Solid Earth Dynamics

Bill Menke, Instructor
Lecture 15

Solid Earth Dynamics

Vibrations in fluids

Part 1: Newton's law applied to pressure fluctuations in a fluid

traction = force per unit area

fluid

pressure = strength of inward pointing traction

which way will it move?

moves to left

x

moves to left

total surface force
$F(x)+F(x+\Delta x p)=A p(x)-A p(x+\Delta x)$

Newton' Law

Newton' Law $\mathrm{F}_{\text {surface }}+\mathrm{F}_{\text {body }}=$ mass times acceleration

$$
A p(x)-A p(x+\Delta x)+f A \Delta x=A \Delta x \rho \frac{d^{2} u}{d t^{2}}
$$

Newton' Law

Newton' Law $\mathrm{F}_{\text {surface }}+\mathrm{F}_{\text {body }}=$ mass times acceleration

$$
-\frac{p(x+\Delta x)-p(x)}{\Delta x}+f=\rho \frac{d^{2} u}{d t^{2}}
$$

Newton' Law

Newton' Law $\mathrm{F}_{\text {surface }}+\mathrm{F}_{\text {body }}=$ mass times acceleration

$$
-\frac{d p}{d x}+f=\rho \frac{d^{2} u}{d t^{2}}
$$

Newton' Law in a fluid

Newton' Law

Newton' Law $\mathrm{F}_{\text {surface }}+\mathrm{F}_{\text {body }}=$ mass times acceleration

$$
-\frac{d p}{d x}=\rho \frac{d^{2} u}{d t^{2}}
$$

Part 2: Linear elasticity in a fluid

deformation causes pressure

did the volume get bigger or smaller?
did the pressure go up or down?

went down

Area A

volume $A u(x)$

$$
A u(x+\Delta x)
$$

volumetric strain $\Delta V / V$

$$
\frac{A u(x+\Delta x)-A u(x)}{A \Delta x}
$$

Area A

volume $A u(x)$
$A u(x+\Delta x)$
volumetric strain $\Delta V / V$

$$
\frac{A u(x+\Delta x)-A u(x)}{A \Delta x}=\frac{d u}{d x}
$$

Part 3: Equation for pressure

 fluctuations in a fluid$$
p=-k \frac{d u}{d x} \quad \text { linear elasticity }
$$

pressure decreases
linearly
with volumetric strain

$$
\begin{aligned}
p=-k \frac{d u}{d x} & \text { linear elasticit }) \\
-\frac{d p}{d x}=\rho \frac{d^{2} u}{d t^{2}} & \text { newton's law }
\end{aligned}
$$

equation for pressure fluctuations in a fluid

$$
k \frac{d^{2} u}{d x^{2}}=\rho \frac{d^{2} u}{d t^{2}}
$$

$$
\begin{aligned}
p=-k \frac{d u}{d x} & \text { linear elasticit } \\
-\frac{d p}{d x}=\rho \frac{d^{2} u}{d t^{2}} & \text { newton's law }
\end{aligned}
$$

what do we call
pressure fluctuation

$$
k \frac{d^{2} u}{d x^{2}}=\rho \frac{d^{2} u}{d t^{2}}
$$

in air?

$$
\begin{aligned}
p=-k \frac{d u}{d x} & \text { linear elasticity } \\
-\frac{d p}{d x}=\rho \frac{d^{2} u}{d t^{2}} & \text { newton's law }
\end{aligned}
$$

$$
\text { equation for sound } \quad k \frac{d^{2} u}{d x^{2}}=\rho \frac{d^{2} u}{d t^{2}}
$$

(for displacement u)

To get pressure p as the variable ...

$$
\begin{aligned}
& p=-k \frac{d u}{d x} \quad \text { so } \quad \frac{d u}{d x}=-\frac{p}{k} \\
& \frac{d p}{d x}=\rho \frac{d^{2} u}{d t^{2}} \quad \text { take } \frac{d}{d x} \text { so }-\frac{d^{2} p}{d x^{2}}=\rho \frac{d^{2}}{d t^{2}} \frac{d u}{d x} \\
& \text { equation for sound } \quad k \frac{d^{2} p}{d x^{2}}=\rho \frac{d^{2} p}{d t^{2}}
\end{aligned}
$$

Part 4: propagation of pressure fluctuations

equation for sound $\quad k \frac{d^{2} p}{d x^{2}}=\rho \frac{d^{2} p}{d t^{2}}$
a pressure fluctuation moving at speed $\quad c=\sqrt{\frac{k}{\rho}}$
retains its shape

$$
\mathrm{p}(x, t)=s\left(t-\frac{x}{c}\right) \quad \text { retains its shape as it moves }
$$

