Solid Earth Dynamics

Bill Menke, Instructor

Lecture 7

Today:

Gravity:

Newtonian orbits
field of a point mass and sphere
measuring gravity
ocean surface

force $=$ mass x acceleration

$$
\begin{aligned}
& f_{x}=m \frac{d^{2} x}{d t^{2}} \\
& f_{y}=m \frac{d^{2} y}{d t^{2}}
\end{aligned}
$$

$$
\begin{array}{ll}
f_{x}=0 & \\
f_{y}=-g m & \text { force = mass x acceleration } \\
\underset{\substack{\text { what's it do? } \\
\text { gravity }}}{ } \quad 0=m \frac{d^{2} x}{d t^{2}} \\
& -g m=m \frac{d^{2} y}{d t^{2}}
\end{array}
$$

$f_{x}=0$

$$
f_{y}=-m g
$$

$$
0=\frac{d^{2} x}{d t^{2}}
$$

$$
-g=\frac{d^{2} y}{d t^{2}}
$$

$$
\begin{aligned}
f_{x} & =0 \\
f_{y} & =-m g
\end{aligned}
$$

force $=$ mass x acceleration

$$
\begin{aligned}
& 0=\frac{d^{2} x}{d t^{2}} \\
& \qquad x=v_{0} t \\
& -g=\frac{d^{2} y}{d t^{2}} \\
& \quad y=h-1 / 2 g t^{2}
\end{aligned}
$$

path doesn't depend on mass
really need to work in polar coordinates

force $=$ mass x acceleration

$$
f_{r}=m ?
$$

$$
f_{\theta}=m ?
$$

force $=$ mass x acceleration

$$
\begin{aligned}
& f_{r}=m\left(\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right) \\
& f_{\theta}=m\left(r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}\right)
\end{aligned}
$$

constant rate in circular orbit

constant rate in circular orbit

Kepler's "Law"
based on planetary observations
$T^{2} \propto R^{3}$

insert Kepler's $3^{\text {rd }}$ Law

$$
\begin{aligned}
f_{r} & =-m R\left(\frac{2 \pi}{T}\right)^{2} \\
& =-m R \frac{(2 \pi)^{2}}{T^{2}} \\
& \propto-m R \frac{(2 \pi)^{2}}{R^{3}}=-\frac{\gamma m M}{R^{2}}
\end{aligned}
$$

non-circular orbit

$$
C=\gamma M
$$

$$
-\frac{C m}{r^{2}}=m\left(\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right)
$$

$$
0=m\left(r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}\right)
$$

chain rule

$$
\frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)=r^{2} \frac{d^{2} \theta}{d t^{2}}+2 r \frac{d \theta}{d t} \frac{d \theta}{d t}
$$

multiply by r

$$
r^{2} \frac{d^{2} \theta}{d t^{2}}+2 r \frac{d r}{d t} \frac{d \theta}{d t}=0
$$

chain rule

$$
\frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)=r^{2} \frac{d^{2} \theta}{d t^{2}}+2 r \frac{d \theta}{d t} \frac{d \theta}{d t}
$$

multiply by r

$$
\frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)=0
$$

chain rule

$$
\frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)=r^{2} \frac{d^{2} \theta}{d t^{2}}+2 r \frac{d \theta}{d t} \frac{d \theta}{d t}
$$

$$
r^{2} \frac{d \theta}{d t}=\text { constant }
$$

chain rule

$$
\frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)=r^{2} \frac{d^{2} \theta}{d t^{2}}+2 r \frac{d \theta}{d t} \frac{d \theta}{d t}
$$

Kepler's second law: rate of sweeping out area is constant

$$
r^{2} \frac{d \theta}{d t}=\text { constant }
$$

further analysis shows that the shape of an orbit is an ellipse
formula for ellipse
$r=\frac{p}{1+\varepsilon \cos \theta}$
p and ε constants

ellipse: length of red line constant as green dot moves around circumfernce

But the Earth is not a "point mass"

This issue stymied Newton for 20 years!
what Newton discovered:

The gravitational force outside a spherically-symmetric object is the same as for a point mass located at the object's center
what Newton discovered:

