Solid Earth Dynamics

Bill Menke, Instructor
Lecture 20

Faults and earthquakes

Seismotectonics

Faults and earthquakes

What can be learned from P wave

Angular behavior of P wave: Focal mechanism, fault is one of two possible planes

Area under the P wave
(after correcting for distance \& focal mechasm): Moment $=$ slip x area \times rigidity

Duration of the P wave: Duration of rupture

Reverse/Thrust/Compression

Normal/Extension

Strike-Slip

Moment of a very large earthquake
Rigidity x slip x length x width $3 \times 10^{10} \mathrm{pa} \quad 1 \mathrm{~m} \quad 10^{5} \mathrm{~m} \quad 10^{5} \mathrm{~m}$
$3 \times 10^{20} \mathrm{pam}^{3}$
$\frac{N}{m^{2}} m^{3}$
$M_{0}=3 \times 10^{20} \mathrm{Nm} \quad$ (annoyingly big number)

Moment of a very large earthquake
Rigidity x slip x length x width $3 \times 10^{10} \mathrm{pa} 1 \mathrm{~m} \quad 10^{5} \mathrm{~m} \quad 10^{5} \mathrm{~m}$ 3×10^{20} pa m \quad typical ratio $1: 10^{5}$

$$
\frac{N}{m^{2}} m^{3}
$$

$$
M_{0}=3 \times 10^{20} \mathrm{Nm} \quad \text { (annoyingly big number) }
$$

$$
\begin{aligned}
& M_{0}=3 \times 10^{20} N \mathrm{~m} \\
& M=\left(\log _{10} M_{0}-9.05\right) / 1.5
\end{aligned}
$$

$$
M=7.6 \quad \text { Moment magnitude }
$$

or colloquially, the magnitude of the earthquake

Tiny earthquake 1 millimeter of slip on a fault 100 m long magnitude 1.5

Moderate earthquake 1 meter of slip
on a fault 10 km long magnitude 4.8

$$
\begin{gathered}
\text { Huge earthquake } \\
100 \mathrm{~m} \text { of slip } \\
\text { on a fault } 1000 \mathrm{~km} \text { long } \\
\text { magnitude } 9.7
\end{gathered}
$$

Earthquake: Releases shear stress near the fault

no slip, no stress

no slip, stress

plate tectonic motion

slip, reduced stress

(roughly)
drop in strain: s / L
drop in shear stress: $\mu s / L$

(roughly)
drop in shear stress: $\mu s / L$

$M_{0} \approx \mu s L W \approx \mu s L^{2} \quad$ (if $L \approx W$)
 $L \approx T / V_{r}$

(roughly)

drop in shear stress: $\mu s / L$

$\mu s \approx \frac{M_{0}}{L^{2}}$
$L \approx T / V_{r}$

(roughly)
drop in shear stress: $\mu s / L$
$\frac{\mu s}{L} \approx \frac{M_{0}}{L^{3}}$
$L \approx T / V_{r}$

(roughly)
drop in shear stress: $\mu s / L$

$$
\begin{aligned}
& \frac{\mu s}{L} \approx \frac{M_{0}}{\left(T / V_{r}\right)^{3}} \approx \frac{M_{0}}{(T / \beta)^{3}} \quad\left(\text { if } V_{r} \approx \beta\right) \\
& L \approx T / V_{r}
\end{aligned}
$$

drop in shear stress can be measured seismologically

$$
\Delta \sigma \approx \frac{M_{0}}{(T / \beta)^{3}}
$$

$1 \times 10^{7} \mathrm{~Pa} \approx 100 \mathrm{~atm}$
(relatively low stress, relatively constant with earthquake size)

Another interesting tidbit

earthquake is releasing stress from plate tectonic motion that has already happened

and GPS measusrements show that plate tectonic motions (away from the plate edges)

are occurring at a near-constant rate

Mean Recurrence Time of Earthquakes

typical slip for the fault in question

divided by
rate of plate motion

northern San Andreas Fault (SAF)

North-American Pacific $52 \mathrm{~mm} / \mathrm{yr}$ but some accommodated east of SAF about 33 for SAF

1906 Magntude 7.7 earthquake maximum slip 9.7 m
but average is less, say 5 m ($=5000 \mathrm{~mm}$)

Recurrence time 5000/33 = 151 years

Seismotectonics

subduction zones

No higher resolution available.

Interplate Seismicity Since
 960 M7.6 1900

Record holder 1960 Chile
Magnitude 9.5

1985 M 7.8

M. Pritchard and R.Allmendinger,

Cornell University
Compiled from numerous sources

oceanic ridge - transform

continental transform

San Andreas Fault

strike slip

eqs up to about magnitude 8

[^0]

叒
1
1
1

Hayward Fault

strike slip

eqs up to about magnitude 7

The 1927 Jericho earthquake was a devastating event that shook Mandatory Palestine and Transjordan on July 11 at 15:04 local time. The epicenter of the earthquake was in the northern area of the Dead Sea. The cities of Jerusalem, Jericho, Ramle, Tiberias, and Nablus were heavily damaged and at least 287 were estimated to have been killed.

Earthquake [edit]

Vered and Striem (1977) located the earthquake epicenter to be near the

1927 Jericho earthquake $\mathrm{M}=6.3$

[^0]: \qquad

