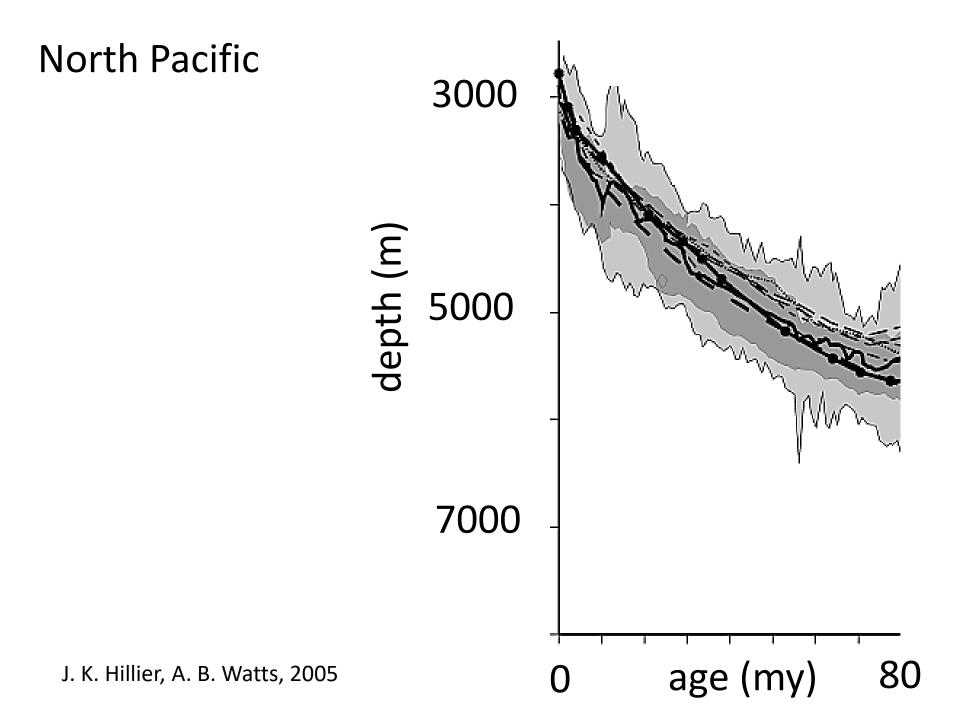
thickness of the cooled part L = 146000 m change in temperature $0.6\Delta T_0 = 810$ °C

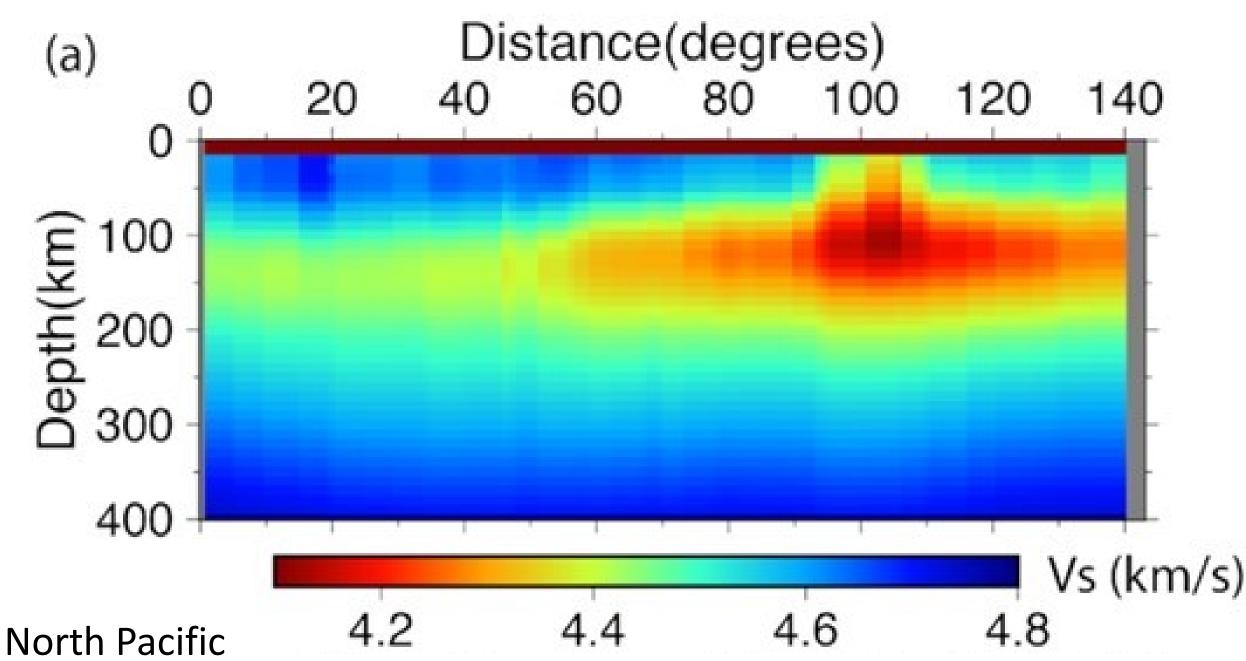
$$\frac{\Delta L}{L} = \alpha \Delta T$$
 so $\Delta L = \alpha \Delta T L = 4730$ m



