Solid Earth Dynamics

Bill Menke, Instructor

Lecture 12

Today:

more on glacial isostatic rebound

starting discussion of deformation

newton's law in a material atmospheric pressure
volumetric and shear strain

Glacial Isostatic Rebound

$$
\begin{aligned}
& \rho_{C} L+\rho_{M} d=\rho_{I} H+\rho_{C} L \\
& \rho_{M} d=\rho_{I} H \quad d=\frac{1000}{3000} H=\frac{1}{3} H=1 \mathrm{~km}
\end{aligned}
$$

$n=1$
patterns with increasing number of wiggles

$\mathrm{n}=$ number of half-wavelengths

let's call them $P_{n}(\cos \theta)$
Legendre Polynomials

each decays with
characteristic decay time τ
$n=1$

$n=3$
$\mathrm{t}=0$
$c_{n} P_{n}(\cos \theta)$
at a later time, t
$c_{n} \exp (-t / \tau) P_{n}(\cos \theta)$
formula for τ known, depends on n

$$
\begin{aligned}
& F=\frac{\rho R \sqrt{g R}}{\mu} \quad \text { dimensionless constant } \\
& f=\sqrt{\frac{R}{g}} \quad \text { time scale, units of } s \\
& \tau=\frac{f}{F} \frac{\left(2 n^{2}+4 n+3\right)}{n} \quad \text { decay time, units of } s
\end{aligned}
$$

$$
n=4 \text { gives } \tau=\frac{f}{F} \frac{\left(2 n^{2}+4 n+3\right)}{n} \approx 2200 \text { years }
$$

because both viscous flow and gravity are linear processes

if load L_{A} leads to uplift U_{A} and

if load L_{B} leads to uplift U_{B} then
if load $L_{A}+L_{B}$ leads to uplift $U_{A}+U_{B}$
strategy for dealing with complicated load, $\mathrm{L}(\theta)$
(A) figure out the proportionality between Load and uplift at time $\mathrm{t}=0$, for loads of shape $P_{n}(\cos \theta)$
at time $\mathrm{t}=0$
Load $L=P_{n}(\cos \theta)$
leads to uplift $U=c_{n} P_{n}(\cos \theta)$
only work for some "the right" $P_{n}(\cos \theta)$ s

c_{n} is known for this problem

$$
c_{n}=\frac{2 n+1}{2(n-1)}
$$

when $P_{n}(\cos \theta)$ are the ones shown previously
(B) approximate Load $\mathrm{L}(\theta, t=0)$ as as sum of the functions $P_{n}(\theta)$

$$
f(\theta) \approx \sum_{n=1}^{N} b_{n} \underbrace{P_{n}(\cos \theta)}_{\text {need to find } b_{n}}
$$

(C) invoke superposition:
each c_{n} decays independently with time
c_{n} becomes $c_{n} \exp (-t / \tau)$
(D) perform the summation

$$
R(\theta, t=0) \approx \sum_{n=1}^{N} b_{n} c_{n} \exp (-t / \tau) P_{n}(\cos \theta)
$$

I cooked up the b's that give this load

uplift

time $=0$

time $=3000 \mathrm{yrs}$

during the Ice Age

today
uplift

linear elasticity

and

Newton's Law in fluids

elasticity: reversible deformation

during

before

linear elasticity: deformation proportional to force

double force double deformation

force per unit area

 is called traction, Tpositive when outward pointing
traction is always normal to surface

fluid

all (nearby) surfaces have the same traction

tractoin in fluid: minus the pressure, p

Newton's Law (horizontal motion only)

pressure force

$$
\begin{gathered}
F_{F}=A p_{L} \quad F_{R}=-A p_{L} \\
F=F_{L}-F_{R}=A\left(p_{L}-p_{R}\right)
\end{gathered}
$$

volumetric force, like gravity

$$
\begin{aligned}
& F_{F}=A p_{L} \\
& F_{R}=-A p_{L} \\
& F=f A \Delta x
\end{aligned}
$$

Mass

$$
M=\rho A \Delta x
$$

Acceleration

$$
a=\frac{d^{2} u}{d t^{2}}
$$

Newton's law $\quad F=M a$

$$
\begin{array}{ll}
F=A\left(p_{L}-p_{R}\right) & A\left(p_{L}-p_{R}\right)+f A \Delta x=\rho A \Delta x \frac{d^{2} u}{d t^{2}} \\
F=f A \Delta x & \frac{\left(p_{L}-p_{R}\right)}{\Delta x}+f=\rho \frac{d^{2} u}{d t^{2}} \\
M=\rho A \Delta x & f-\frac{d p}{d x}=\rho \frac{d^{2} u}{d t^{2}}
\end{array}
$$

Linear Elasticity in a fluid

$$
\frac{\Delta V}{V}=-c \Delta p
$$

fractional change in volume is proportional to pressure

Linear Elasticity in a fluid

$$
\begin{array}{ll}
\text { or if you prefer } & \frac{\Delta \frac{M}{\rho}}{\frac{M}{\rho}}=-c \Delta p \\
\text { with } \mathrm{V}=\frac{M}{\rho} & \\
\rho \Delta \rho^{-1}=-c \Delta p & \\
\rho \frac{d \rho^{-1}}{d p}=-c & -\rho \rho^{-2} \frac{d \rho}{d p}=-c
\end{array} \rho^{-1} \frac{d \rho}{d p}=c
$$

what's atmospheric pressure do with height?

pressure

Linear Elasticity in an isothermal ideal gas

$$
\begin{array}{ll}
P V=n R T & \begin{array}{l}
n=\text { number of moles } \\
m=\frac{n}{V} \frac{R T}{1}
\end{array} \begin{array}{l}
\text { mass }=n m
\end{array} \\
P=\frac{n m}{V} \frac{R T}{m} & \rho=\frac{\text { mass }}{\text { volume }}=\frac{n m}{V}
\end{array}
$$

Linear Elasticity in an isothermal ideal gas

$$
\begin{array}{rlrl}
\mathrm{p} V & =n R T & \mathrm{p}=\frac{R T}{m} \rho \\
p & =\frac{n}{V} \frac{R T}{1} & \rho=\frac{m}{R T} p \\
p & =\frac{n m}{V} \frac{R T}{m} &
\end{array}
$$

Shear forces in solids

Shear forces in solids

Shear forces in solids
undeformed object

deformed object

displacement

a point initially at (x, y)
moves to $(x+u, y+v)$
volumetric strain: change in volume

volumetric strain: change in volume

$$
(\Delta x+\Delta u, \Delta y+\Delta v)
$$

change in area $\Delta A=\Delta x \Delta v+\Delta y \Delta u$
volumetric strain: change in volume

$$
(\Delta x+\Delta u, \Delta y+\Delta v)
$$

$(0,0)$
change in area

$$
\Delta A=\Delta x \Delta v+\Delta y \Delta u
$$

change in area

$$
\frac{\Delta A}{A}=\frac{\Delta v}{\Delta y}+\frac{\Delta u}{\Delta x}
$$

no change in area

$$
0=\frac{d v}{d y}+\frac{d u}{d x}
$$

no change in volume

> no change in area

$$
\begin{gathered}
0=\frac{d v}{d y}+\frac{d u}{d x} \\
\text { called }
\end{gathered}
$$ shear strain

$(0,0)$
volumetric strain: change in volume

$$
(\Delta x+\Delta u, \Delta y+\Delta v)
$$

easy way to satisfy no change in area

$$
0=\frac{d v}{d y}+\frac{d u}{d x}
$$

u only varies with y
v only varies with x

undeformed object

undeformed object
shear strain only

