Solid Earth Dynamics

Bill Menke, Instructor

Lecture 5

Today:

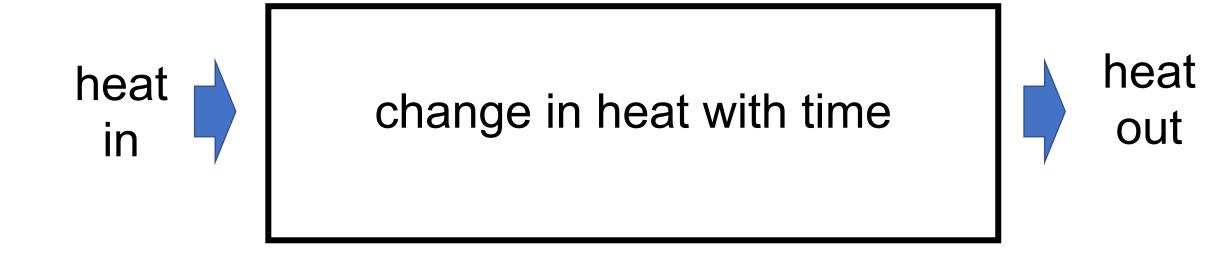
Advection

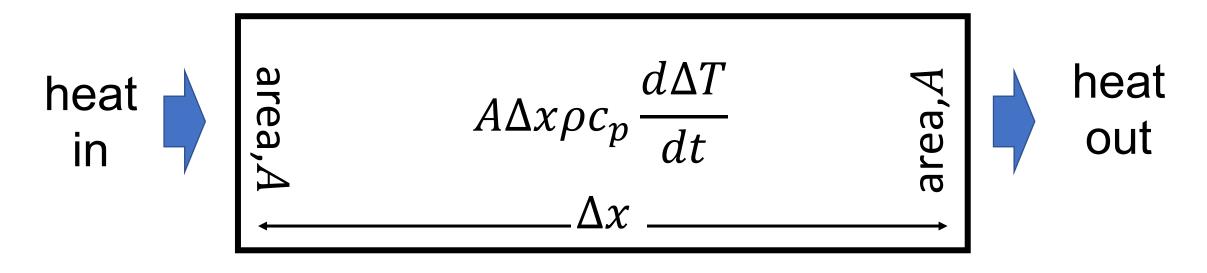
Convection

Today:

Advection model of a hot spring

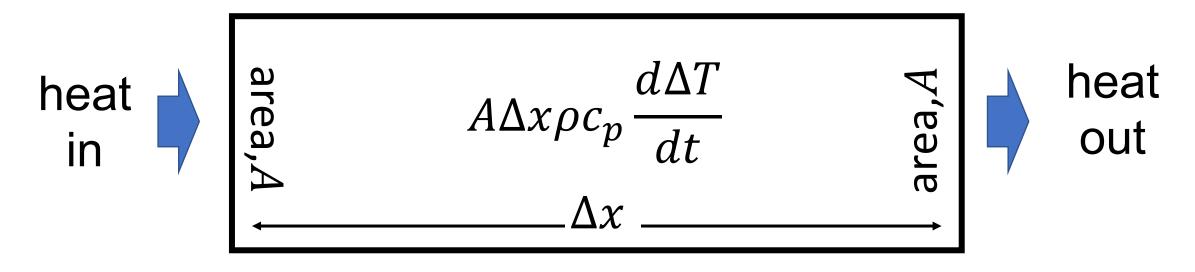
Convection test of whether or not convection will occur





 $A\rho c_p \Delta T(0)v(0)$

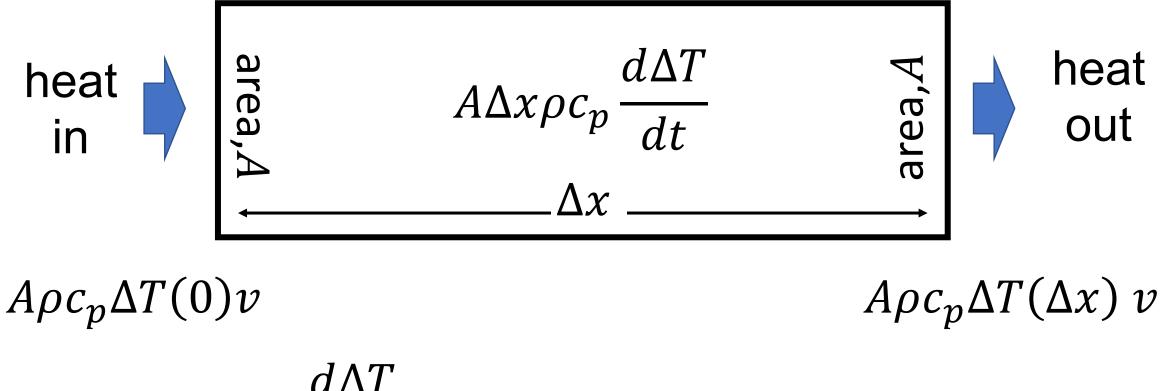
 $A\rho c_p \Delta T(\Delta x) v(\Delta x)$



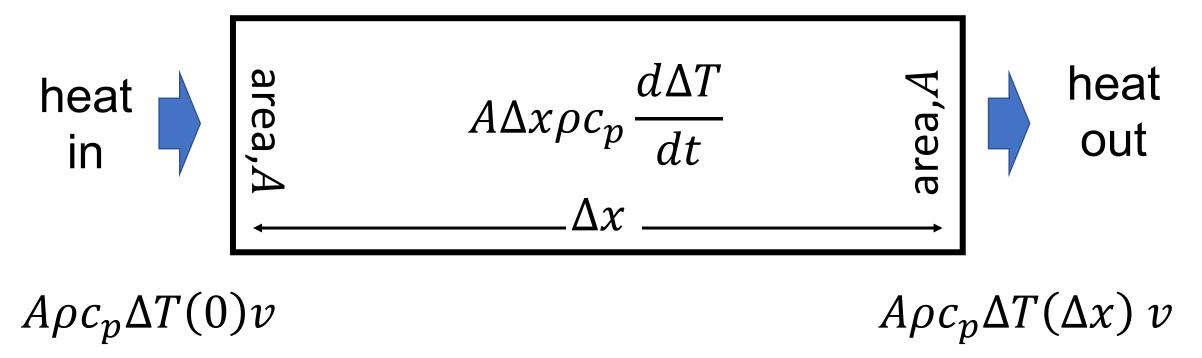
 $A\rho c_p \Delta T(0)v$

 $A\rho c_p \Delta T(\Delta x) v$

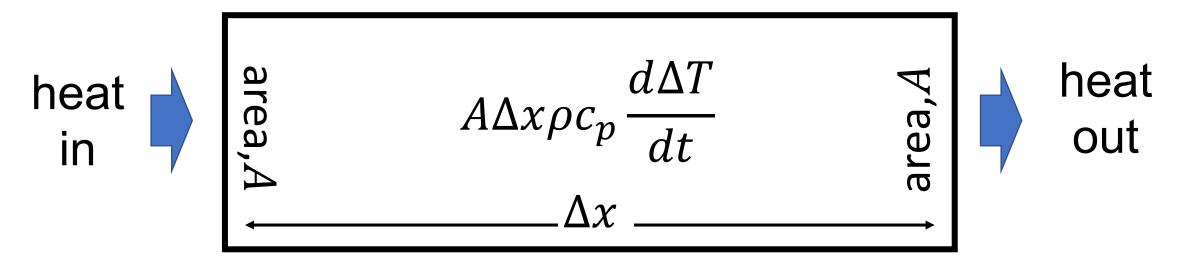
incompressible assumption: $v(0) = v(\Delta x)$



$$A\Delta x\rho c_p \frac{d\Delta T}{dt} = -A\rho c_p \Delta T(\Delta x) + vA\rho c_p \Delta T(0)v$$



 $\rho c_p \, \frac{d\Delta T}{dt} = -\rho c_p v \frac{\Delta T(\Delta x) + \Delta T(0)}{\Delta x}$



