
Solid Earth Dynamics
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Today:

more on glacial isostatic rebound

starting discussion of deformation
newton’s law in a material

atmospheric pressure

volumetric and shear strain



Glacial Isostatic Rebound



North American crust

𝐻 = 3

𝑑 = 1

𝜌𝐶𝐿 + 𝜌𝑀𝑑 = 𝜌𝐼𝐻 + 𝜌𝐶𝐿

𝐿

compensation depth
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𝑑 =

1000
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𝑑 = 1



patterns with increasing number of wiggles

n = number of half-wavelengths

let’s call them 𝑃𝑛 cos 𝜃

Legendre Polynomials



each decays with
characteristic decay time τ

t=0
𝑐𝑛𝑃𝑛 cos 𝜃

at a later time, t
𝑐𝑛 exp −𝑡/τ 𝑃𝑛 cos 𝜃



formula for τ known, depends on n

𝐹 =
𝜌𝑅 𝑔𝑅

μ

𝑓 =
𝑅

𝑔

τ =
𝑓

𝐹

2𝑛2 + 4𝑛 + 3

𝑛

dimensionless constant

time scale, units of s

decay time, units of s



𝑛 = 4 gives τ =
𝑓

𝐹

2𝑛2 + 4𝑛 + 3

𝑛
≈ 2200 years



because both viscous flow and gravity are 
linear processes

if  load 𝐿𝐴 leads to uplift 𝑈𝐴
and

if  load 𝐿𝐵 leads to uplift 𝑈𝐵
then

if  load 𝐿𝐴 + 𝐿𝐵 leads to uplift 𝑈𝐴 + 𝑈𝐵



strategy for dealing with complicated load, L 𝜃

(A) figure out the proportionality between Load and
uplift at time t=0,  for loads of shape 𝑃𝑛 cos 𝜃

at time t=0
Load 𝐿 = 𝑃𝑛 cos 𝜃
leads to uplift  𝑈 = 𝑐𝑛𝑃𝑛 cos 𝜃

only work for some "the rigℎ𝑡" 𝑃𝑛 cos 𝜃 s



𝑐𝑛 =
2𝑛+1

2 𝑛−1

𝑐𝑛 is known for this problem

when 𝑃𝑛 cos 𝜃 are the ones shown previously



(B) approximate Load L 𝜃, 𝑡 = 0 as
as  sum of the functions 𝑃𝑛 𝜃

𝑓 𝜃 ≈ ෍

𝑛=1

𝑁

𝑏𝑛 𝑃𝑛 cos 𝜃

need to find 𝑏𝑛



(C) invoke superposition:
each 𝑐𝑛 decays independently with time

𝑐𝑛 becomes 𝑐𝑛 exp −𝑡/τ



(D) perform the summation

𝑅 𝜃, 𝑡 = 0 ≈ ෍

𝑛=1

𝑁

𝑏𝑛𝑐𝑛 exp −𝑡/τ 𝑃𝑛 cos 𝜃
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d
e

longitude

R = 6371000;
rho = 3000;
mu = 1e21;
g = 9.81;
ty=3000.0;

I cooked up the b’s that  give this load
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uplift

time=0

co
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tu

d
e

longitude

time=3000 yrs



colatitude

t=0

t=3000 yrs
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colatitude

u
p

lif

subsidence
uplift uplift

today

t=0

t=3000





linear elasticity

and

Newton’s Law in fluids



elasticity:    reversible deformation

before after

during



linear elasticity: 
deformation proportional to force

double force
double deformation



force per unit area
is called traction, T

positive when outward
pointing



fluid

traction is always
normal to surface



fluid

all (nearby) surfaces have the same traction

tractoin in fluid:  minus the pressure, p



Newton’s Law (horizontal motion only)

