Solid Earth Dynamics

Bill Menke, Instructor
Lecture 14

Midterm
 In class, open book/notes

choose any 2 of 3 questions

"scenario" essay questions focused at broad geodynamical questions

no "calculation"
but answers should involve quantitative thinking

Solid Earth Dynamics

Tides

The Tide Rises, the Tide Falls

By Henry Wadsworth Longfellow
The tide rises, the tide falls,
The twilight darkens, the curlew calls;
Along the sea-sands damp and brown
The traveller hastens toward the town,
And the tide rises, the tide falls.
Darkness settles on roofs and walls, But the sea, the sea in the darkness calls;
The little waves, with their soft, white hands, Efface the footprints in the sands,

And the tide rises, the tide falls.
The morning breaks; the steeds in their stalls
Stamp and neigh, as the hostler calls;
The day returns, but nevermore eturns the traveller to the shore,

And the tide rises, the tide falls.

$\frac{\gamma M}{(R+r)^{2}} \quad \frac{\gamma M}{R^{2}} \quad \frac{\gamma M}{(R-r)^{2}}$

$\frac{\gamma M}{(R+r)^{2}} \quad \frac{\gamma M}{R^{2}} \quad \frac{\gamma M}{(R-r)^{2}}$

$$
\begin{aligned}
& f_{L}=\gamma M(R+r)^{-2}=\frac{\gamma M}{R^{2}}\left(1+\frac{r}{R}\right)^{-2}=\frac{\gamma M}{R^{2}}\left(1-2 \frac{r}{R}\right)=\frac{\gamma M}{R^{2}}-2 \frac{\gamma M r}{R^{3}} \\
& f_{R}=\gamma M(R-r)^{-2}=\frac{\gamma M}{R^{2}}\left(1-\frac{r}{R}\right)^{-2}=\frac{\gamma M}{R^{2}}\left(1+2 \frac{r}{R}\right)=\frac{\gamma M}{R^{2}}+2 \frac{\gamma M r}{R^{3}} \\
& \Delta f=f_{R}-f_{L}=\frac{4 \gamma M r}{R^{3}}
\end{aligned}
$$

$\frac{\gamma M}{(R+r)^{2}} \quad \frac{\gamma M}{R^{2}} \quad \frac{\gamma M}{(R-r)^{2}}$
relative to force acting at the the center of the earth

1	Mearth km	$5.97 \mathrm{E}+24$
2	rEarth m	$6.37 \mathrm{E}+06$
3	gamma	$6.70 \mathrm{E}-11$
4		
5	Mmoon kg	$7.40 \mathrm{E}+22$
6	Rmoon m	$3.83 \mathrm{E}+08$
7		
8	Msun kg	$2.00 \mathrm{E}+30$
9	Rsun m	$1.48 \mathrm{E}+11$
10		
11	Df moon	$2.26 \mathrm{E}-06$
12	DF sun	$1.06 \mathrm{E}-06$
12		

Moon

Earth

Where's the Earth's spin axis?

Moon

Earth

but moon's orbit precesses with period of 18.6 years

moon 18.4 degrees above the equator

Varies with time of year and position of moon in its orbit

moon over equator

Varies with time of year and position of moon in its orbit

Monthly modulation

But what about the sun

same tidal patterns, but periods a little different
daily, semi-daily tides
$24+24 / 365$ hours
annual tides
I year, not one month

patterns reinforce

spring tides

patterns interfere

neap tides

patterns reinforce

spring tides

patterns interfere
neap tides

Biweekly modulation

Figure 2. Comparison of modeled astronomical tide vs. sea level recorded by the tidal gauge in the Bay of Cartagena.
Source: The authors.