 $A\rho c_p \Delta T(0)v$

 $A\rho c_p \Delta T(\Delta x) v$

$$\rho c_p \ \frac{d\Delta T}{dt} = -\rho c_p v \frac{d\Delta T}{dx}$$

$$\rho c_p \ \frac{d\Delta T}{dt} = -\rho c_p v \frac{d\Delta T}{dx}$$

conservation of energy when conduction moves heat $\rho c_p \ \frac{d\Delta T}{dt} = k \frac{d^2 \Delta T}{dx^2}$

$$\rho c_p \ \frac{d\Delta T}{dt} = -\rho c_p v \frac{d\Delta T}{dx}$$

conservation of energy when conduction moves heat $\rho c_p \ \frac{d\Delta T}{dt} = k \frac{d^2 \Delta T}{dx^2}$

conservation of energy when both move heat

$$\rho c_p \, \frac{d\Delta T}{dt} = -\rho c_p v \frac{d\Delta T}{dx} + k \frac{d^2 \Delta T}{dx^2}$$

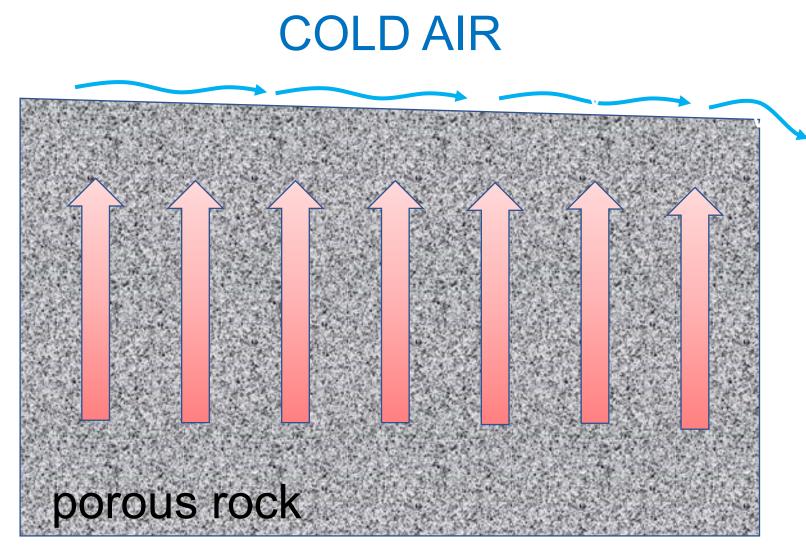
$$\rho c_p \ \frac{d\Delta T}{dt} = -\rho c_p v \frac{d\Delta T}{dx}$$

conservation of energy when conduction moves heat $\rho c_p \ \frac{d\Delta T}{dt} = k \frac{d^2 \Delta T}{dx^2}$

conservation of energy when both move heat

$$\rho c_p \left(\frac{d\Delta T}{dt} + \nu \frac{d\Delta T}{dx} \right) = k \frac{d^2 \Delta T}{dx^2}$$

geothermal area in Iceland



model of geothermal area in Iceland

HOT WATER RESERVOIR

upward conduction-advection of heat through porous rock

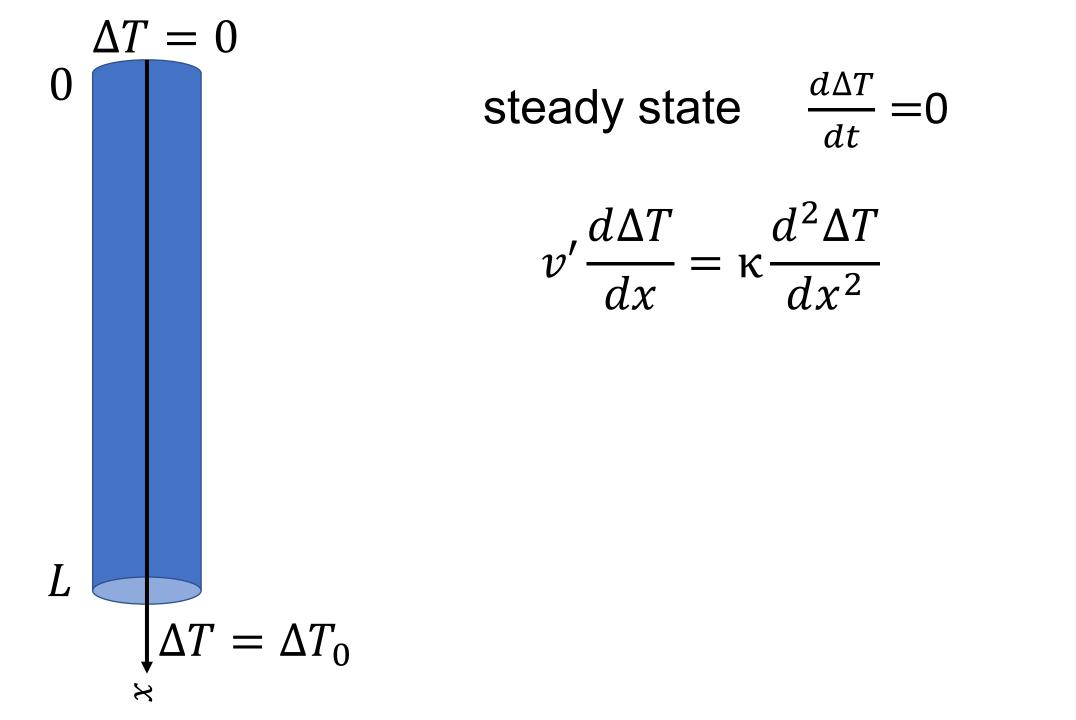
$$\rho c_p \left(\frac{d\Delta T}{dt} + v' \frac{d\Delta T}{dx} \right) = k \frac{d^2 \Delta T}{dx^2}$$

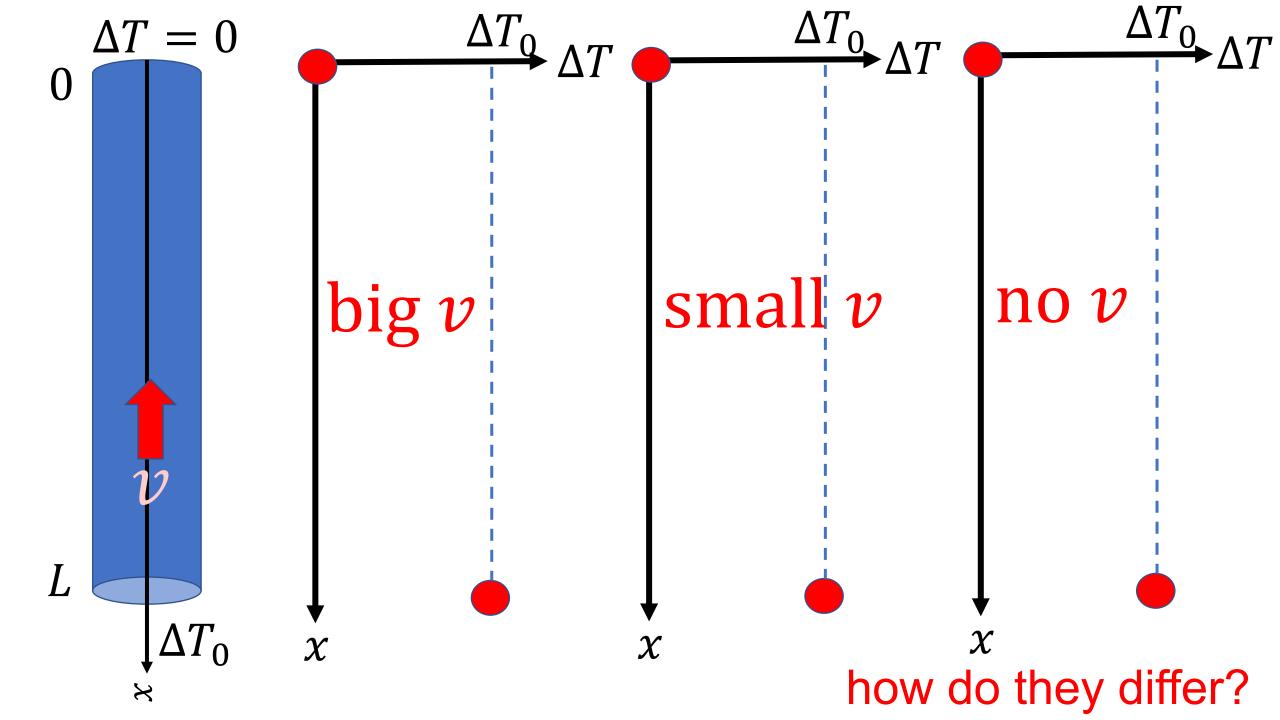
effective velocity, v'= ϕ v, porosity, ϕ

