Solid Earth Dynamics

Bill Menke, Instructor

Lecture 22

Geomagnetism:

Paleomagnetism

Return to the Dynamo

Paleomagnetism

dipole field around a bar magnet

where does this magnetic field come from?

No (obvious) currents to make a solenoid

everything with spin generates a dipolar magnetic field

described by

magnetization vector M

formula for inclination

turn formula around

$$\tan(\operatorname{latitude}) = \frac{1}{2} \tan \theta$$

measure inclination infer latitude

Earth's surface

what's happened here?

what's happened here?

Site at Oregon – California Border

Fig. 2. Paleolatitude of "observation site" (42°N, 124°W) as a function of time, calculated from reference poles shown in Figure 1. Note the rapid increase in paleolatitude during the Late Jurassic-Early Cretaceous. Symbols as in Figure 1.

200 my ago According to a site on the plate The pole was here

200 my ago According to a site on the plate The pole was here

Figure 4.2.2 Polar wandering curves. Curves from Eurasia and North America seem to show that the north magnetic pole was located in two places simultaneously throughout history (left). However, if the continents are rearranged into Pangaea, the two curves overlap, showing that it is the continents than have moved, not the pole (right) (Steven Earle, "Physical Geology").

Dynamo

(a) multipole expansion

(b) frozen flux approximation

(c) magnetic diffusion

Dynamo

(a) multipole expansion

field of complicated objects

field of complicated objects, made by summing

plus

plus

magnetization vector M

is just the overall dipole moment of the object

Lesson

field does not have to be perfect dipole in core

to be reasonably dipolar at the surface of the Earth

Dynamo

(b) frozen flux approximation

Generator principle

 $d\mathbf{B}$ X \overline{dt}

Generator principle

imaginary loops

Lesson

Convection drags the magnetic field with it

creates a field that changes with time

Dynamo

(c) magnetic diffusion

shape being sustained by currents in the loops

if not perfect conductor loops lose energy

> acts like heat flow with a diffusivity of $\kappa = \frac{1}{\sigma \mu_0}$

Important question

what is the time scale of diffusion

 $\sigma = 10^5$ S/m z = 400 km t = 10,000 years

Lesson

field not completely "frozen in"

so field in core cannot become absurdly complicated