𝑝𝐿 𝑃𝐿

∆𝑥

𝑢
𝐴 𝜌

position of center



pressure force

𝑝𝐿 𝑝𝐿

∆𝑥
𝐴𝐴

𝐹𝐹 = 𝐴𝑝𝐿 𝐹𝑅 = −𝐴𝑝𝐿

𝐹 = 𝐹𝐿 − 𝐹𝑅 = 𝐴 𝑝𝐿 − 𝑝𝑅

𝑢
𝜌



volumetric force, like gravity

𝑝𝐿 𝑝𝐿

∆𝑥
𝐴𝐴

𝐹𝐹 = 𝐴𝑝𝐿 𝐹𝑅 = −𝐴𝑝𝐿

𝐹 = 𝑓𝐴∆𝑥

𝑢
𝜌

𝑓 force per unit volume



Mass

𝑝𝐿 𝑝𝐿

∆𝑥
𝐴𝐴

𝑀 = 𝜌𝐴∆𝑥

𝑢
𝜌



Acceleration

𝑝𝐿 𝑝𝐿

∆𝑥
𝐴𝐴

𝑎 =
𝑑2𝑢

𝑑𝑡2

𝑢
𝜌



𝐹 = 𝑀𝑎

𝑎 =
𝑑2𝑢

𝑑𝑡2

𝑀 = 𝜌𝐴∆𝑥

𝐹 = 𝐴 𝑝𝐿 − 𝑝𝑅 𝐴 𝑝𝐿 − 𝑝𝑅 + 𝑓𝐴∆𝑥 = 𝜌𝐴∆𝑥
𝑑2𝑢

𝑑𝑡2

𝑝𝐿 − 𝑝𝑅
∆𝑥

+ 𝑓 = 𝜌
𝑑2𝑢

𝑑𝑡2

𝑓 −
𝑑𝑝

𝑑𝑥
= 𝜌

𝑑2𝑢

𝑑𝑡2

Newton’s law

𝐹 = 𝑓𝐴 ∆𝑥



Linear Elasticity in a fluid

∆𝑉

𝑉
= −𝑐∆𝑝

fractional change in volume is proportional to pressure



Linear Elasticity in a fluid

or if you prefer

with V =
𝑀

𝜌

∆
𝑀
𝜌
𝑀
𝜌

= −𝑐∆𝑝

𝜌∆𝜌−1 = −𝑐∆𝑝

𝜌
𝑑𝜌−1

𝑑𝑝
= −𝑐 −𝜌𝜌−2

𝑑𝜌

𝑑𝑝
= −𝑐 𝜌−1

𝑑𝜌

𝑑𝑝
= 𝑐

fractional change in density proportional to pressure



pressure

h
ei

gh
t

what’s atmospheric pressure do with height?

?

1 atm
0



pressure

h
ei

gh
t

what’s atmospheric pressure do with height?

1 atm
0



pressure

h
ei

gh
t

Why does it decrease?

1 atm
0



pressure

h
ei

gh
t

newton’s law

1 atm

𝑓 −
𝑑𝑝

𝑑𝑥
= 𝜌

𝑑2𝑢

𝑑𝑡2

−𝜌𝑔 −
𝑑𝑝

𝑑𝑥
= 0

𝑑𝑝

𝑑𝑥
= −𝜌𝑔0



Linear Elasticity in an isothermal ideal gas

𝑃𝑉 = 𝑛𝑅𝑇 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠

𝑚 = 𝑚𝑎𝑠𝑠 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒

mass = 𝑛𝑚

𝜌 =
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
=
𝑛𝑚

𝑉

𝑃 =
𝑛

𝑉

𝑅𝑇

1

𝑃 =
𝑛𝑚

𝑉

𝑅𝑇

𝑚



Linear Elasticity in an isothermal ideal gas

p𝑉 = 𝑛𝑅𝑇

𝑝 =
𝑛

𝑉

𝑅𝑇

1

𝑝 =
𝑛𝑚

𝑉

𝑅𝑇

𝑚

p =
𝑅𝑇

𝑚
𝜌

𝜌 =
𝑚

𝑅𝑇
𝑝



pressure

h
ei

gh
t

newton’s law (no acceleration)

1 atm

𝑑𝑝

𝑑𝑥
= −𝑔𝜌

𝑑𝑝

𝑑𝑥
= −

𝑔𝑚

𝑅𝑇
𝑝



pressure

h
ei

gh
t

newton’s law

1 atm

𝑑𝑝

𝑑𝑥
= −

𝑔𝑚

𝑅𝑇
𝑝

𝑥𝑜 =
𝑅𝑇

𝑔𝑚

𝑝 = 𝑝0 exp −𝑥/𝑥𝑜



pressure

h
ei

gh
t

1 atm

𝑝 = 𝑝0 exp −𝑥/𝑥0 𝑥𝑜 =
𝑅𝑇

𝑔𝑚

9000 𝑚



Shear forces in solids



Shear forces in solids



Shear forces in solids



undeformed object

𝑥

𝑦



deformed object

𝑥

𝑦



displacement

𝑥

𝑦

a point initially at 𝑥, 𝑦
moves to 𝑥 + 𝑢, 𝑦 + 𝑣



volumetric strain: change in volume

∆𝑥 + ∆𝑢, ∆𝑦 + ∆𝑣

∆𝑦

0,0 ∆𝑥



volumetric strain: change in volume
∆𝑥 + ∆𝑢, ∆𝑦 + ∆𝑣

∆𝑦

0,0

original area
∆𝑥∆𝑦

new area
∆𝑥 + ∆𝑢 ∆𝑦 + ∆𝑣

≈ ∆𝑥∆𝑦 + ∆𝑥∆𝑣 + ∆𝑦∆𝑢

change in area ∆𝐴 = ∆𝑥∆𝑣 + ∆𝑦∆𝑢



volumetric strain: change in volume
∆𝑥 + ∆𝑢, ∆𝑦 + ∆𝑣

∆𝑦

0,0

change in area

∆𝐴 = ∆𝑥∆𝑣 + ∆𝑦∆𝑢

∆𝐴

𝐴
=
∆𝑣

∆𝑦
+
∆𝑢

∆𝑥

change in area

no change in area

0 =
𝑑𝑣

𝑑𝑦
+
𝑑𝑢

𝑑𝑥



no change in volume

∆𝑦

0,0

no change in area

0 =
𝑑𝑣

𝑑𝑦
+
𝑑𝑢

𝑑𝑥

called
shear strain



volumetric strain: change in volume
∆𝑥 + ∆𝑢, ∆𝑦 + ∆𝑣

∆𝑦

0,0

easy way to satisfy

𝑢 only varies with 𝑦

0 =
𝑑𝑣

𝑑𝑦
+
𝑑𝑢

𝑑𝑥

no change in area

𝑣 only varies with 𝑥



𝑥
𝑦

undeformed object

undeformed object



shear strain only

𝑥

𝑦

𝑣

𝑣 only fcn of x

𝑢 everywhere 0
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