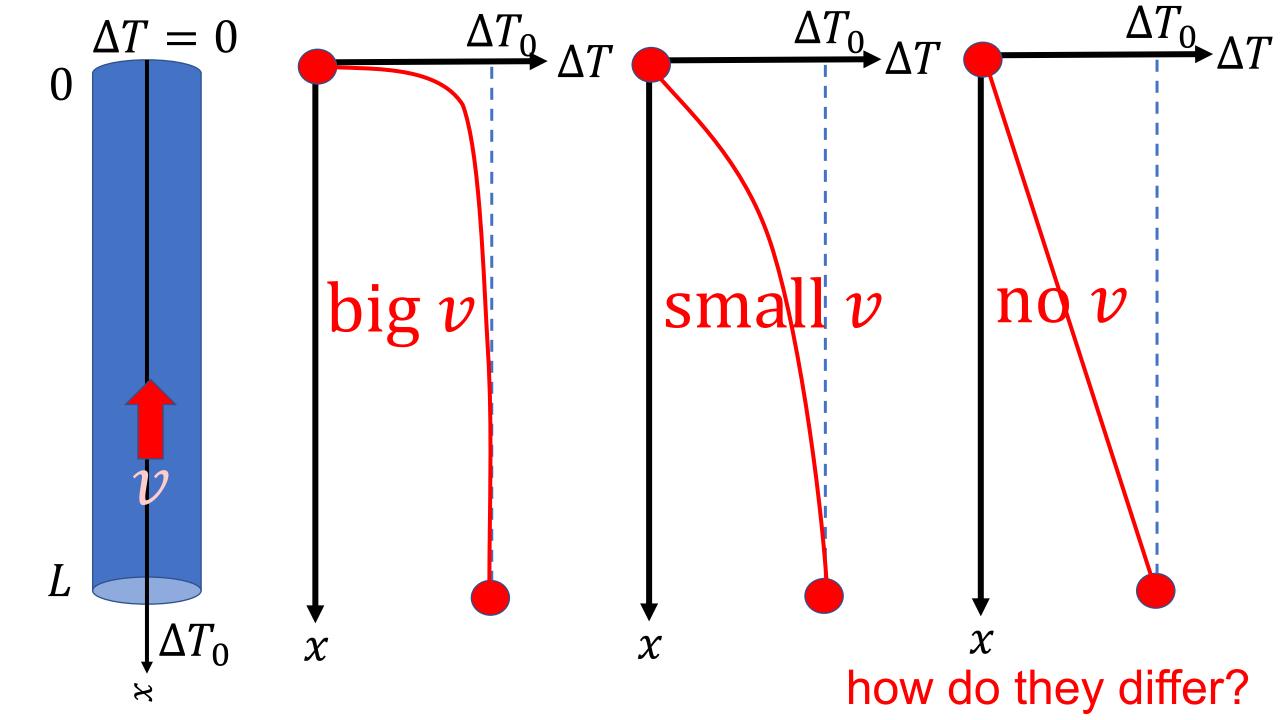
 $L \qquad \downarrow \Delta T = \Delta T_0$

