Solid Earth Dynamics

Bill Menke, Instructor

Lecture 25

continuing with Glacial Dynamics

Part 1

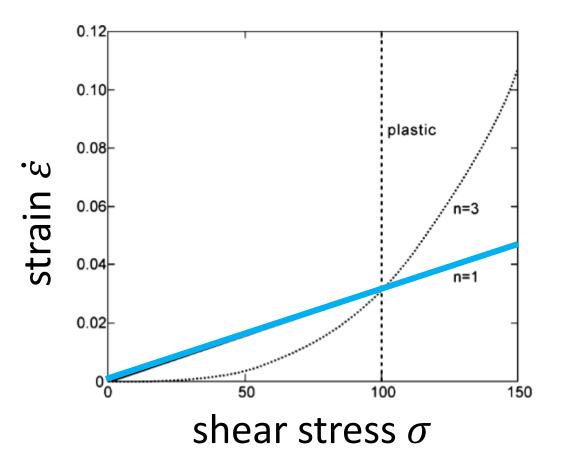
rheology of ice

viscous fluid

stress proportional to strain rate

not a particularly good model of deformable solids like ice

viscous fluid linear relationship

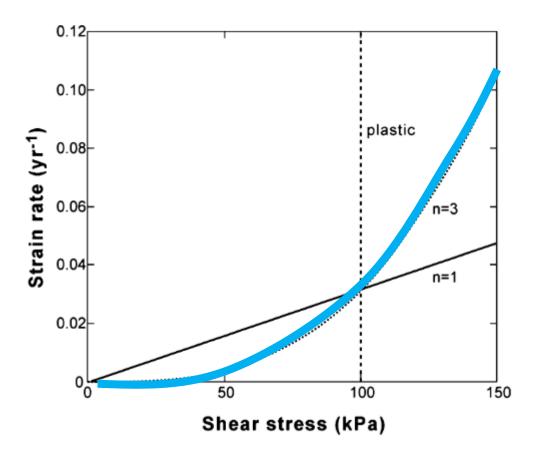


Glen's law is the most commonly used flow law for ice in glaciers and ice sheets.

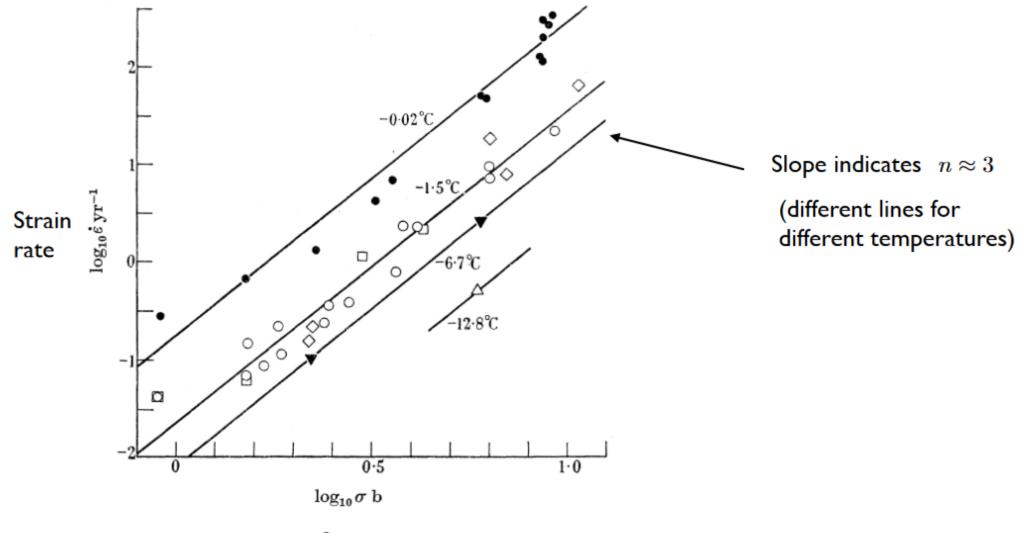
$$\dot{\varepsilon} = A \tau^n$$

Usually $n \approx 3$ and $A \approx 2.4 \times 10^{-24} \text{ Pa}^{-3} \text{ s}^{-1}$ at 0° C