Tides

Sea surface

surface of equal potential energy

Agenda

just like equatorial bulge of earth

equatorial bulge

earth's gravity

plus

centrifugal force

tides

earth's gravity

plus
moon's (or sun's) gravity

equatorial bulge earth's surface is a surface of equal potential energy

tides
sea surface
is a surface
of equal potential energy
relative to force acting at the the center of the earth

tricky part

surface of equal potential energy of the moon/sun

minus

potential of moon/sun acting on Earth as a whole (as if all the Earth was at the position of its center)
(since only the difference makes tides)

Four part agenda

1. Energy of Moon as if all of earth was concentrated at its center

2. Energy of Moon

3. Energy of Earth
4. Infer formula for tides from sum
derivative must give constant force $\frac{-\gamma M}{R^{2}}$

so that direction of force is always parallel to z derivative must give constant force $\frac{-\gamma M}{R^{2}}$

so that direction of force is always parallel to z derivative must give constant force $\frac{-\gamma M}{R^{2}}$

Part 2: energy E_{M} of the moon

released taking unit mass from indefinitely far away to a position r, θ

Part 2:

So "all" we need to is to take a formula
$\frac{-\gamma M}{d}$
that is written in terms of a coordinate system centered on the moon
and re-write it in terms of coordinate system centered on the earth

Part 2

need to write d as a function of r, θ

Part 2
Law of cosines

$$
\begin{aligned}
& d^{-1}=\left[R^{2}+r^{2}-2 r R \cos \theta\right]^{-1 / 2} \\
& \quad=R^{-1}\left[1+\left(\frac{r}{R}\right)^{2}-2 \frac{r}{R} \cos \theta\right]^{-1 / 2}
\end{aligned}
$$

Part 2
Law of cosines

$$
\begin{aligned}
& d^{-1}=\left[R^{2}+r^{2}-2 r R \cos \theta\right]^{-1 / 2} \\
& \quad=R^{-1}\left[1+\left(\frac{r}{R}\right)^{2}-2 \frac{r}{R} \cos \theta\right]^{-1 / 2}
\end{aligned}
$$

$$
[1+x]^{-1 / 2} \approx 1-\frac{1}{2} x+\frac{3}{8} x^{2} \ldots
$$

binomial theorem

Law of cosines

$$
\begin{aligned}
& d^{-1}=\left[R^{2}+r^{2}-2 r R \cos \theta\right]^{-1 / 2} \\
& =R^{-1}\left[1+\left(\frac{r}{R}\right)^{2}-2 \frac{r}{R} \cos \theta\right]^{-1 / 2} \\
& x \\
& {[1+x]^{-1 / 2} \approx 1-\frac{1}{2} x+\frac{3}{8} x^{2} \cdots} \\
& \approx R^{-1}\left[1+\frac{r}{R} \cos \theta-\frac{1}{2}\left(\frac{r}{R}\right)^{2}+\frac{3}{2}\left(\frac{r}{R}\right)^{2} \cos ^{2} \theta\right]
\end{aligned}
$$

Part 2

$$
\begin{aligned}
& E_{M}=\frac{-\gamma M}{d}=\frac{-\gamma M}{R}\left[1+\frac{r}{R} \cos \theta-\left(\frac{r}{R}\right)^{2} P_{2}(\cos \theta)\right] \\
& E_{c}=\frac{-\gamma M}{R} \frac{r}{R} \cos \theta \\
& E_{M}-E_{c}=\frac{-\gamma M}{R}\left[1-\left(\frac{r}{R}\right)^{2} P_{2}(\cos \theta)\right]
\end{aligned}
$$

Part 2

tides: deviation from average radius

$$
r=r_{0}+\Delta r
$$

$$
\begin{array}{ll}
\text { measure distance with } & r^{2} \approx r_{0}^{2}\left(1+\frac{2 \Delta r}{r_{0}}\right) \\
\text { respect to Earth's } \\
\text { radius, } r_{0} & \frac{1}{r} \approx \frac{1}{r_{0}}\left(1-\frac{\Delta r}{r_{0}}\right)
\end{array}
$$

Part 2

Part 3

Earth: energy E_{e} released taking unit mass from indefinitely far away to a position r, θ