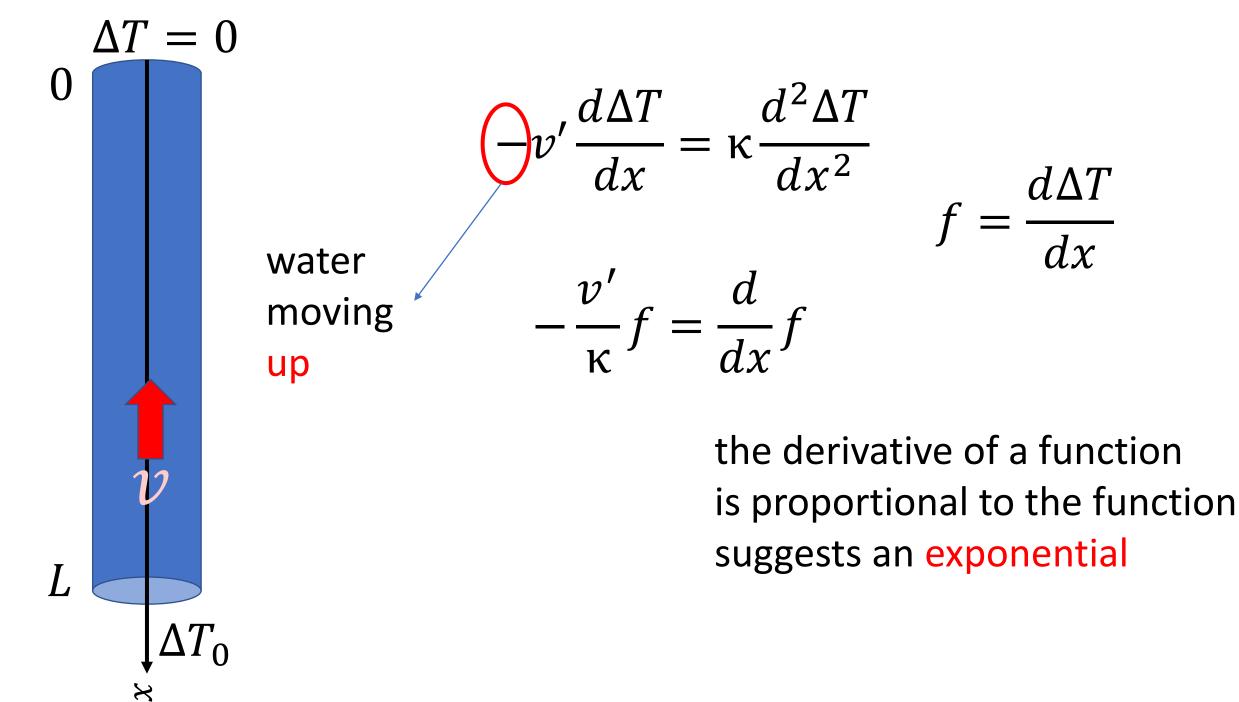
 $\Delta T = 0$

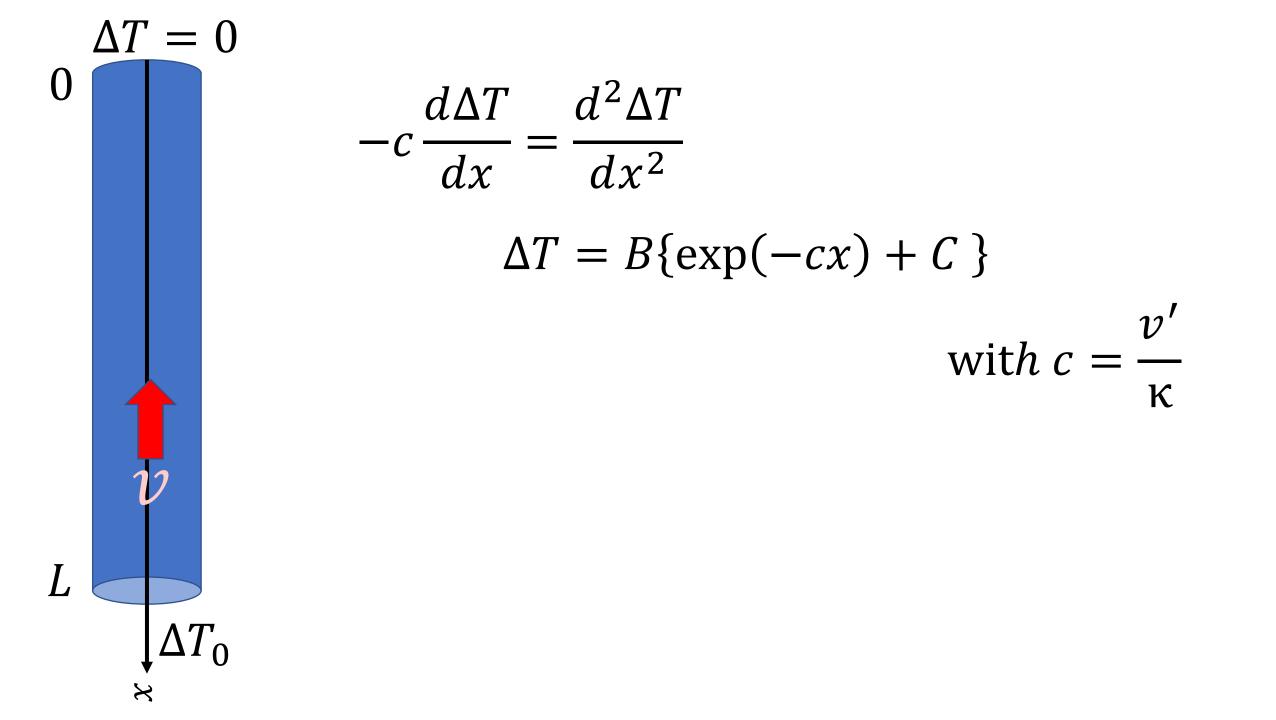
()











$$\Delta T = 0$$

$$-c \frac{d\Delta T}{dx} = \frac{d^2 \Delta T}{dx^2}$$

$$\Delta T = B\{\exp(-cx) + C\} \text{ with } c = \frac{v'}{\kappa}$$

$$\frac{d\Delta T}{dx} = -Bc \exp(-cx)$$

$$\frac{d^2 \Delta T}{dx^2} = Bc^2 \exp(-cx)$$
compatible? Yes

 $\Delta T = 0$ ()chose B and C so temperature correct at ends $\Delta T = B\{\exp(-cx) + C\}$ L

X

chose B and C so temperature correct at ends

 $\Delta T = 0$

0

L

X

$$\Delta T = B\{\exp(-cx) - 1\}$$
$$\Delta T(x = 0) = 0$$

chose B and C so temperature correct at ends

 $\Delta T = 0$

0

L

X

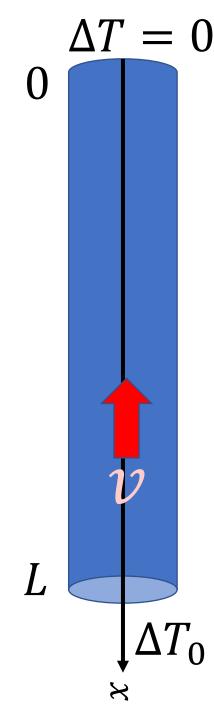
$$\Delta T = \frac{\Delta T_0}{\{\exp(-cL) - 1\}} \{\exp(-cx) - 1\}$$

$$\Delta T(x=L) = \Delta T_0$$

chose B and C so temperature correct at ends

$$\Delta T = \Delta T_0 \frac{\{\exp(-cx) - 1\}}{\{\exp(-cL) - 1\}} \quad \text{with } c = \frac{v'}{\kappa}$$

whew!



Convection

temperature causes buoyancy

buoyancy causes flow

flow changes temperature

Convection

temperature causes buoyancy

buoyancy causes flow

flow changes temperature

Is this positive of negative feedback?

