Solid Earth Dynamics

Bill Menke, Instructor

Lecture 16

Midterm

congratulations!

everyone did well

two letter grades, one each problem

Question 1

same densities, no thermal expansion, societal effects

same densities

no density stratification of the mantle/crust no isostasy – no deep sedimentary basins, different topography profile societal: less petroleum, less economic minerals

no thermal expansion

no convection, no plate tectonics conductive temperature profile of earth, melt mantle (?) societal: no ocean basins, water-world

Question 2 water world with thick cloud cover

centrifugal & Coriolis forces

rotation rate of planet, (match day-night cycle)

tides

solar tides (match day-night cycle) other tides from planets, hints about their mass/distance, position

ocean depth soundings, gravity measurements

plate tectonics (depth age, trenches, etc), isostasy & lithospheric thickness

petrology, shape their islands volcanic arcs? hot-spot chains?

Question 3 exoplanet rover

camera

topography, evidence of recent tectonism and volcanism

chemical analyses

infer densities, systematic differences between highlands and lowlands

gravimeter

size of anomalies (using inferred density)

isostasy, through troughs around highlands

heat flow

systematic differences between regions related to age of crust or thickness of lithosphere

Solid Earth Dynamics

Vibrations in solids

shear wave compressional wave apparent velocity refraction at interface

shear waves in a solid

shear deformation in a solid

displacement in the y-direction

shear stress proportional to shear strain

shear stress $\sigma = \mu \epsilon$ rigidity

newton's law for shear forces

(very similar to pressure case in Lec 15)

surface force

force in y-direction

$$F(x) + F(x + \Delta xp) = A\sigma(x + \Delta x) - A\sigma(x)$$

body force

force in y-direction

$$F(x) = f\Delta V = fA\Delta x$$

acceleration in y direction

mass × accerleration
$$\rho A \Delta x \frac{d^2 u}{dt^2}$$

newton's law

motion in y-direction

$$A\sigma(x + \Delta x) - A\sigma(x) + fA\Delta x = \rho\Delta xA\frac{d^2u}{dt^2}$$

newton's law

motion in y-direction

$$\frac{\sigma(x + \Delta x) - \sigma(x)}{\Delta x} + f = \rho \frac{d^2 u}{dt^2}$$

newton's law

motion in y-direction

$$\frac{d\sigma}{dx} + f = \rho \frac{d^2 u}{dt^2}$$

Part 3: Equation for pressure fluctuations in a fluid

$$\sigma = \mu \varepsilon = \mu \frac{du}{dx}$$
 shear stress \propto shear strain

$$\frac{d\sigma}{dx} = \rho \frac{d^2 u}{dt^2}$$

Newton's law

combined equation for displacement

shear stress \propto shear strain

Newton's law

 $\mu \frac{d^2 u}{dx^2} = \rho \frac{d^2 u}{dt^2}$

combined equation for shear stress

 $\mu \frac{d^2 u}{dx^2} = \rho \frac{d^2 u}{dt^2}$ $\mu \frac{d^2 \sigma}{dx^2} = \rho \frac{d^2 \sigma}{dt^2}$

shear stress and displacement satisfy similar equations

 $\mu \frac{d^2 u}{dx^2} = \rho \frac{d^2 u}{dt^2}$ $\mu \frac{d^2 \sigma}{dx^2} = \rho \frac{d^2 \sigma}{dt^2}$

solution

$$u(x,t) = s\left(t - \frac{x}{\beta}\right)$$

$$\sigma(x,t) = -\frac{1}{\beta}\dot{s}\left(t - \frac{x}{\beta}\right)$$

s: any function

shear velocity $\beta = \sqrt{\frac{\mu}{\rho}}$

a pulse maintains its shape as it propagates at the shear velocity β

Difference in the way a fluid and a solid responds to a pressure-generating force

 $t_1 = \frac{F}{A}$ $t_2 \approx \frac{1}{3} \frac{F}{A}$

upshot

while there is a "sound-like" wave in a solid

called a "compressional wave"

it doesn't behave exactly like a sour wave in a fluid

"compressional wave"

direction of propagation X

"compressional wave"

"shear wave"

fluid
fluid

$$p = k \frac{\Delta V}{V} \qquad \frac{t_1 + t_2 + t_3}{3} = k \frac{\Delta V}{V} \qquad \sigma = \mu \frac{d\varepsilon}{dv}$$
speed of sound

$$v = \sqrt{\frac{k}{\rho}} \qquad compressional wave speed speed
$$v = \sqrt{\frac{k}{\rho}} \qquad \alpha = \sqrt{\frac{k + 4\mu/3}{\rho}} \qquad \beta = \sqrt{\frac{\mu}{\rho}}$$$$

 \mathbf{N}

k: bulk modulus μ : shear modulus

fluid
fluid

$$p = k \frac{\Delta V}{V} \qquad \frac{t_1 + t_2 + t_3}{3} = k \frac{\Delta V}{V} \qquad \sigma = \mu \frac{d\varepsilon}{dv}$$
speed of sound

$$v = \sqrt{\frac{k}{\rho}} \qquad \text{compressional wave} \qquad \text{shear wave} \\ \text{speed} \qquad \text{speed} \qquad \text{speed} \\ \alpha = \sqrt{\frac{k + 4\mu/3}{\rho}} \qquad \beta = \sqrt{\frac{\mu}{\rho}} \\ \text{for rocks} \quad k \approx \frac{5}{3}\mu \qquad \text{so} \qquad \frac{\alpha}{\beta} = \sqrt{3}$$

 $R \approx 10 \times 5 = 50 \ km$

shear waves in two dimensions

direction of propagation

direction of displacement

moving at shear velocity

moving at shear velocity

moving at shear velocity

wavefronts

displacement on all points on a wavefront the same

wavefronts

different direction

angle of incidence

propagation direction $\boldsymbol{\theta}$ NOVERON intersection of wavefront with horizontal surface at time=0

intersection of wavefront with horizontal surface at time=t

apparent velocity: speed of intersection

apparent velocity: speed of intersection

propagation direction moved distance of $L' = L / \sin \theta$ in time $t = L/\beta$ so $v_{app} = L'/t = \beta/\sin\theta$ L'

wave moving from one rock to another

apparent velocities must be the same, else displacement would be discontinuous across the surface β_2 θ_2

 θ_1

refracts towards horizontal

$$\frac{\sin\theta_1}{\beta_1} = \frac{\sin 90}{\beta_2}$$

$$\theta_1 = \sin^{-1} \frac{\beta_1}{\beta_2}$$

$$\theta_1 = \sin^{-1} \frac{1}{1.33} = 49 \text{ deg}$$

$$\theta_2 = 90$$
air
water
49

velocity increases with depth

path gets steeper as wave nears surface

P wave motion nearly vertical

S wave motion nearly horizontal