Solid Earth Dynamics

Bill Menke, Instructor

Lecture 7

Gravity:

Newtonian orbits

field of a point mass and sphere

measuring gravity

ocean surface

$$f_x = m \frac{d^2 x}{dt^2}$$
$$f_y = m \frac{d^2 y}{dt^2}$$

 $f_x = 0$ $f_y = -gm$

$$-gm = m\frac{d^2y}{dt^2}$$

really need to work in polar coordinates

$$f_r = m$$
 ?

$$f_{\theta} = m$$
 ?

$$f_r = m\left(\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right)$$

$$f_{\theta} = m \left(r \frac{d^2 \theta}{dt^2} + 2 \frac{dr}{dt} \frac{d\theta}{dt} \right)$$

constant rate in circular orbit

constant rate in circular orbit

Kepler's "Law"

based on planetary observations

 $T^2 \propto R^3$

insert Kepler's 3rd Law

non-circular orbit

further analysis shows that the shape of an orbit is an ellipse

formula for ellipse

$$r = \frac{p}{1 + \varepsilon \cos \theta}$$

p and ε constants

ellipse: length of red line constant as green dot moves around circumfernce

This issue stymied Newton for 20 years!

what Newton discovered:

The gravitational force outside a spherically-symmetric object is the same as for a point mass located at the object's center

what Newton discovered:

The gravitational force outside a spherically-symmetric object is the same as for a point mass located at the object's center

> I'll show you its true but using modern concepts that you are familiar with (but Newton wasn't)

But first

I need to introduce the concept of flux of force through a surface

surface normal

(this is the same as water flux thru a surface heat flux thru a surface)

for a small surface

for a big surface

flux:
$$q = \sum A |f| \cos \theta$$

Step 1:

The flux through a surface enclosing a point mass, M, is always $q = -4\pi\gamma M$:

irrespective of the shape of the surface and irrespective of where within the enclosed volume the point mass is located approximate the surface as sum of many "sides" and "caps"

M

"sides" normal perpendicular to force, $\cos \theta = 0$ "caps" normal parallel to force, $\cos \theta = 1$

area of a cap , $4\pi pr^2$ p= fraction of total spherical angle approximate the surface as sum of many "sides" and "caps"

M

- "sides" normal perpendicular to force, $\cos \theta = 0$ "caps" normal parallel to force, $\cos \theta = 1$
- area of a cap , $4\pi pr^2$ p= fraction of total spherical angle force on cap , $-\frac{\gamma M}{r^2}$ flux thru cap $q = \left(4\pi p r^2\right) \left(-\frac{\gamma M}{r^2}\right) = -4\pi$

approximate the surface as sum of many "sides" and "caps"

- "sides" normal perpendicular to force, $\cos \theta = 0$ "caps" normal parallel to force, $\cos \theta = 1$
- area of a cap , $4\pi pr^2$ p =fraction of total spherical angle force on cap , $-\frac{\gamma M}{r^2}$ flux thru all caps $q = -4\pi\gamma M$ size p's sum to 1

Step 2:

construct sphere by assembling many point masses with total mass, *M*

flux from any one point mass is independent of its position

Step 3:

now make the surface a sphere of radius r centered at the center of the mass , so the problem is spherically symmetric

flux is still

 $q = -4\pi\gamma M$

since flux is independent of shape of surface

furthermore, this shape is all "cap", so $\cos \theta = 1$

Step 4:

As the problem is spherically symmetric, the flux must be constant over the surface of the sphere

The sphere has area, $A = 4\pi r^2$

so the flux per area is

$$q/A = -\frac{\gamma M}{r^2}$$

which is equal to the force and has the form of the force from a point mass

An interesting tidbit

The flux through a surface excluding a point mass, M, is always q = 0:

irrespective of the shape of the surface and irrespective of where outside the excluding volume the point mass is located

handled the same way

approximate the surface as sum of many "sides" and "caps"

but now that caps are paired

you find that the contribution of the two caps cancel

You can use this to show

force inside a cavity inside a spherically symmetric object is zero

force at depth in a sphere depends only on mass below you

throw rock of mass m into small hole drilled thru earth

what do you think will happen?

throw rock of mass *m* into small hole drilled thru earth

force law

$$f_r = m \left(\frac{d^2 r}{dt^2} - r \left(\frac{d\theta}{dt} \right)^2 \right)$$
Newton's Law

$$f_r = -\frac{\gamma m M(r)}{r^2} \quad \text{with } M(r) \approx \frac{4}{3} \pi r^3 \rho$$

$$f_r = -\frac{4}{3} \gamma m \pi r \rho = -Cmr$$

measuring gravity

does gravity point straight down?

and if it doesn't

how would you tell?

Mt Schiehallion Experiment, 1774

How do you measure the strength of gravity?

deflection of a mass weighing down a spring

best at relative measurements

drop small mass in vacuum and measure its acceleration

measure acceleration optically with laser interferometry

A fluid adjusts so it surface is everywhere parallel to the local gravitational field

A fluid adjusts so it surface is everywhere parallel to the local gravitational field

Which way does the water go?

bulges up

What will happen to sea level near Greenland when the ice melts?