example with $\mathrm{c}=1$ position 0

$$
p(x=0, t)=s(t)
$$

$$
p(x, t)=s\left(t-\frac{x}{c}\right)
$$

retains its shape as it moves
example with $\mathrm{c}=1$ position=0

$$
p(x=0, t)=s(t)
$$

position 1

$$
\mathrm{p}(x=1, t)=s(t-1)
$$

demonstration that

$$
\mathrm{p}(x, t)=s\left(t-\frac{x}{c}\right)
$$

let $y=t-c^{-1} x \quad$ so
solves equation

$$
c^{2} \frac{d^{2} p}{d x^{2}}=\frac{d^{2} p}{d t^{2}}
$$

$$
\frac{d y}{d x}=-c^{-1} \quad \frac{d y}{d t}=1
$$

demonstration that
solves equation $\mathrm{p}(x, t)=s(y)$

$$
c^{2} \frac{d^{2} p}{d x^{2}}=\frac{d^{2} p}{d t^{2}}
$$

with $y=t-c^{-1} x$ so

$$
\frac{d y}{d x}=-c^{-1} \quad \frac{d y}{d t}=1
$$

Employ chain rule

$$
\begin{aligned}
& \frac{d^{2} p}{d x^{2}}=\frac{d^{2} s}{d x^{2}}=\frac{d}{d x} \frac{d}{d x} s=\frac{d y}{d x} \frac{d}{d y} \frac{d y}{d x} \frac{d}{d y} s=c^{-2} \frac{d^{2} s}{d y^{2}} \\
& \frac{d^{2} p}{d t^{2}}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t} \frac{d}{d t} s=\frac{d y}{d t} \frac{d}{d y} \frac{d y}{d t} \frac{d}{d y} s=\frac{d^{2} s}{d y^{2}}
\end{aligned}
$$

demonstration that
solves equation
$\mathrm{p}(x, t)=s(y)$
$c^{2} \frac{d^{2} p}{d x^{2}}=\frac{d^{2} p}{d t^{2}}$
with $y=t-c^{-1} x$ so $\quad \frac{d y}{d x}=-c^{-1} \quad \frac{d y}{d t}=1$

$$
\frac{d^{2} p}{d x^{2}}=\frac{d^{2} s}{d x^{2}}=\frac{d}{d x} \frac{d}{d x} s=\frac{d y}{d x} \frac{d}{d y} \frac{d y}{d x} \frac{d}{d y} s=c^{-2} \frac{d^{2} s}{d y^{2}}
$$

$$
\frac{d^{2} p}{d t^{2}}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t} \frac{d}{d t} s=\frac{d y}{d t} \frac{d}{d y} \frac{d y}{d t} \frac{d}{d y} s=\frac{d^{2} s}{d y^{2}}
$$

Part 5: sound speed in air

$$
p=-k \frac{d u}{d x}
$$

k is pressure divided by volumetric strain

$$
k=-\frac{p}{\left(\frac{d u}{d x}\right)}
$$

pressure fluctuation in an ideal gas

$$
\begin{aligned}
& p V=n R T \\
& \begin{array}{l}
\left(p_{0}+\Delta p\right)\left(V_{0}+\Delta V\right)=n R T \\
p_{0} V_{0}+p_{0} \Delta V+V_{0} \Delta p
\end{array}=n R T \\
& p_{0} V_{0} \quad=n R T \\
& \quad p_{0} \Delta V+V_{0} \Delta p=0
\end{aligned}
$$

fluctuation around reference pressure
multiply out, discard small term

Subtract ideal gas law
Which is true at the reference pressure
pressure fluctuation in an ideal gas

$$
p_{0} \Delta V+V_{0} \Delta p=0
$$

$$
\begin{array}{cl}
\frac{\Delta V}{V_{0}}=-\frac{\Delta p}{p_{0}} & \text { rearrange } \\
-\frac{\Delta p}{\frac{\Delta V}{V_{0}}}=p_{0} & \text { rearrange } \\
k=p_{0} & \text { since } k=-p /\left(\left(\frac{d u}{d x}\right)\right)
\end{array}
$$

$$
c=\sqrt{\frac{k}{\rho}}=\sqrt{\frac{p_{0}}{\rho}}
$$

		A	B	C	D
1	p0	101325			
2	rho	1.293			
3					
4	sqrt(p0/rho)	279.9362	$\mathrm{~m} / \mathrm{s}$		
5					

$p_{0}=1 \mathrm{~atm}=101325 \mathrm{~Pa}=101325 \mathrm{~kg} / \mathrm{m}-\mathrm{s}^{2}$
$\rho=1 \mathrm{~atm}=1.293 \mathrm{~kg} / \mathrm{m}^{3}$
units: $\frac{p_{0}}{\rho}: \frac{k g}{m-s^{2}} \frac{m^{3}}{k g}=\frac{m^{2}}{s^{2}}$ so units: $\sqrt{\frac{p_{0}}{\rho}}: \frac{m}{s}$

Part 5: Lightning and Thunder

$$
\begin{aligned}
& T_{L}=t_{0}+c_{L}^{-1} R \\
& T_{T}=t_{0}+c_{S}^{-1} R \\
& \Delta T=T_{T}-T_{L}=\left(c_{S}^{-1}-c_{L}^{-1}\right) R \\
& R=\frac{\Delta T}{\left(c_{S}^{-1}-c_{L}^{-1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& c_{S}=278 \mathrm{~m} / \mathrm{s} \\
& c_{L}=299,792,458 \mathrm{~m} / \mathrm{s} \\
& \frac{1}{\left(c_{S}^{-1}-c_{L}^{-1}\right)} \approx \frac{1}{\left(c_{S}^{-1}\right)}=c_{S}=278 \mathrm{~m} / \mathrm{s} \\
& R=278 \Delta T \mathrm{~m} \quad \text { or approximately }
\end{aligned}
$$

$R \approx 1000 \Delta T$ feet

$$
\begin{aligned}
& c_{S}=278 \mathrm{~m} / \mathrm{s} \\
& c_{W}=1500 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\frac{1}{\left(c_{S}^{-1}-c_{W}^{-1}\right)} \approx 341 \mathrm{~m} / \mathrm{s}
$$

$$
R=341 \Delta T \mathrm{~m}
$$