Part 4 combined potential energy surfaces to

 get tides$$
\begin{aligned}
& E_{e}+E_{M}-E_{C}= \\
& \frac{-\gamma m}{r_{0}}\left(1-\frac{\Delta r}{r_{0}}\right)+\frac{-\gamma M}{R}\left[1-\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta)-2\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta) \frac{\Delta r}{r_{0}}\right]= \\
& -\frac{\gamma m}{r_{0}}-\frac{\gamma M}{R}+\frac{\gamma M}{R}\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta)+2 \frac{\gamma M}{R}\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta) \frac{\Delta r}{r_{0}}+\frac{\gamma m}{r_{0}} \frac{\Delta r}{r_{0}}=
\end{aligned}
$$

Part 4 combined potential energy surfaces to

 get tides$$
\begin{aligned}
& E_{e}+E_{M}-E_{C}= \\
& \frac{-\gamma m}{r_{0}}\left(1-\frac{\Delta r}{r_{0}}\right)+\frac{-\gamma M}{R}\left[1-\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta)-2\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta) \frac{\Delta r}{r_{0}}\right]= \\
& \quad-\frac{\gamma m}{r_{0}}-\frac{\gamma M}{R}+\frac{\gamma M}{R}\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta)+2 \frac{\gamma M}{R}\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta) \frac{\Delta r}{r_{0}}+\frac{\gamma m}{r_{0}} \frac{\Delta r}{r_{0}}
\end{aligned}
$$

set to zero to and solve for $\Delta r(\theta)$ to get ocean surface

$$
\begin{gathered}
-\frac{\gamma M}{R}\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta)+2 \frac{\gamma M}{R}\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta) \frac{\Delta r}{r_{0}}+\frac{\gamma m}{r_{0}} \frac{\Delta r}{r_{0}}=0 \\
-\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta)+2\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta) \frac{\Delta r}{r_{0}}+\frac{m}{M} \frac{R}{r_{0}} \frac{\Delta r}{r_{0}}=0 \\
\left.-\left(\frac{r_{0}}{R}\right)^{2} P_{2}(\cos \theta)+2\left(\frac{r_{0}}{R}\right)^{2} \text { os } \theta\right) \frac{\Delta r}{r_{0}}+\frac{m}{M} \frac{R}{r_{0}} \frac{\Delta r}{r_{0}}=0
\end{gathered}
$$

$$
\frac{\Delta r}{r_{0}}=\left(\frac{r_{0}}{R}\right)^{3} \frac{M}{m} P_{2}(\cos \theta) \quad \text { Formula for height of tides }
$$

$$
\text { with } P_{2}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)
$$

$$
\begin{aligned}
& P_{2}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1=1\right) \\
& P_{2}(\cos 0)=\frac{1}{2}(3-1)=1 \\
& P_{2}(\cos 90)=\frac{1}{2}(-1)=-\frac{1}{2} \\
& \text { peak-to-peak tides } \\
& \frac{\Delta r}{r_{0}}=\frac{3}{2}\left(\frac{r_{0}}{R}\right)^{3} \frac{M}{m} \\
& \text { Moon }
\end{aligned}
$$

peak-to-peak tides

$$
\frac{\Delta r}{r_{0}}=\frac{3}{2}\left(\frac{r_{0}}{R}\right)^{3} \frac{M}{m} \text { more massive moon, bigger tides }
$$

peak-to-peak tides
$\frac{\Delta r}{r_{0}}=\frac{3}{2}\left(\frac{r_{0}}{R}\right)^{3} \frac{M}{m} \quad$ more distant moon, smaller tides

How big would tides be if moon was twice as close to earth?

$$
\left(\frac{r_{0}}{R}\right)^{3} \text { so }\left(\frac{1}{0.5}\right)^{3}=8
$$

peak-to-peak tides

$$
\frac{\Delta r}{r_{0}}=\frac{3}{2}\left(\frac{r_{0}}{R}\right)^{3} \frac{M}{m}
$$

