Solid Earth Dynamics

Bill Menke, Instructor

Lecture 9

Today

Icebergs, sedimentary basins and isostasy

definition of gravity anomalies

gravity of anomaly of an isostatically supported mountain

Note

I changed some of the densities in the lecture from what I presented in class to values that I thought more accurate

balance of forces

$$
f_{b}+f_{g}=0
$$

balance of forces

$$
\begin{aligned}
& f_{b}+f_{g}=0 \\
& f_{g}=-\rho_{i c e} g A h \\
& f_{b}=\left(\rho_{\text {water }}-\rho_{\text {ice }}\right) g A \mathrm{~d}
\end{aligned}
$$

balance of forces

$$
\begin{gathered}
f_{b}+f_{g}=0 \\
f_{g}=-\rho_{i c e} g A h \\
f_{b}=\Delta \rho g A d
\end{gathered}
$$

balance of forces

$$
\begin{gathered}
f_{b}+f_{g}=0 \\
\Delta \rho g A d=\rho_{i c e} g A h \\
\quad d=\frac{\rho_{i c e}}{\Delta \rho} h
\end{gathered}
$$

$$
d=\frac{\rho_{i c e}}{\Delta \rho} h
$$

$$
\rho_{i c e}=917 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\rho_{\text {sea water }}=1003 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\begin{aligned}
& \Delta \rho=86 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \frac{\rho_{\text {ice }}}{\Delta \rho}=\frac{917}{86}=10.66
\end{aligned}
$$

$$
d=\frac{\rho_{\text {ice }}}{\Delta \rho} h
$$

$$
\rho_{i c e}=917 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\rho_{\text {sea water }}=1003 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\begin{aligned}
& \Delta \rho=86 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& d=\frac{\rho_{\text {ice }}}{\Delta \rho} h=1066 \mathrm{~m}
\end{aligned}
$$

Floating Board Experiment
$\rho_{\text {oak }}=800 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \rho_{\text {water }}=1003 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \frac{\Delta \rho}{\rho}=0.20$
Analog to Wet Clay Sediment on Granite
$\rho_{\text {sed }}=2100 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \rho_{\text {grante }}=2500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \frac{\Delta \rho}{\rho}=0.20$

Do Experiment

6 Boards:

Each Board: 4 km of Wet Clay

leaf on top of first board

$$
\begin{array}{ll}
d=\frac{\rho_{\text {sed }}}{\Delta \rho} h & d=L-\frac{\Delta \rho}{\rho_{\text {sed }}} d \\
h=\frac{\Delta \rho}{\rho_{\text {sed }}} d & d+\frac{\Delta \rho}{\rho_{\text {sed }}} d=L \quad d=L\left(1+\frac{\Delta \rho}{\rho_{\text {sed }}}\right)^{-1} \\
d+h=L & \left(1+\frac{\Delta \rho}{\rho_{\text {sed }}}\right) d=L
\end{array}
$$

6 Boards:

Each Board: 4 km of Wet Clay
leaf on top of first board

$$
\begin{aligned}
& \quad d=\frac{\rho_{\text {sed }}}{\Delta \rho} h=L\left(1+\frac{\Delta \rho}{\rho_{\text {sed }}}\right)^{-1}=5.25 h=0.84 L \\
& d+h=24 \\
& d=20 \\
& h=4
\end{aligned}
$$

How deep did the leaf get?

20

How deep did the leaf get?

20

$$
20-4=16 \mathrm{~km}
$$

How deep did the leaf get?

20

$$
20-4=16 \mathrm{~km}
$$

4

How long does it take to warm up?

heat has to move a distance d
apply principle of superposition

$$
\begin{aligned}
& d=\sqrt{4 \kappa t} \\
& t=\frac{d^{2}}{4 \kappa}
\end{aligned}
$$

$$
d=18000 m
$$

$$
\kappa=1.6 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1} \text { (granite) }
$$

$$
t=1.74 \mathrm{my}
$$

"geologically short time"

H	D	
kappa	$1.60 \mathrm{E}-06$	
d	18600	
t s	$5.41 \mathrm{E}+13$	
t yr	$1.74 \mathrm{E}+06$	
y my	$1.74 \mathrm{E}+00$	

Gravity anomaly

gravity minus a reference amount

$$
\Delta g=g-g_{r e f}
$$

Gravity anomaly

often measured in milligals

$$
1 \mathrm{gal}=1 \mathrm{~cm} / \mathrm{s}^{2}=0.01 \mathrm{~m} / \mathrm{s}^{2}
$$