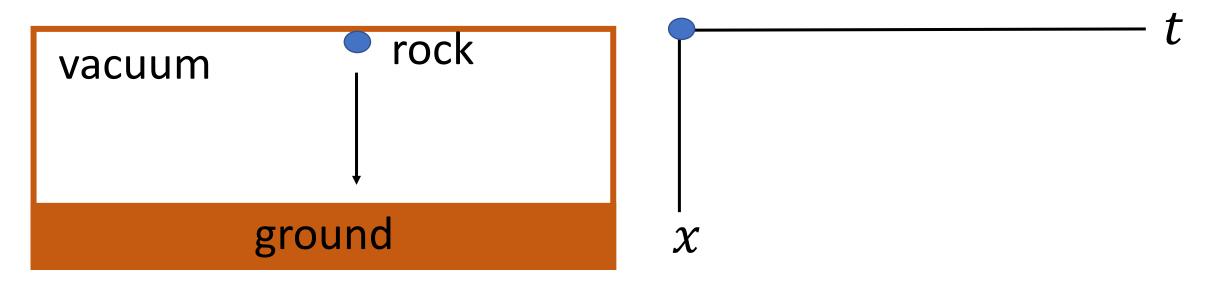
temperature causes buoyancy

buoyancy causes flow

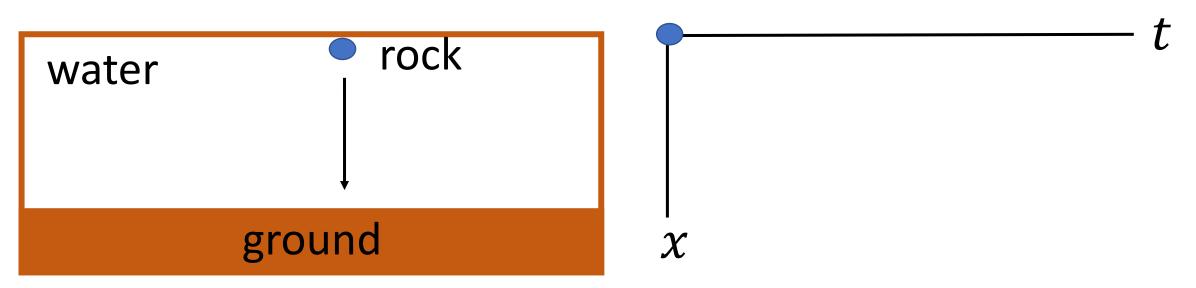
negative feedback

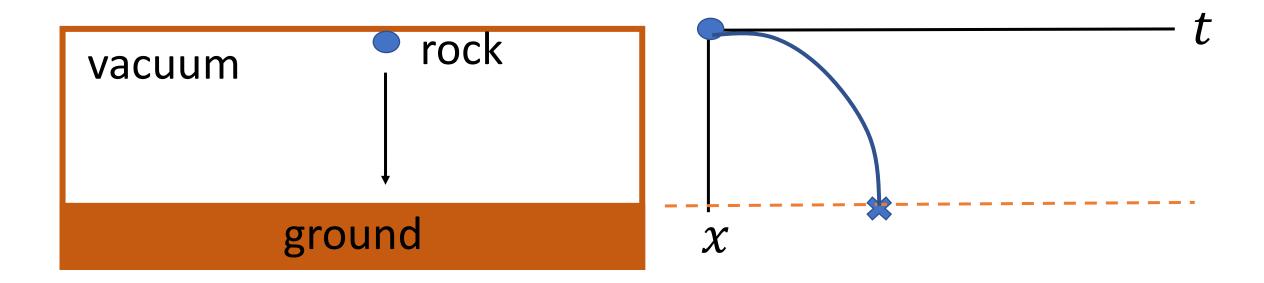
flow speeds up reduction of temperature

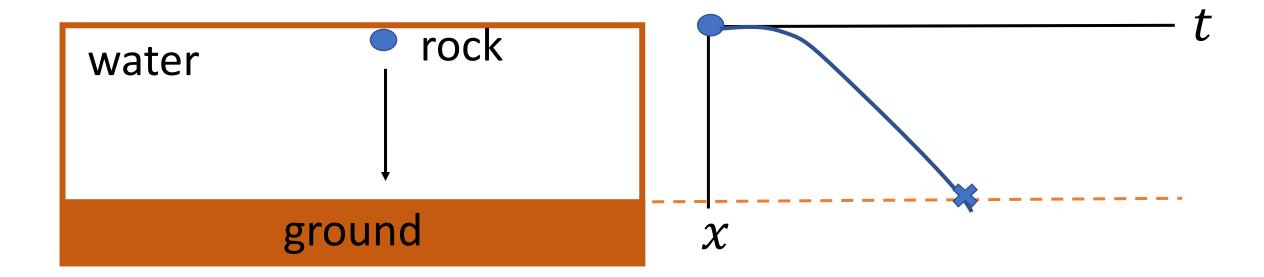
less buoyancy, less flow

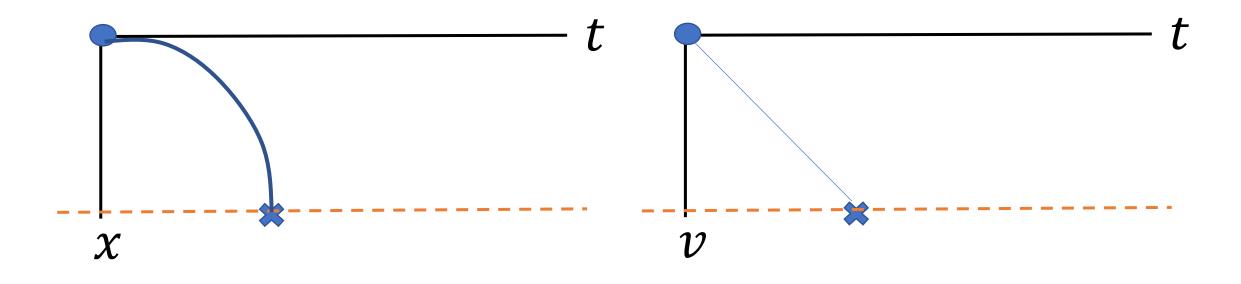


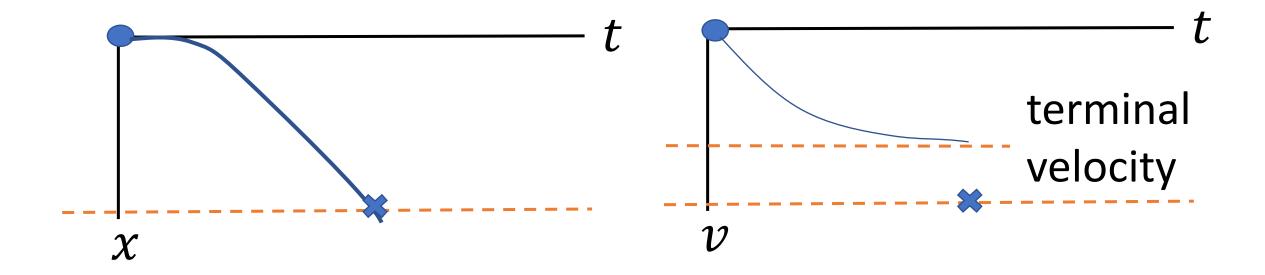
which takes longer to get to the ground?