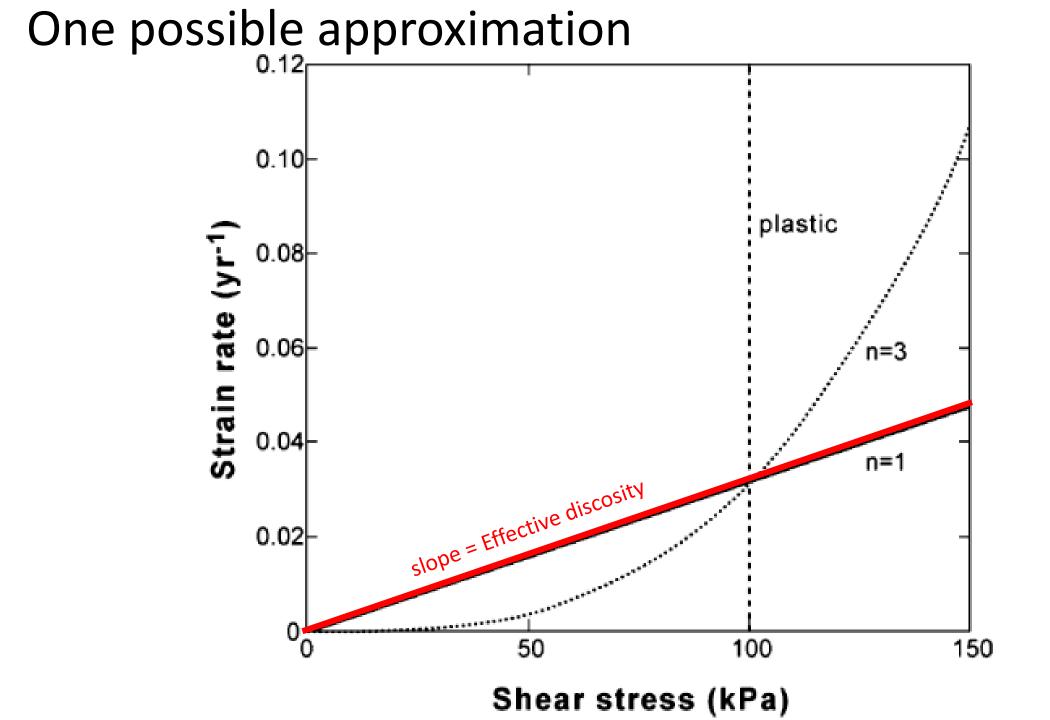
But the most appropriate values in reality may depend on temperature, stress regime, grain size, etc

