#### Solid Earth Dynamics

#### Bill Menke, Instructor

#### Lecture 12

#### Today:

#### more on glacial isostatic rebound

starting discussion of deformation newton's law in a material atmospheric pressure volumetric and shear strain

### Glacial Isostatic Rebound



$$\rho_{C}L + \rho_{M}d = \rho_{I}H + \rho_{C}L$$

$$\rho_{M}d = \rho_{I}H$$

$$d = \frac{1000}{3000}H = \frac{1}{3}H = 1 \text{ km}$$



#### patterns with increasing number of wiggles

n = number of half-wavelengths

let's call them  $P_n(\cos \theta)$ Legendre Polynomials



each decays with characteristic decay time  $\tau$ 

t=0  $c_n P_n(\cos\theta)$ 

at a later time, t  $c_n \exp(-t/\tau) P_n(\cos\theta)$  formula for  $\tau$  known, depends on n





# because both viscous flow and gravity are linear processes

```
if load L_A leads to uplift U_A
and
if load L_B leads to uplift U_B
then
if load L_A + L_B leads to uplift U_A + U_B
```

strategy for dealing with complicated load,  $L(\theta)$ 

(A) figure out the proportionality between Load and uplift at time t=0, for loads of shape  $P_n(\cos \theta)$ 

at time t=0 Load  $L = P_n(\cos \theta)$ leads to uplift  $U = c_n P_n(\cos \theta)$ 

only work for some "the right"  $P_n(\cos \theta)$ s

# $c_n$ is known for this problem

$$c_n = \frac{2n+1}{2(n-1)}$$

when  $P_n(\cos \theta)$  are the ones shown previously

(B) approximate Load L( $\theta$ , t = 0) as as sum of the functions  $P_n(\theta)$ 



(C) invoke superposition: each  $c_n$  decays independently with time

### $c_n$ becomes $c_n \exp(-t/\tau)$

#### (D) perform the summation

$$R(\theta, t = 0) \approx \sum_{n=1}^{N} b_n c_n \exp(-t/\tau) P_n(\cos \theta)$$

#### I cooked up the b's that give this load





load

uplift

time=0 time=3000 yrs initial uplift uplift at t= 3000 yrs cotatitude -10 -10 -20 -20 -30 -30 longitude longitude

cotatitude



during the Ice Age







### linear elasticity

and

Newton's Law in fluids

# elasticity: reversible deformation

# during



# linear elasticity: deformation proportional to force



![](_page_24_Picture_0.jpeg)

force per unit area is called traction, T

positive when outward pointing

#### fluid

traction is always normal to surface

surface

#### fluid

#### all (nearby) surfaces have the same traction

![](_page_26_Figure_2.jpeg)

tractoin in fluid: minus the pressure, p

#### Newton's Law (horizontal motion only)

![](_page_27_Figure_1.jpeg)

#### pressure force

![](_page_28_Figure_1.jpeg)

#### volumetric force, like gravity

![](_page_29_Figure_1.jpeg)

#### Mass

![](_page_30_Figure_1.jpeg)

#### Acceleration

![](_page_31_Figure_1.jpeg)

Newton's law F = Ma

 $F = A(p_L - p_R)$  $F = fA \Delta x$  $M = \rho A \Delta x$  $a = \frac{d^2u}{dt^2}$ 

$$A(p_L - p_R) + fA\Delta x = \rho A\Delta x \frac{d^2 u}{dt^2}$$

$$\frac{(p_L - p_R)}{\Delta x} + f = \rho \frac{d^2 u}{dt^2}$$

$$f - \frac{dp}{dx} = \rho \frac{d^2 u}{dt^2}$$

Linear Elasticity in a fluid

$$\frac{\Delta V}{V} = -c\Delta p$$

fractional change in volume is proportional to pressure

Linear Elasticity in a fluid

or if you prefer  
with 
$$V = \frac{M}{\rho}$$

$$\frac{\Delta \frac{M}{\rho}}{\frac{M}{\rho}} = -c\Delta p$$

$$\rho \Delta \rho^{-1} = -c \Delta p$$

$$\rho \frac{d\rho^{-1}}{dp} = -c \qquad -\rho\rho^{-2} \frac{d\rho}{dp} = -c \qquad \rho^{-1} \frac{d\rho}{dp} = c$$

fractional change in density proportional to pressure

![](_page_35_Figure_0.jpeg)

#### what's atmospheric pressure do with height?

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_37_Figure_0.jpeg)

#### Why does it decrease?

 $\mathbf{O}$ 

![](_page_38_Figure_1.jpeg)

1 atm

![](_page_38_Figure_2.jpeg)

pressure

Linear Elasticity in an isothermal ideal gas

$$PV = nRT \qquad n = number of moles$$
$$P = \frac{n RT}{V 1} \qquad m = mass \ per \ mole$$
$$mass = nm$$

$$P = \frac{nm RT}{V m} \qquad \rho = \frac{mass}{volume} = \frac{nm}{V}$$

Linear Elasticity in an isothermal ideal gas

$$pV = nRT$$

$$p = \frac{n}{V} \frac{RT}{1}$$

$$p = \frac{m}{RT} \rho$$

$$p = \frac{m}{RT} \rho$$

$$nm RT$$

$$p = \frac{m K T}{V} \frac{K T}{m}$$

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

RT $p = p_0 \exp(-x/x_0)$  $X_{O}$ gm

В А C D Е ▲ 0.028 (nitrogen) kg/mol 1 m 9.81 m/s2 2 g 8.3 J/mok-K 3 R 300 K Т 4 9065.094 m/s2 RT/gn 5 6 T 7 Sheet1 (+)► • Ξ Ш +100%

height

![](_page_43_Figure_3.jpeg)

pressure

# Shear forces in solids

# Shear forces in solids

![](_page_45_Picture_1.jpeg)

# Shear forces in solids

![](_page_46_Picture_1.jpeg)

# undeformed object

![](_page_47_Picture_1.jpeg)

# deformed object

![](_page_48_Figure_1.jpeg)

# displacement

![](_page_49_Figure_1.jpeg)

a point initially at (x, y)moves to (x + u, y + v)

# volumetric strain: change in volume

![](_page_50_Figure_1.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

### no change in volume

#### no change in area

![](_page_53_Figure_2.jpeg)

$$0 = \frac{dv}{dy} + \frac{du}{dx}$$

# called shear strain

# volumetric strain: change in volume

 $(\Delta x + \Delta u, \Delta y + \Delta v)$ 

![](_page_54_Figure_2.jpeg)

easy way to satisfy no change in area

$$0 = \frac{d\nu}{dy} + \frac{du}{dx}$$

*u* only varies with *y* 

v only varies with x

# undeformed object

![](_page_55_Picture_1.jpeg)

# undeformed object

![](_page_56_Figure_0.jpeg)