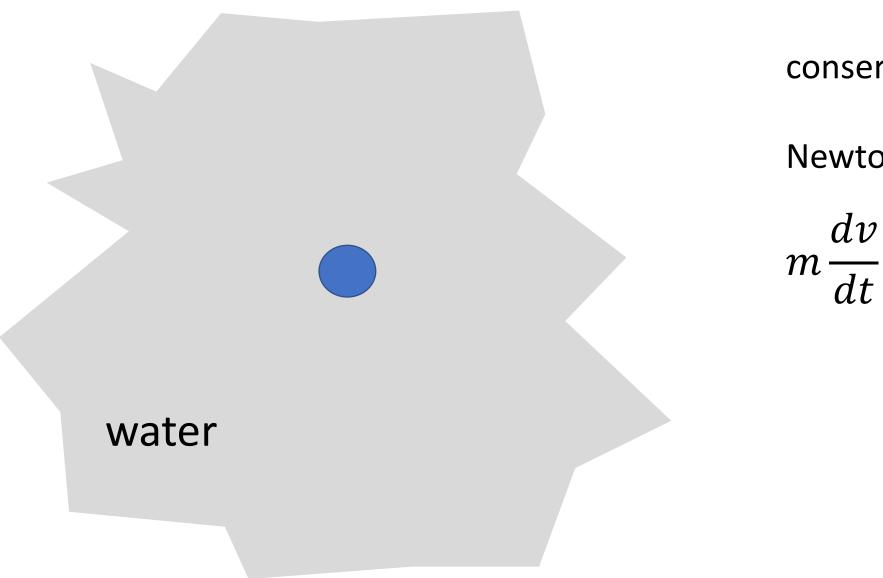








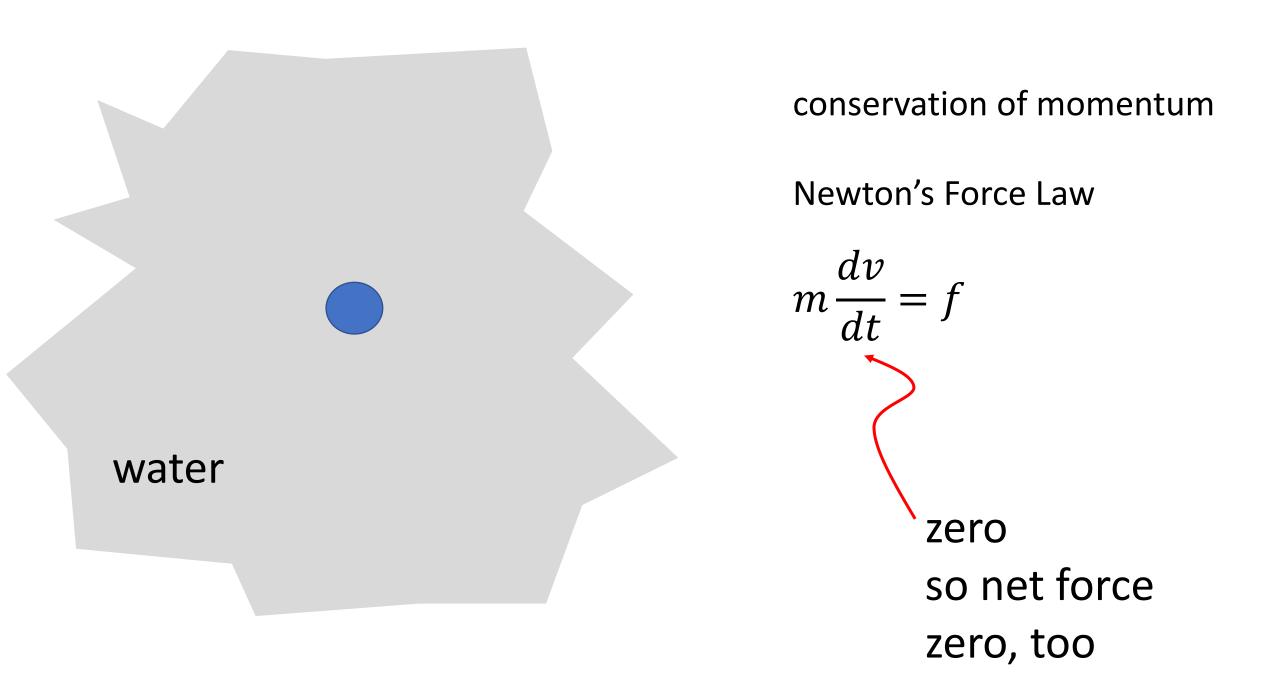


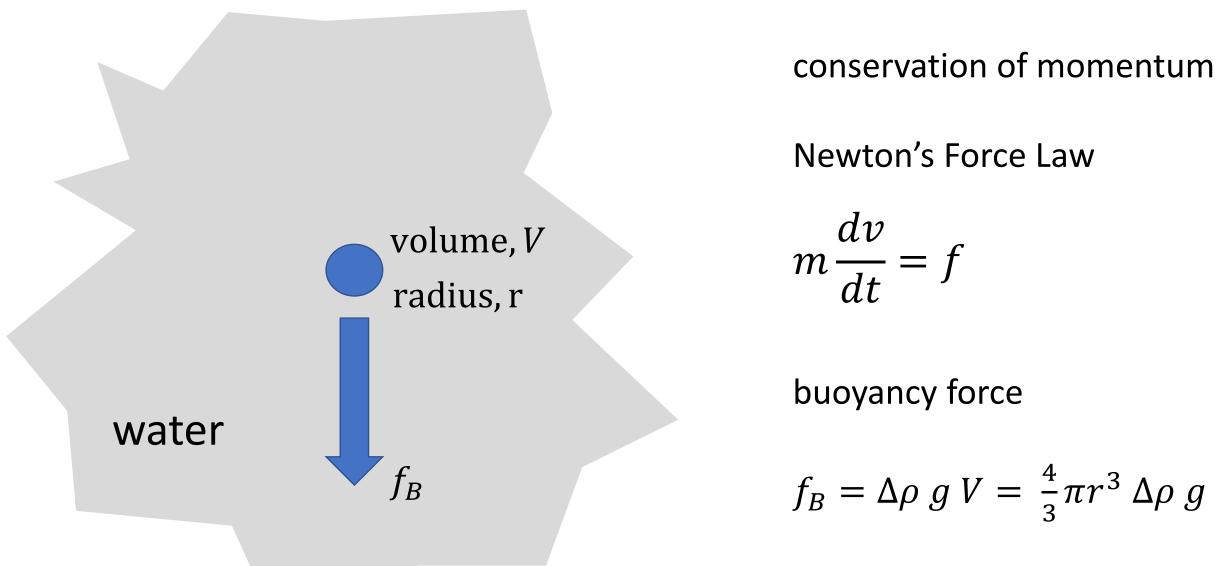


conservation of momentum

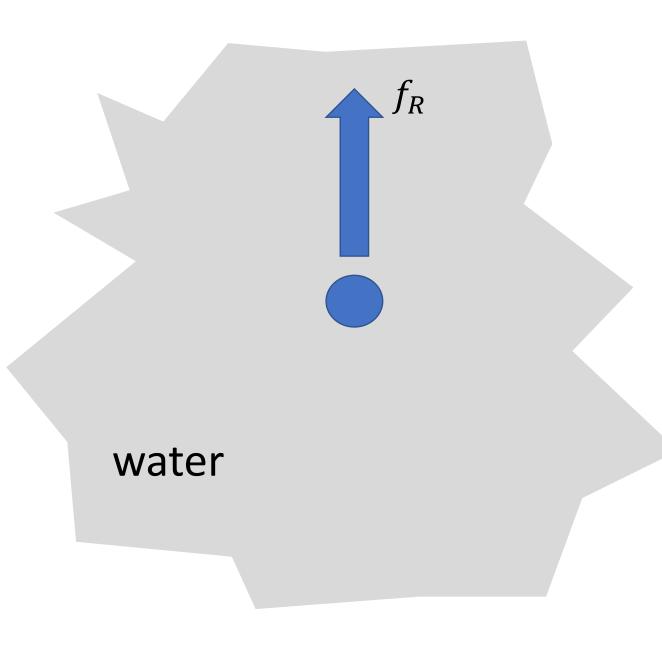
Newton's Force Law

 $m\frac{d\nu}{dt} = f$





Newton's Force Law



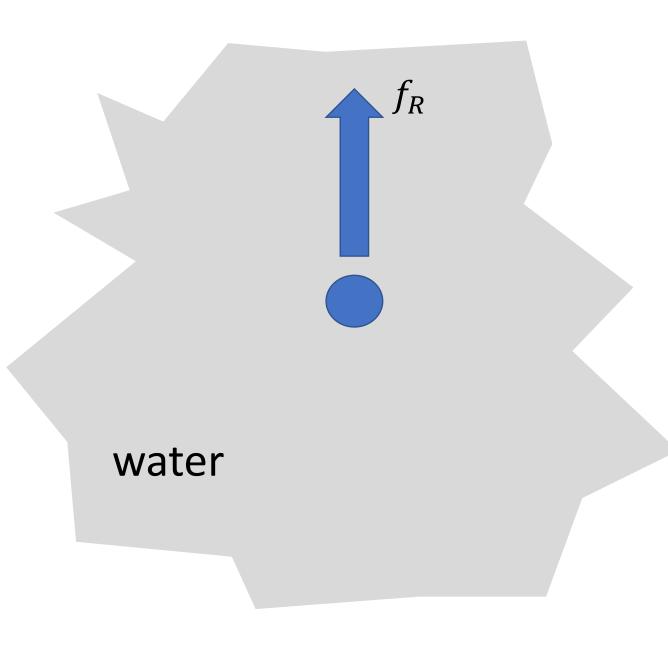
conservation of momentum

Newton's Force Law

 $m\frac{dv}{dt} = f$

resistive force, f_R

velocity of object size of object viscosity of water



conservation of momentum

Newton's Force Law

 $m\frac{dv}{dt} = f$

resistive force

 $f_R = c \,\mu r \,\nu$

viscosity, μ constant, $c = 6\pi$

conservation of momentum Newton's Force Law $0 = f_B - f_R$ object $0 = \frac{4}{3}\pi r^3 \,\Delta\rho \,g - 6\pi \,r\,\mu\,v$ water terminal velocity, v $v = \frac{\frac{4}{3}\pi r^{3}\,\Delta\rho\,g}{6\pi\,r\,\mu} = \frac{2r^{2}\,\Delta\rho\,g}{9\,\mu}$

conservation of momentum Newton's Force Law $0 = f_B - f_R$ object $0 = \frac{4}{3}\pi r^3 \,\Delta\rho \,g - 6\pi \,r\,\mu\,\nu$ water terminal velocity, v $v = \frac{\frac{4}{3}\pi r^{3}\,\Delta\rho\,g}{6\pi\,r\,\mu} = \frac{2r^{2}\,\Delta\rho\,g}{9\,\mu}$

Stokes' law

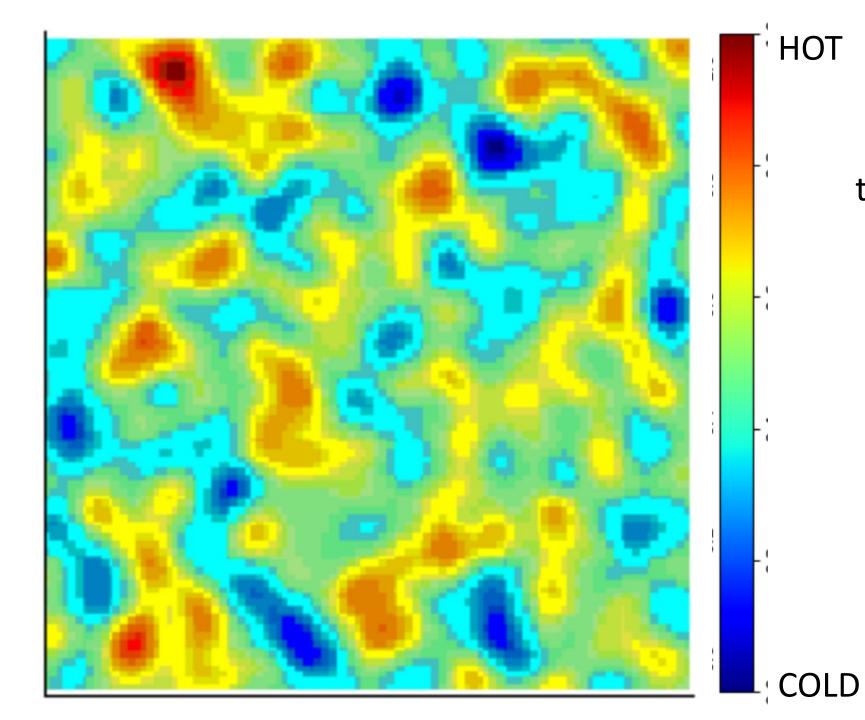
viscosity, μ

water,
$$\mu = 10^{-3}$$
 Pa-s
honey, $\mu = 5$ Pa-s
basaltic magma, $\mu = 100$ Pa-s
upper mantle rock, $\mu = 4 \times 10^{19}$ Pa-s
Pascal-second, Pa-s: $1 \frac{\text{kg}}{\text{ms}}$

