Solid Earth Dynamics

Bill Menke, Instructor
Lecture 19

Solid Earth Dynamics

Faults and earthquakes
 (continued)

three mutuallyperpendicular planes in space

red plane and its normal

blue plane and its normal

green plane and its normal

random orientation

red plane and its normal

oblique
traction
both normal and
shear
components
blue plane and its normal
oblique
traction
both normal and
shear
components

green plane and its normal

oblique traction both normal and shear
components

special

 orientation
red plane

 and its normal
only normal component of traction

blue plane and its normal

only normal component of traction

green plane and its normal

only normal

 component of tractionred plane and its normal
direction of maximum compression

blue plane and its normal

direction of intermediate compression

green plane and its normal
 direction of minimum compression

look at it edge on

look at it edge on

maximum
compression

minimum
compression

don't show planes

planes of
maximum
shear stress
planes of
maximum shear stress

planes of
maximum
shear stress
planes of
maximum shear stress

planes of
maximum
shear stress

planes with
just a little less shear stress and a whole lot less
normal stress

nascent

fault

nascent

fault

P wave amplitude

$$
\underset{K}{2}
$$

$1 \stackrel{1}{3} 1+\frac{1}{2}$
(.)

up at station

focal mechanism

these two faults cannot be distinguished

focal mechanism

is this the fault plane?

OR is this the fault plane?

Putting it together

Angular behavior of P wave: Focal mechanism, fault is one of two possible planes

Area under the P wave
(after correcting for distance \& focal mechasm): Moment = slip x area x rigidity

Duration of the P wave: Duration of rupture

Reverse/Thrust/Compression

Normal/Extension

Strike-Slip/Shear

Block model

Focal Sphere

2D Projection
of Focal Sphere

Moment of a very large earthquake
Rigidity x slip x length x width $3 \times 10^{10} \mathrm{pa} \quad 1 \mathrm{~m} \quad 10^{5} \mathrm{~m} \quad 10^{5} \mathrm{~m}$
$3 \times 10^{20} \mathrm{pam}^{3}$
$\frac{N}{m^{2}} m^{3}$
$M_{0}=3 \times 10^{20} \mathrm{Nm} \quad$ (annoyingly big number)

Moment of a very large earthquake
Rigidity x slip x length x width $3 \times 10^{10} \mathrm{pa} 1 \mathrm{~m} \quad 10^{5} \mathrm{~m} \quad 10^{5} \mathrm{~m}$ 3×10^{20} pa m \quad typical ratio $1: 10^{5}$

$$
\frac{N}{m^{2}} m^{3}
$$

$$
M_{0}=3 \times 10^{20} \mathrm{Nm} \quad \text { (annoyingly big number) }
$$

$$
\begin{aligned}
& M_{0}=3 \times 10^{20} N \mathrm{~m} \\
& M=\left(\log _{10} M_{0}-9.05\right) / 1.5
\end{aligned}
$$

$$
M=7.6 \quad \text { Moment magnitude }
$$

or colloquially, the magnitude of the earthquake

$$
\begin{aligned}
& M_{0}=3 \times 10^{21} N \mathrm{~m} \\
& M=\left(\log _{10} M_{0}-9.05\right) / 1.5
\end{aligned}
$$

$$
M=8.3 \quad \text { Moment magnitude }
$$

or colloquially, the magnitude of the earthquake

Tiny earthquake 1 millimeter of slip on a fault 100 m long magnitude 1.5

Moderate earthquake 1 meter of slip
on a fault 10 km long magnitude 4.8

$$
\begin{gathered}
\text { Huge earthquake } \\
100 \mathrm{~m} \text { of slip } \\
\text { on a fault } 1000 \mathrm{~km} \text { long } \\
\text { magnitude } 9.7
\end{gathered}
$$