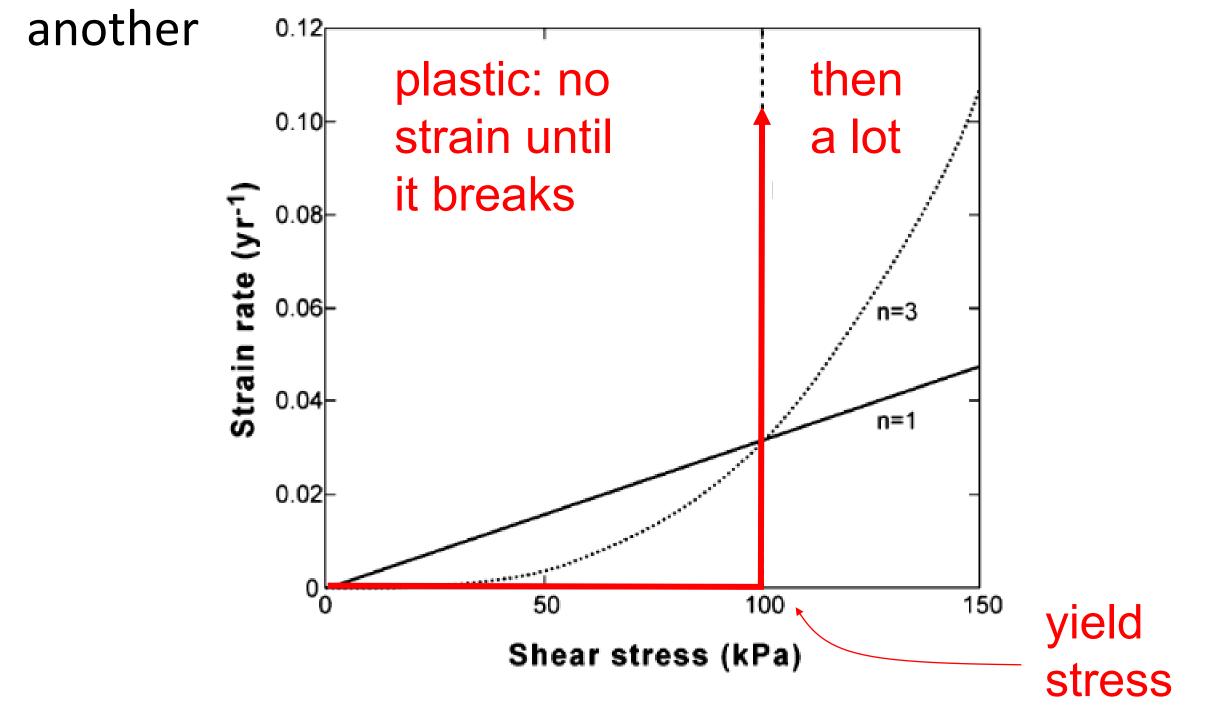


Glen's law

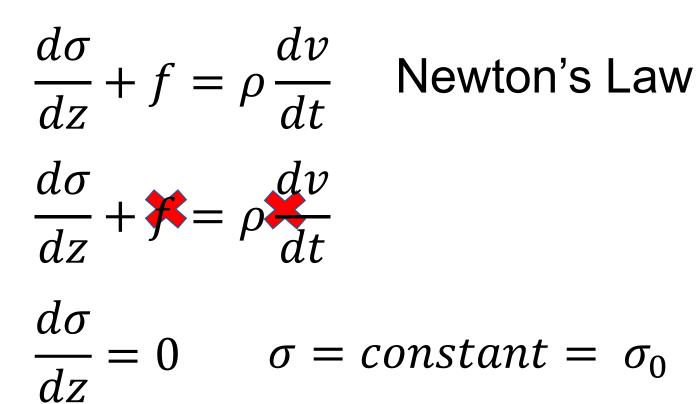


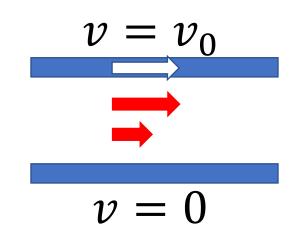
Stress





Or one can solve equations numerically





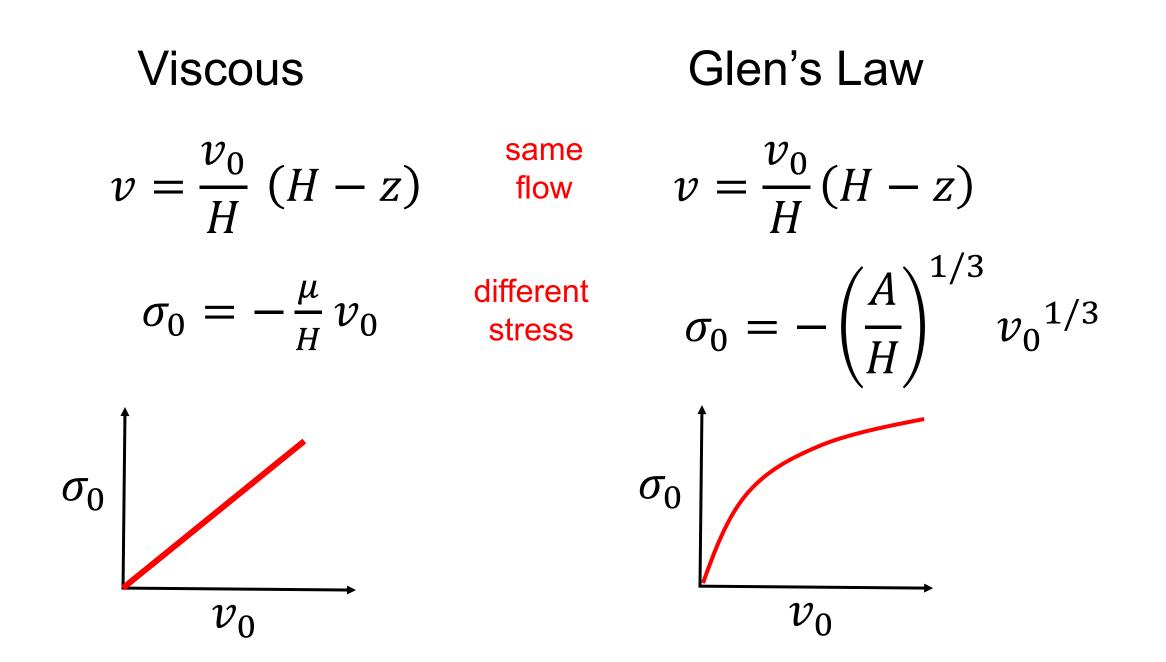
$$\sigma = \sigma_0 \quad \text{Newton's Law} \qquad 0 \quad v = v_0$$

$$\frac{dv}{dz} = A\sigma_0^3 \quad \text{Glen's Law} \qquad H_z \qquad v = 0$$

$$v = A\sigma_0^3(c - z) \qquad v(H) = 0 \quad \text{so } c = H$$

$$v = A\sigma_0^3(H - z) \qquad v(0) = v_0 \quad \text{so } \frac{v_0}{H} = A\sigma_0^3$$