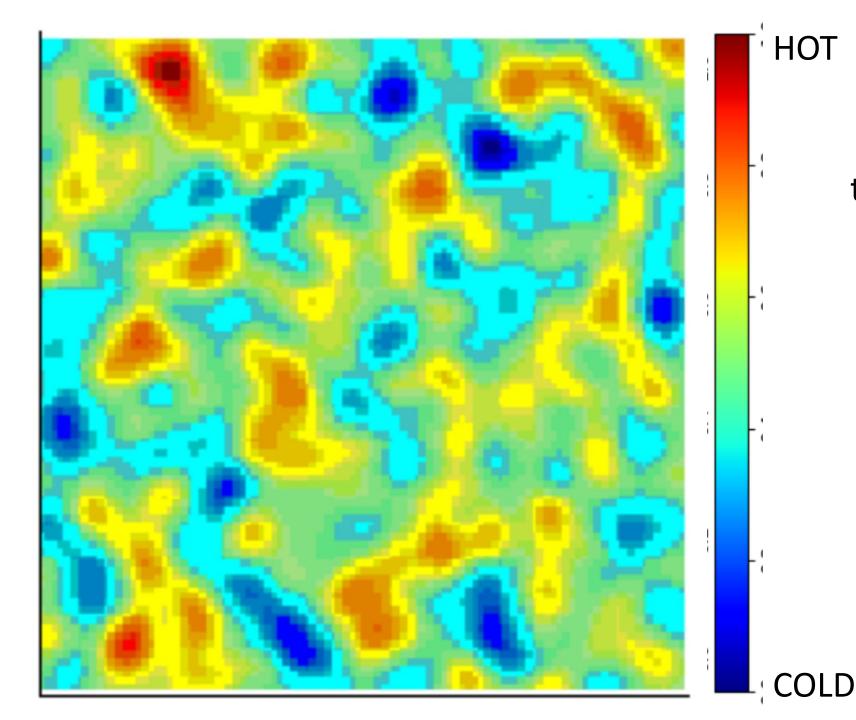
terminal velocity of a 0.001-meter sphere of granite in water

 $\Delta \rho = (2500 - 1000) \text{ kg/m}^3$ r = 0.001 m $g = 9.81 \text{ m/s}^2$ $\mu = 10^{-3} \frac{\text{kg}}{\text{ms}}$

$$v = \frac{2r^2 \,\Delta\rho \,g}{9\,\mu} = \frac{2 \times (0.001)^2 \times 1500 \times 9.81}{9 \,\times 10^{-3}} \frac{\text{m}^2 \text{kg m ms}}{\text{m}^3 \,\text{s}^2 \,\text{kg}} = 3.3 \frac{\text{m}}{\text{s}^3} \frac{1}{10^{-3}} \frac{1$$

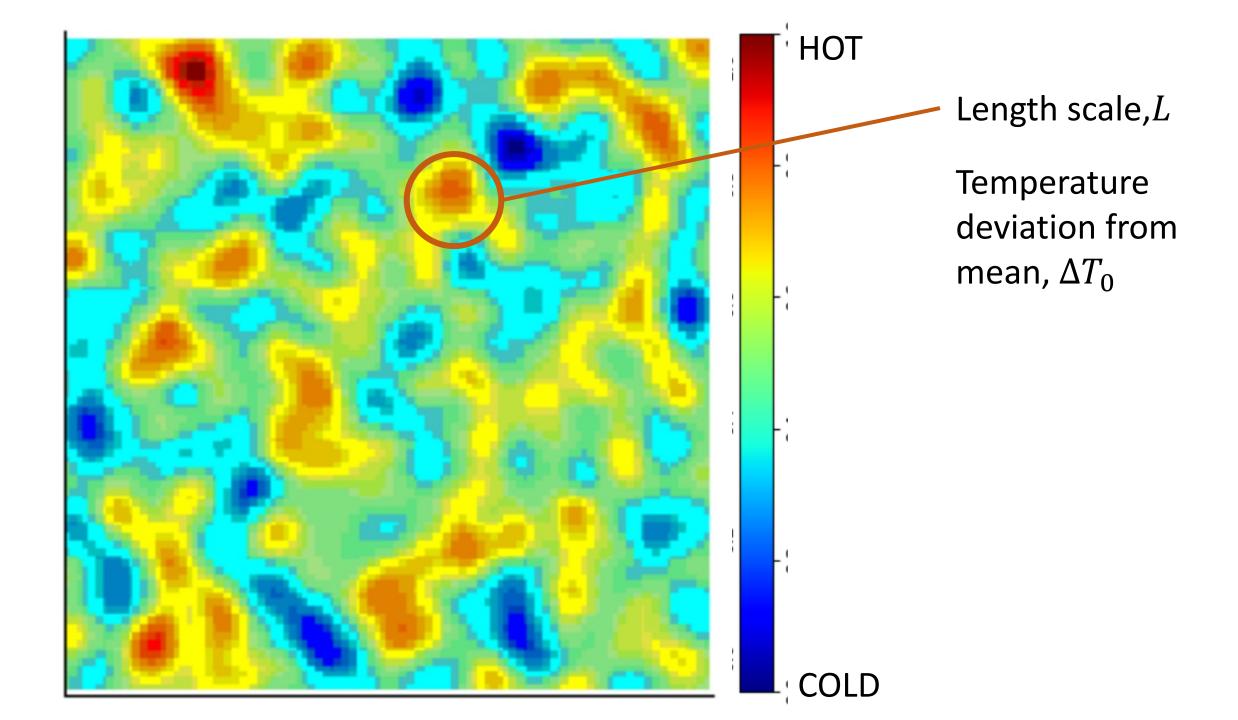


Hypothetical temperatures in the Earth



Hypothetical temperatures in the Earth

How important will convection be in this material



What is the time scale for thermal transport via conduction (quick-and-dirty)

heat
$$Q = \rho c_p \Delta T_0 L$$

heat flux $q = k \Delta T_0 / L$

time scale
$$t_C = Q/q = L^2/\kappa$$

What is the time scale for advection of object by one length scale (quick-and-dirty) distance L

velocity v

$$t_A = \frac{L}{v}$$

What is the time scale for thermal transport via advection (quick-and-dirty)

$$t_{A} = \frac{L}{v}$$
velocity $v = \frac{L^{2} \Delta \rho g}{\mu}$ (Stokes' Law, ignoring the 2/9)
density $\Delta \rho = \rho_{0} \alpha \Delta T_{0}$ (thermal expansion)
$$t_{A} = \frac{L}{v} = \frac{L\mu}{L^{2}\rho_{0}\alpha\Delta T_{0}g} = \frac{\mu}{L\rho_{0}\alpha\Delta T_{0}g}$$

Ratio of time scales

$$t_C = L^2/\kappa$$
 $t_A = \frac{\mu}{L\rho_0 \alpha \Delta T_0 g}$

$$\frac{t_C}{t_A} = \frac{L^2}{\kappa} \frac{L\rho_0 \alpha \Delta T_0 g}{\mu} = \frac{L^3 \rho_0 \alpha \Delta T_0 g}{\mu \kappa}$$