Gravity anomaly

gravity minus a reference amount

$g_{\text {ref }}\left\{\begin{array}{l}\text { acceleration at sea level } \\ \text { corrected for latitude, } \varphi \\ \text { corrected for altitude, } h\end{array}\right.$

$$
g_{r e f}=g_{0}(\varphi)+f(h, \varphi)
$$

for latitude, φ

$g_{0}(\varphi)=9.780327 \mathrm{~m} \cdot \mathrm{~s}^{-2}\left(1+0.0053024 \sin ^{2} \phi-0.0000058 \sin ^{2} 2 \phi\right)$

1967 Geodetic Reference System Formula
just an empirical formula
for altitude, h

$$
\begin{aligned}
g & =-\gamma M \frac{1}{\left(R_{o}+h\right)^{2}}+\omega^{2} R_{o} \cos \varphi\left(1+\frac{h}{R_{o}}\right) \\
& =\frac{\gamma M}{R_{0}^{2}}\left(1+\frac{h}{R_{o}}\right)^{-2}+\omega^{2} R_{o} \cos \varphi\left(1+\frac{h}{R_{o}}\right) \\
& \approx C-2\left(\frac{\gamma M}{R_{0}^{2}}\right)\left(\frac{h}{R_{o}}\right)+\left(\omega^{2} R_{o} \cos \varphi\right)\left(\frac{h}{R_{o}}\right) \\
& \approx C+\left(-2 \frac{\gamma M}{R_{0}^{2}}+\omega^{2} R_{o} \cos \varphi\right)\left(\frac{h}{R_{o}}\right) \quad f(h, \varphi)
\end{aligned}
$$

Acceleration of Gravity vs. Latitude and Elevation

Acceleration of Gravity vs. Latitude and Elevation

Acceleration of Gravity vs. Latitude and Elevation

additivity of gravity and gravity anomalies

\qquad

this is the same as

$$
\rho_{2}=2500
$$

$$
\rho_{1}=2000
$$

this is the same as

negative density anomalies allowed, too this is the same as

$$
\begin{aligned}
& \rho_{2}=2500 \\
& \rho_{1}=3000
\end{aligned}
$$

this is the same as

what is the gravity anomaly over the iceberg?

$\rho_{\text {water }}$

$\rho_{\text {ice }}$

Ths one produces the reference field, $g_{r e f}$
$\rho_{\text {water }}$

These two produce the anomaly, Δg

approximate as point masses

```
M2
```

but what are the right masses?

approximate as point masses

$$
M_{1}=\rho_{i c e} A h
$$

$$
M_{2}=-\Delta \rho A \mathrm{~d}
$$

$$
\begin{aligned}
& =-\Delta \rho A \frac{\rho_{i c e}}{\Delta \rho} h \\
& =-\rho_{i c e} A h \\
& =-\rho_{i c e} M_{1}
\end{aligned}
$$

but the two forces are not in the same direction

solution

use vertical component, only

$$
\begin{aligned}
& \Delta g_{1 z}^{x}=\frac{\gamma M_{1}}{x^{2}+a^{2}} \cos \theta \\
& =\frac{\gamma M_{1} a}{\left(x^{2}+a^{2}\right)^{3 / 2}}
\end{aligned}
$$

$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{a}{\sqrt{x^{2}+a^{2}}}$

$$
\Delta g_{z}=\gamma M_{1}\left[\frac{a}{\left(x^{2}+a^{2}\right)^{3 / 2}}-\frac{b}{\left(x^{2}+b^{2}\right)_{x}^{3 / 2}}\right]
$$

$$
\begin{aligned}
& \Delta g_{z}=\gamma M_{1}\left[\frac{a}{\left(x^{2}+a^{2}\right)^{3 / 2}}-\frac{b}{\left(x^{2}+b^{2}\right)^{\frac{x}{3 / 2}}}\right] \\
& x=0 \\
& \Delta g_{z}=\gamma M_{1}\left[\frac{1}{a^{2}}-\frac{1}{b^{2}}\right]>0 \quad \text { as } b>a
\end{aligned}
$$

$$
\begin{aligned}
& \Delta g_{z}=\gamma M_{1}\left[\frac{a}{\left(x^{2}+a^{2}\right)^{3 / 2}}-\frac{b}{\left(x^{2}+b^{2}\right)^{\frac{x}{3 / 2}}}\right] \\
& x \gg b \\
& \Delta g_{z}=\frac{\gamma M_{1}}{x^{3}}[a-b]<0 \quad \text { as } b>a
\end{aligned}
$$

$$
\begin{aligned}
& \Delta g_{z}=\gamma M_{1}\left[\frac{a}{\left(x^{2}+a^{2}\right)^{3 / 2}}-\frac{b}{\left(x^{2}+b^{2}\right)^{\frac{x}{3 / 2}}}\right] \\
& x \rightarrow \infty \\
& \Delta g_{z}=\gamma M_{1}[0-0]=0
\end{aligned}
$$

