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Midterm

congratulations!

everyone did well

two letter grades, one each problem



Question 1
same densities, no thermal expansion, societal effects

same densities
no density stratification of the mantle/crust

no isostasy – no deep sedimentary basins, different topography profile
societal:  less petroleum, less economic minerals

no thermal expansion
no convection, no plate tectonics

conductive temperature profile of earth, melt mantle (?)
societal:  no ocean basins, water-world



Question 2
water world with thick cloud cover

tides
solar tides (match day-night cycle)

other tides from planets, hints about their mass/distance, position

centrifugal & Coriolis forces
rotation rate of planet, (match day-night cycle)

ocean depth soundings, gravity measurements
plate tectonics (depth age, trenches, etc), isostasy & lithospheric thickness

petrology, shape their islands
volcanic arcs?  hot-spot chains? 



Question 3
exoplanet rover

gravimeter
size of anomalies (using inferred density)

isostasy, through troughs around highlands

camera
topography, evidence of recent tectonism and volcanism

chemical analyses
infer densities, systematic differences between highlands and lowlands

heat flow
systematic differences between regions related to age of crust or thickness of 

lithosphere



Solid Earth Dynamics

Vibrations in solids

shear wave

compressional wave

apparent velocity

refraction at interface



shear waves in a solid



shear deformation in a solid



displacement in the y-direction

u 𝑥

𝑥

𝑦



shear strain  ε =
∆𝑢

∆𝑥
=

𝑑𝑢

𝑑𝑥

𝑥

𝑦

u 𝑥 + ∆𝑥u 𝑥

∆x



linear elasticity

shear stress proportional to shear strain 

shear stress 𝜎 = 𝜇ε

rigidity



newton’s law for shear forces

(very similar to pressure case in Lec 15)



