Solid Earth Dynamics

Bill Menke, Instructor
Lecture 24

Glaciology

How fast does ice melt?

$$
1360 \frac{\mathrm{~J}}{\mathrm{~m}^{2} \mathrm{~s}}
$$

albedo $\alpha=0.9$ but less that far north, say $1000 \frac{\mathrm{~J}}{m^{2} S}$
glacier at 0 degC
Heat of fusion of ice $3.3 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~kg}} \approx 3 \times 10^{8} \frac{\mathrm{~J}}{\mathrm{~m}^{3}}$

How fast does ice melt?
albedo $\alpha=0.7$ but less that far north, say $1000 \frac{\mathrm{~J}}{m^{2} S}$
rate of melting

$$
\frac{(1-0.7) 1000 \frac{\mathrm{~J}}{\mathrm{~m}^{2} s}}{3 \times 10^{8} \frac{\mathrm{~J}}{\mathrm{~m}^{3}}}=1 \times 10^{-6} \frac{\mathrm{~m}}{\mathrm{~s}}=9 \frac{\mathrm{~cm}}{\text { day }}
$$

What do we want to know?

melting of glacier
flow velocity of glacier
shear stress on base
effect of temperature on flow
shape of glacier

What do we want to know?

melting of glacier flow velocity of glacier shear stress on base effect of temperature on flow shape of glacier

Part 1

flow of viscous fluid between plates

coordinate system

dynamical quantities

shear stress - strain rate law

$$
\sigma=\mu \frac{d v}{d z}
$$

Newton's Law

$$
\mu \frac{d^{2} v}{d z^{2}}+f=\rho \frac{d v}{d t}
$$

welded boundary
v same as object
free boundary

$$
\sigma=0
$$

Newton's Law

$$
\begin{aligned}
& \mu \frac{d^{2} v}{d z^{2}}+\chi=\rho \frac{d v}{d t} \\
& \frac{d^{2} v}{d z^{2}}=0 \\
& \\
& \quad v(z=0)=v_{0} \\
& \\
& v(z=H)=0
\end{aligned}
$$

Newton's Law

Lessons

Part 2

flow of viscous fluid in a wide stream

stream

stream

no shear stress

$$
f=\sigma g \sin \theta
$$

stream

Newton's Law

$$
f=\rho g \sin \theta
$$

$$
\begin{gathered}
\mu \frac{d^{2} v}{d z^{2}}+f=\rho \frac{d v}{d t} \\
\frac{d^{2} v}{d z^{2}}=-\frac{f}{\mu}=-B \\
\frac{d v}{d z}(z=0)=0 \\
v(z=H)=0
\end{gathered}
$$

stream

Newton's Law

stream

Newton's Law

stream

Newton's Law

stream

Newton's Law

no shear stress $\quad 0 \quad v$	$A \frac{d^{2} v}{d z^{2}}=-B$
	$\text { В } \frac{d v}{d z}(z=0)=0$
$\underset{\text { stationarystreambed }}{H} \underset{Z}{\square}$	C $v(z=H)=0$
$\begin{aligned} & v(z)=c_{0}+c_{1}(H-z)+c_{2}(H-z)^{2} \\ & d v / d z=-c_{1}-2 c_{2}(H-z) \\ & d^{2} v / d z^{2}=2 c_{2} \end{aligned}$	$\xrightarrow{\text { males }} \Rightarrow c_{0}=0$

stream

Newton's Law

stream

Newton's Law

stream

Newton's Law

$$
v(z)=B H(H-z)-1 / 2 B(H-z)^{2}
$$

stream

maximum velocity

$$
\begin{aligned}
& \text { no shear stress } \\
& \text { stationary streambed } \\
& v(z)=B H(H-z)-1 / 2 B(H-z)^{2} \\
& \sigma(z)=-\mu B H+\mu B(H-z)
\end{aligned}
$$

$$
v_{0}=v(0)=1 / 2 B H^{2}
$$

maximum shear stress

$$
\begin{aligned}
\sigma_{H}=\sigma(H) & =-\mu B H \\
& =-2 \frac{\mu v_{0}}{H}
\end{aligned}
$$