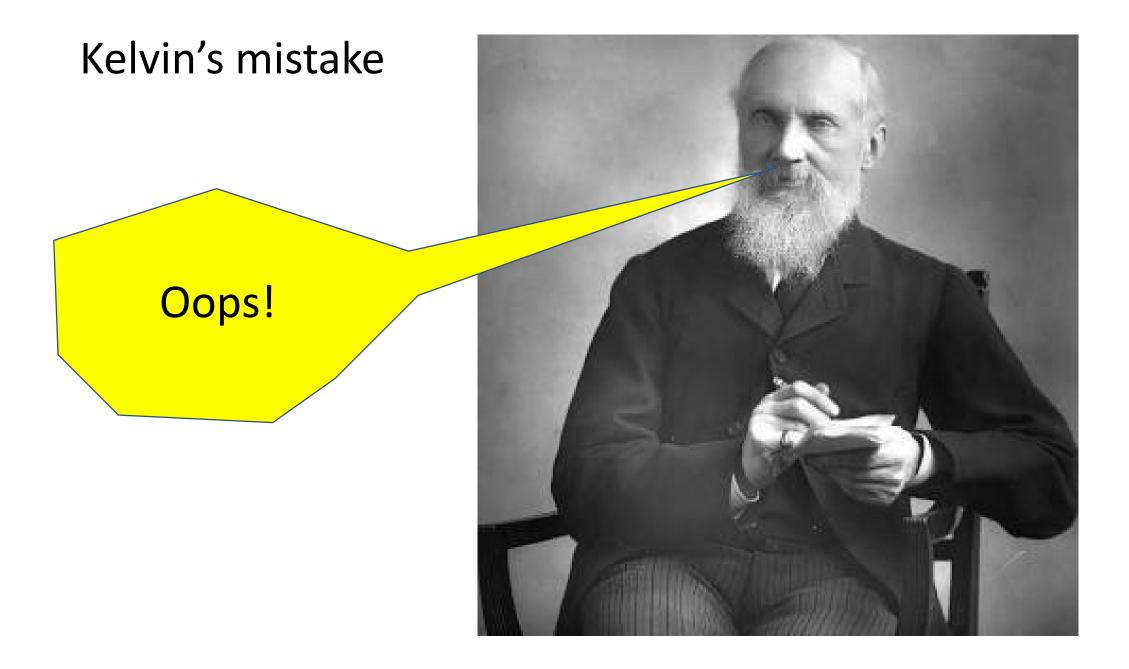








Celia L Eddy, Göran Ekström, Meredith Nettles, 2022



Kelvin's mistake

temperature

$$\Delta T(x,t) = \Delta T_0 \operatorname{erf}\left\{\frac{x}{\sqrt{4\kappa t}}\right\}$$

spatial derivative

$$\frac{d}{dx}\Delta T(x=0) = \frac{\Delta T_0}{\sqrt{4\kappa t}} \left[\frac{d}{dx} \operatorname{erf}\{x\}\right]_{x=0} = \frac{\Delta T_0}{\sqrt{4\kappa t}} \frac{2}{\sqrt{\pi}}$$

surface heat flow $q = -k \frac{d\Delta T}{dx} = -2 \frac{\Delta T_0 k}{\sqrt{4\pi\kappa t}}$ Kelvin's mistake surface heat flow $q = -2 \frac{\Delta T_0 k}{\sqrt{4\pi\kappa t}}$

at what time is hear flow $q = 0.06 \text{ W/m}^2$?

$$t = \frac{(\Delta T_0)^2 k \rho c_p}{\pi q^2} = 9 \times 10^{14} s$$
$$= 30 \text{ million years}$$

Kelvin's mistake surface heat flow $q = -2 \frac{\Delta T_0 k}{\sqrt{4\pi\kappa t}}$

at what time is hear flow $q = 0.06 \text{ W/m}^2$?

$$t = \frac{(\Delta T_0)^2 k \rho c_p}{\pi q^2} = 9 \times 10^{14} s$$
$$= 30 \text{ million years}$$

Kelvin's mistake was to interpret this number of the age of the Earth Kelvin's mistake surface heat flow $q = -2 \frac{\Delta T_0 k}{\sqrt{4\pi\kappa t}}$

at what time is hear flow $q = 0.06 \text{ W/m}^2$?

$$t = \frac{(\Delta T_0)^2 k \rho c_p}{\pi q^2} = 9 \times 10^{14} s$$
$$= 30 \text{ million years}$$

What is really is the age the ocean plate that has cooled enough for its heat flow to drop to 0.06 W/m²