𝑥

𝑢

𝑥 + ∆𝑥

𝐹 𝑥 + ∆𝑥𝑝 = 𝐴𝜎 𝑥 + ∆𝑥

Area 𝐴

force in y-direction

𝐹 𝑥 + 𝐹 𝑥 + ∆𝑥𝑝 = 𝐴𝜎 𝑥 + ∆𝑥 − 𝐴𝜎 𝑥

𝐹 𝑥 = −𝐴𝜎 𝑥

𝑥

𝜎 𝑥 + ∆𝑥𝜎 𝑥

surface force

𝑦



𝑥

𝑢

𝑥 + ∆𝑥

Area 𝐴

force in y-direction

𝐹 𝑥 = 𝑓∆𝑉 = 𝑓𝐴∆𝑥

𝑥

body force

𝑦



𝑥

𝑢

𝑥 + ∆𝑥

Area 𝐴

mass × accerleration    ρ𝐴∆𝑥
𝑑2𝑢

𝑑𝑡2

𝑥

acceleration in y direction

𝑦



𝑥

𝑢

𝑥 + ∆𝑥

Area 𝐴

motion in y-direction

𝐴𝜎 𝑥 + ∆𝑥 − 𝐴𝜎 𝑥 + 𝑓𝐴∆𝑥 = 𝜌∆𝑥𝐴
𝑑2𝑢

𝑑𝑡2

𝑥

𝜎 𝑥 + ∆𝑥𝜎 𝑥

newton’s law

𝑦



𝑥

𝑢

𝑥 + ∆𝑥

Area 𝐴

motion in y-direction
𝜎 𝑥 + ∆𝑥 − 𝜎 𝑥

∆𝑥
+ 𝑓 = 𝜌

𝑑2𝑢

𝑑𝑡2

𝑥

𝜎 𝑥 + ∆𝑥𝜎 𝑥

newton’s law

𝑦



𝑥

𝑢

𝑥 + ∆𝑥

Area 𝐴

motion in y-direction
𝑑𝜎

𝑑𝑥
+ 𝑓 = 𝜌

𝑑2𝑢

𝑑𝑡2

𝑥

𝜎 𝑥 + ∆𝑥𝜎 𝑥

newton’s law

𝑦



Part 3: Equation for pressure 
fluctuations in a fluid



𝜎 = 𝜇𝜀 = 𝜇
𝑑𝑢

𝑑𝑥 shear stress ∝ shear strain

Newton’s law
𝑑𝜎

𝑑𝑥
= 𝜌

𝑑2𝑢

𝑑𝑡2



𝜎 = 𝜇𝜀 = 𝜇
𝑑𝑢

𝑑𝑥 shear stress ∝ shear strain

Newton’s law
𝑑𝜎

𝑑𝑥
= 𝜌

𝑑2𝑢

𝑑𝑡2

𝜇
𝑑2𝑢

𝑑𝑥2
= 𝜌

𝑑2𝑢

𝑑𝑡2

combined equation for displacement



𝜎 = 𝜇𝜀 = 𝜇
𝑑𝑢

𝑑𝑥 shear stress ∝ shear strain

𝑑𝜎

𝑑𝑥
= 𝜌

𝑑2𝑢

𝑑𝑡2

𝜇
𝑑2𝜎

𝑑𝑥2
= 𝜌

𝑑2𝜎

𝑑𝑡2

𝑑

𝑑𝑥

𝑑2𝜎

𝑑𝑥2
= 𝜌

𝑑2

𝑑𝑡2
𝑑𝑢

𝑑𝑥

combined equation for shear stress



𝜇
𝑑2𝑢

𝑑𝑥2
= 𝜌

𝑑2𝑢

𝑑𝑡2

𝜇
𝑑2𝜎

𝑑𝑥2
= 𝜌

𝑑2𝜎

𝑑𝑡2

shear stress
and
displacement 
satisfy similar equations



𝜇
𝑑2𝑢

𝑑𝑥2
= 𝜌

𝑑2𝑢

𝑑𝑡2

solution

𝑢 𝑥, 𝑡 = 𝑠 𝑡 −
𝑥

𝛽

𝜎 𝑥, 𝑡 = −
1

𝛽
ሶ𝑠 𝑡 −

𝑥

𝛽

𝑠: any function𝜇
𝑑2𝜎

𝑑𝑥2
= 𝜌

𝑑2𝜎

𝑑𝑡2

shear velocity

𝛽 =
𝜇

𝜌

a pulse 
maintains its shape
as it propagates
at the shear velocity 𝛽



Difference in the way a fluid and a solid
responds to a pressure-generating force



Force 𝐹

Area 𝐴

𝑝 =
𝐹

𝐴

Force 𝐹

Area 𝐴

fluid solid

𝑝

𝑝 𝑝

𝑝



Force 𝐹

Area 𝐴

Force 𝐹

Area 𝐴

fluid solid

𝑝

𝑝 𝑝

𝑝

𝑝 =
𝐹

𝐴

𝑡1

𝑡2𝑡2

𝑡1 𝑡1 =
𝐹

𝐴

𝑡2 <
𝐹

𝐴



Force 𝐹

Area 𝐴

Force 𝐹

Area 𝐴

fluid solid

𝑝

𝑝 𝑝

𝑝

𝑝 =
𝐹

𝐴

𝑡1

𝑡2𝑡2

𝑡1 𝑡1 =
𝐹

𝐴

𝑡2 ≈
1

3

𝐹

𝐴



upshot

while there is a “sound-like” wave in a solid

called a “compressional wave”

it doesn’t behave exactly like a sour wave in a fluid



“compressional wave”

𝑥

𝑦

direction of propagation 𝑥



“compressional wave”

𝑥

𝑦 direction of propagation 𝑥

𝑥direction of displacement

𝛼speed of propagation



“shear wave”