$$
\sigma_{H}=\sigma(H)=-2 \frac{\mu v_{0}}{H}
$$

$$
\begin{aligned}
& H=1000 \mathrm{~m} \\
& v_{0}=1 \times 10^{-5} \mathrm{~m} / \mathrm{s} \quad(\sim \text { one meter per day }) \\
& \mu=10^{12} \mathrm{~Pa}-\mathrm{s} \\
& \sigma_{H}=-2 \frac{\mu v_{0}}{H}=-2 \times 10^{4} \mathrm{~Pa}=-20 \mathrm{kPa}
\end{aligned}
$$

similar to the strength of sands and gravels

Part 3
 Glaciers
 hotter at the bottom

effect of variable (temperature dependent) viscosity

Newton's Law
Viscous Flow Law

$$
\frac{d \sigma}{d z}+f=\rho \frac{d v}{d t}
$$

$$
\sigma=\mu(z) \frac{d v}{d z}
$$

so using
chain rule

$$
\mu \frac{d^{2} v}{d z^{2}}+\frac{d \mu}{d z} \frac{d v}{d z}+f=\rho \frac{d v}{d t}
$$

Newton's Law

$$
\mu \frac{d^{2} v}{d z^{2}}+\frac{d \mu}{d z} \frac{d v}{d z}+\boldsymbol{X}=\rho \frac{d v}{d t}
$$

Newton's Law
$\mu \frac{d^{2} v}{d z^{2}}+\frac{d \mu}{d z} \frac{d v}{d z}=0 \quad \mu_{0} \exp (-c z) \frac{d^{2} v}{d z^{2}}-c \mu_{0} \exp (-c z) \frac{d v}{d z}=0$

Newton's Law

$$
\mu \frac{d^{2} v}{d z^{2}}+\frac{d \mu}{d z} \frac{d v}{d z}=0
$$

$$
\frac{d^{2} v}{d z^{2}}-c \frac{d v}{d z}=0
$$

$$
\begin{aligned}
& \frac{d^{2} v}{d z^{2}}-c \frac{d v}{d z}=0 \\
& \quad \text { let } Z=\frac{d v}{d z} \\
& \frac{d Z}{d z}-c Z=0 \quad \text { so } \quad \frac{d Z}{d z}=c Z \quad \text { so } \quad Z=Z_{0} \exp (c z) \\
& Z=\frac{d v}{d z} \quad \text { so } \quad v=\frac{Z_{0}}{c} \exp (c z)-C
\end{aligned}
$$

$$
v=\frac{Z_{0}}{c} \exp (c z)-C
$$

$$
\begin{aligned}
& \text { A } v(z=0)=v_{0} \\
& \text { В } v(z=H)=0
\end{aligned}
$$

B $\quad v=\frac{Z_{0}}{c} \exp (c H)-C=0 \quad$ so $\quad C=\frac{Z_{0}}{c} \exp (c H)$
A $\quad v=\frac{Z_{0}}{c}[\exp (0)-\exp (c H)]=v_{0}$

$$
\text { so } \quad Z_{0}=\frac{c v_{0}}{[1-\exp (c H)]}
$$

$$
v=v_{0} \frac{[\exp (c z)-\exp (c H)]}{[1-\exp (c H)]}
$$

What about the shear stress

Newton's Law

$$
\begin{aligned}
& \frac{d \sigma}{d z}+\hat{m}=\rho \stackrel{d v}{d t} \\
& \\
& \text { so } \frac{d \sigma}{d z}=0
\end{aligned}
$$

and $\sigma=$ constant

small c
$\sigma=\mu \frac{d v}{d x}=\frac{\mu_{0} c v_{0}}{\left[1-\left(1+c H+1 / 2 c^{2} H^{2}\right)\right]}=\frac{\mu_{0} v_{0}}{H\left(1+1 / 2 c^{2} H\right)}$
stress less than constant viscosity case

Top part has more uniform velocity
Lessons
Stress went down (compared to uniform viscosity)