Ratio of time scales

$$t_C = L^2/\kappa$$
 $t_A = \frac{\mu}{L\rho_0 \alpha \Delta T_0 g}$

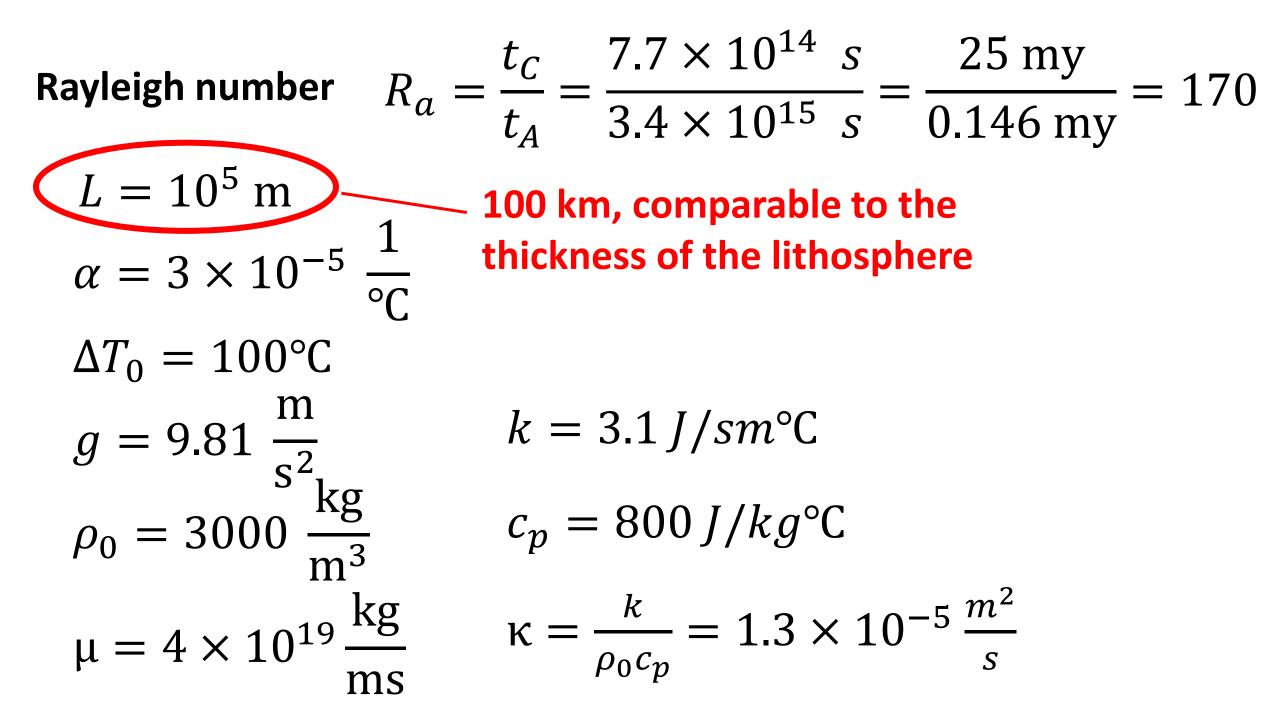
$$R_{a} = \frac{t_{C}}{t_{A}} = \frac{L^{3}\rho_{0}\alpha\Delta T_{0}g}{\mu\kappa}$$
Rayleigh number
dimensionless (no units)

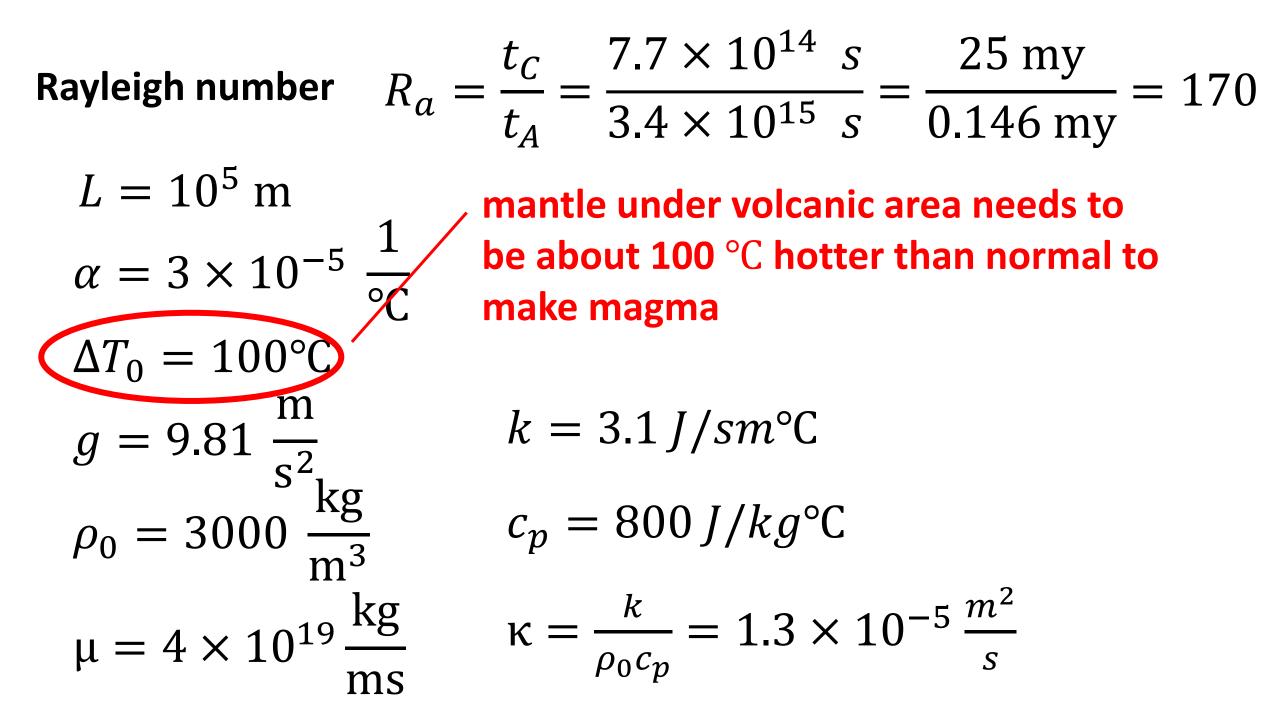
Rayleigh number
$$R_a = \frac{t_C}{t_A} = \frac{L^3 \rho_0 \alpha \Delta T_0 g}{\mu \kappa}$$

Low Rayleigh number: Conduction wins, heterogeneities dissipate before they move significantly $R_a = \frac{t_C}{t_A} = \frac{small}{big}$

High Rayleigh number: Advection wins, heterogeneities move before dissipate significantly $R_a = \frac{t_C}{t_A} = \frac{big}{small}$

so what's the Rayleigh number of the upper mantle?





Rayleigh number
$$R_a = \frac{t_c}{t_A} = \frac{7.7 \times 10^{14} \text{ s}}{3.4 \times 10^{15} \text{ s}} = \frac{25 \text{ my}}{0.146 \text{ my}} = 170$$

 $L = 10^5 \text{ m}$
 $\alpha = 3 \times 10^{-5} \frac{1}{^{\circ}\text{C}}$ IF there are 100 km heterogeneities
in the mantle, they will convect
 $\Delta T_0 = 100^{\circ}\text{C}$
 $g = 9.81 \frac{\text{m}}{\text{s}^2}$ $k = 3.1 \text{ J/sm}^{\circ}\text{C}$
 $\rho_0 = 3000 \frac{\text{kg}}{\text{m}^3}$ $c_p = 800 \text{ J/kg}^{\circ}\text{C}$
 $\mu = 4 \times 10^{19} \frac{\text{kg}}{\text{ms}}$ $\kappa = \frac{k}{\rho_0 c_p} = 1.3 \times 10^{-5} \frac{\text{m}^2}{\text{s}}$