$$\sigma_0 = (A/H)^{1/3} v_0^{1/3}$$



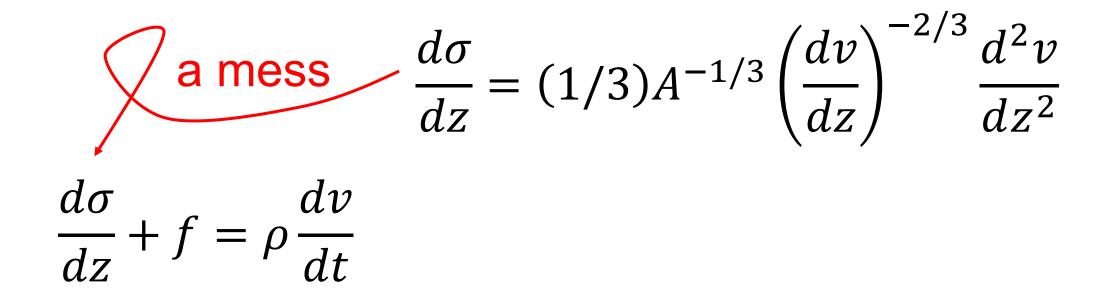
$$\frac{d\sigma}{dz} + f = \rho \frac{dv}{dt}$$
 Newton's Law

$$\frac{dv}{dz} = A\sigma^3 \qquad \qquad \sigma = A^{-1/3} \left(\frac{dv}{dz}\right)^{1/3}$$

$$\frac{d\sigma}{dz} = (1/3)A^{-1/3} \left(\frac{dv}{dz}\right)^{-2/3} \frac{d^2v}{dz^2}$$

Putting Glens law into Newton's Law

$$\frac{d\sigma}{dz} + f = \rho \frac{dv}{dt} \qquad \text{Newton's Law}$$
$$\frac{dv}{dz} = A\sigma^3 \qquad \sigma = A^{-1/3} \left(\frac{dv}{dz}\right)$$