The gravitational force outside a spherically-symmetric object is the same as for a point mass located at the object's center

I'll show you its true but using modern concepts that you are familiar with (but Newton wasn't)

But first

I need to introduce the concept of flux of force through a surface

(this is the same as water flux thru a surface heat flux thru a surface)
for a small surface

for a big surface
just break into small surfaces and add up the fluxes of each

flux: $q=\sum A|f| \cos \theta$

Step 1:

The flux through a surface enclosing a point mass, M, is always $q=-4 \pi \gamma M$:
irrespective of the shape of the surface and
irrespective of where within
the enclosed volume the point mass is located
approximate the surface as sum of many "sides" and "caps"
"sides" normal perpendicular to force, $\cos \theta=0$
"caps" normal parallel to force, $\cos \theta=1$
area of a cap , $4 \pi p r^{2}$ $p=$ fraction of
total spherical angle
approximate the surface as sum of many "sides" and "caps"
"sides" normal perpendicular to force, $\cos \theta=0$
"caps" normal parallel to force, $\cos \theta=1$
area of a cap , $4 \pi p r^{2}$ $p=$ fraction of total spherical angle force on cap,$-\frac{\gamma M}{r^{2}}$
flux thru cap

$$
\mathrm{q}=\left(4 \pi p r^{2}\right)\left(-\frac{\gamma M}{r^{2}}\right)=-4 \pi p \gamma M
$$

approximate the surface as sum of many "sides" and "caps"
"sides" normal perpendicular to force, $\cos \theta=0$
"caps" normal parallel to force, $\cos \theta=1$
area of a cap , $4 \pi p r^{2}$ $p=$ fraction of total spherical angle
force on cap,$-\frac{\gamma M}{r^{2}}$
flux thru all caps
$\mathrm{q}=-4 \pi \gamma M$
size p's sum to 1

Step 2:

construct sphere by assembling many point masses with total mass, M
flux is still

$$
q=-4 \pi \gamma M
$$

since fluxes sum
and
flux from any one point mass is independent of its position

Step 3:

now make the surface a sphere of radius r centered at the center of the mass, so the problem is spherically symmetric
flux is still

$$
q=-4 \pi \gamma M
$$

since flux is independent of shape of surface
furthermore, this shape is all "cap", so $\cos \theta=1$

Step 4:

As the problem is spherically symmetric, the flux must be constant over the surface of the sphere

The sphere has area, $\mathrm{A}=4 \pi r^{2}$
so the flux per area is

$$
q / A=-\frac{\gamma M}{r^{2}}
$$

which is equal to the force and has the form of the force from a point mass

An interesting tidbit

The flux through a surface excluding a point mass, M, is always $q=0$:
irrespective of the shape of the surface

and
irrespective of where outside
the excluding volume the point mass is located

handled the same way

approximate the surface as sum of many "sides" and "caps"
but now that caps are paired
you find that the contribution of the two caps cancel

You can use this to show

force inside a cavity inside a spherically symmetric object is zero

And
force at depth in a sphere depends only on mass below you
throw rock of mass m into small hole drilled thru earth

what do you think will happen?

throw rock of mass m into small hole drilled thru earth
force law

$$
f_{r}=m\left(\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right)
$$

Newton's Law

$$
\begin{gathered}
f_{r}=-\frac{\gamma m M(r)}{r^{2}} \text { with } M(r) \approx \frac{4}{3} \pi r^{3} \rho \\
f_{r}=-\frac{4}{3} \gamma m \pi r \rho=-C m r
\end{gathered}
$$

$$
\frac{d^{2} r}{d t^{2}}=-C r
$$

$$
r=R_{0} \cos (\sqrt{C} t)
$$

measuring gravity

does gravity point straight down?

and if it doesn't

how would you tell?

Mt Schiehallion Experiment, 1774

How do you measure the strength of gravity?

deflection of a mass weighing down a spring

best at relative measurements

measure small changes \} in height

drop small mass in vacuum and measure its acceleration

A fluid adjusts so it surface is everywhere parallel to the local gravitational field

Earth

A fluid adjusts so it surface is everywhere parallel to the local gravitational field

Which way does the water go?

bulges up