𝑥

𝑦 direction of propagation 𝑥

𝑦direction of displacement

𝛽speed of propagation



fluid

𝑝 = 𝑘
∆𝑉

𝑉

𝑡1 + 𝑡2 + 𝑡3
3

= 𝑘
∆𝑉

𝑉

𝑣 =
𝑘

𝜌

speed of sound compressional wave
speed

𝛼 =
𝑘 + Τ4𝜇 3

𝜌

𝜎 = 𝜇
𝑑𝜀

𝑑𝑣

shear wave
speed

𝛽 =
𝜇

𝜌

solid

𝑘: bulk modulus

𝜇: shear modulus



fluid

solid

𝑝 = 𝑘
∆𝑉

𝑉

𝑡1 + 𝑡2 + 𝑡3
3

= 𝑘
∆𝑉

𝑉

𝑣 =
𝑘

𝜌

speed of sound compressional wave
speed

𝛼 =
𝑘 + Τ4𝜇 3

𝜌

𝑘 ≈
5

3
μfor rocks

𝜎 = 𝜇
𝑑𝜀

𝑑𝑣

shear wave
speed

𝛽 =
𝜇

𝜌

so
𝛼

𝛽
= 3



𝛼 = 6.5 km/s

𝛽 = 3.75 km/s

earthquake

𝑅



𝛼 = 6.5 km/s

𝛽 = 3.75 km/s

earthquake

𝑅

𝑃 𝑆

𝑇𝑃 = Τ𝑅 𝛼

𝑇𝑆 = Τ𝑅 𝛽



𝛼 = 6.5 km/s

𝛽 = 3.75 km/s

earthquake

𝑅

𝑆

𝑇𝑃 = Τ𝑅 𝛼

𝑇𝑆 = Τ𝑅 𝛽

𝑇𝑆 − 𝑇𝑃 =
1

𝛽
−

1

𝛼
𝑅

𝑃
𝑢 𝑡

𝑇𝑃 𝑇𝑆



𝛼 = 6.5 km/s

𝛽 = 3.75 km/s

earthquake

𝑅

𝑅 =
1

𝛽
−
1

𝛼

−1

𝑇𝑆 − 𝑇𝑃

𝑇𝑆 − 𝑇𝑃 =
1

𝛽
−

1

𝛼
𝑅

𝑅 ≈ 10 𝑇𝑆 − 𝑇𝑃

𝑃
𝑢 𝑡

𝑇𝑃 𝑇𝑆





5s

𝑅 ≈ 10 × 5 = 50 𝑘𝑚



direction of propagation

shear waves in two dimensions



direction of displacement

time t=0



moving at shear velocity

time t=1



time t=2

moving at shear velocity



time t=3

moving at shear velocity



wavefronts

displacement on all points on a wavefront the same



wavefronts



different direction



simplified



angle of incidence

𝜃



intersection of wavefront with horizontal surface at time=0

𝜃



intersection of wavefront with horizontal surface at time=t

𝜃



apparent velocity: speed of intersection

𝜃

𝐿
𝜃 𝜃

𝐿′sin 𝜃 = 𝐿/𝐿′

𝐿′ = 𝐿/ sin 𝜃



apparent velocity: speed of intersection

𝜃

𝐿
𝜃 𝜃

𝐿′

𝐿′ = 𝐿/ sin 𝜃

moved distance of

in time 𝑡 = Τ𝐿 𝛽

so 𝑣𝑎𝑝𝑝 = Τ𝐿′ 𝑡 = 𝛽/ sin 𝜃



𝜃1

𝜃2

wave moving from one rock to another 

𝛽1

𝛽2



𝜃1

𝜃2

apparent velocities must 
be the same, else 
displacement would be 
discontinuous across the 
surface

𝛽1

𝛽2



𝜃1

𝜃2

apparent velocities must be the same, else 
displacement would be discontinuous across the 
surface

𝛽1

𝛽2

𝑣1
𝑎𝑝𝑝

= 𝛽1/ sin 𝜃1

𝑣2
𝑎𝑝𝑝

= 𝛽2/ sin 𝜃2

sin 𝜃1
𝛽1

=
sin 𝜃2
𝛽2

Snell’s Law

(cracks would open up)



fast

slow fast

slow

refracts towards horizontal refracts towards vertical



fast

slow

refracts towards horizontal

fast

slow
𝜃1

𝜃2

𝜃1

𝜃2 = 90

sin 𝜃1
𝛽1

=
sin 90

𝛽2



air

water
49

𝜃2 = 90sin 𝜃1
𝛽1

=
sin 90

𝛽2

𝜃1 = sin−1
𝛽1
𝛽2

𝜃1 = sin−1
1

1.33
= 49 deg



𝛼

𝑧

path gets steeper as wave 
nears surface

velocity increases
with depth



𝛼

𝑧

P wave motion nearly vertical



𝛼

𝑧

S wave motion nearly horizontal
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