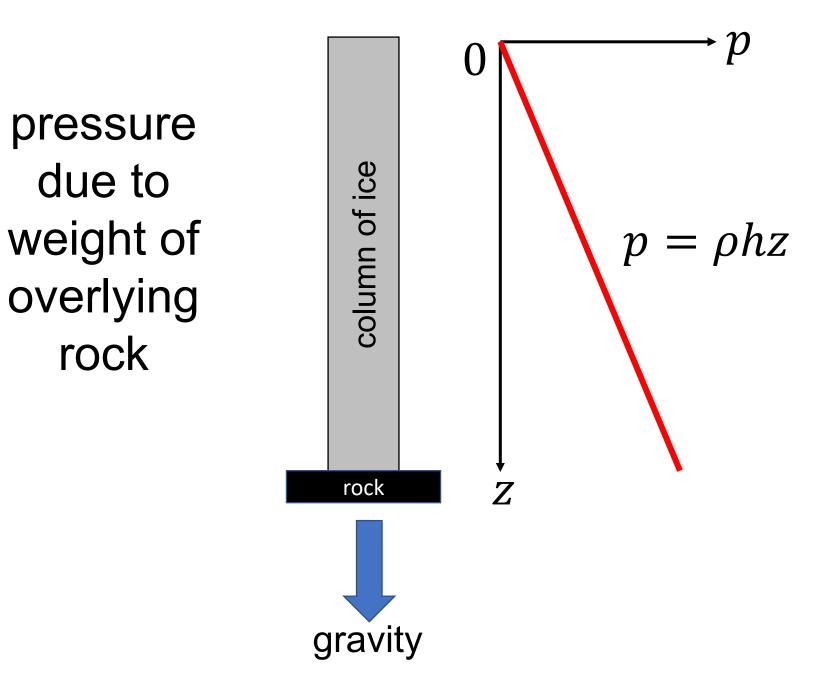


1/3

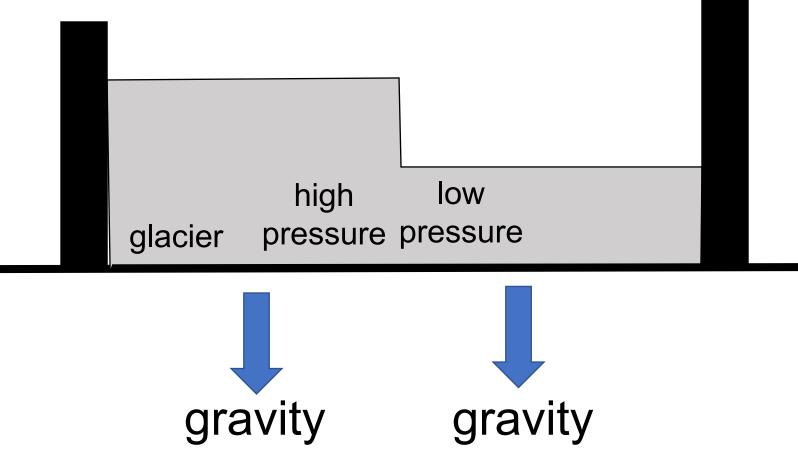
So solve numerically

Part 2

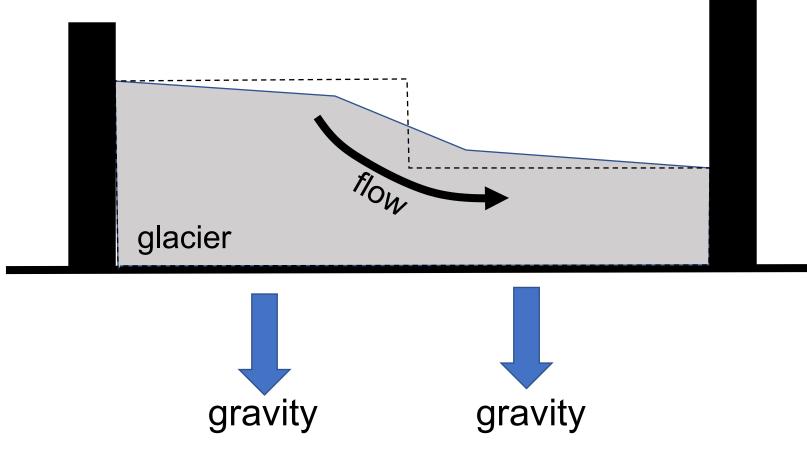
effect of topography

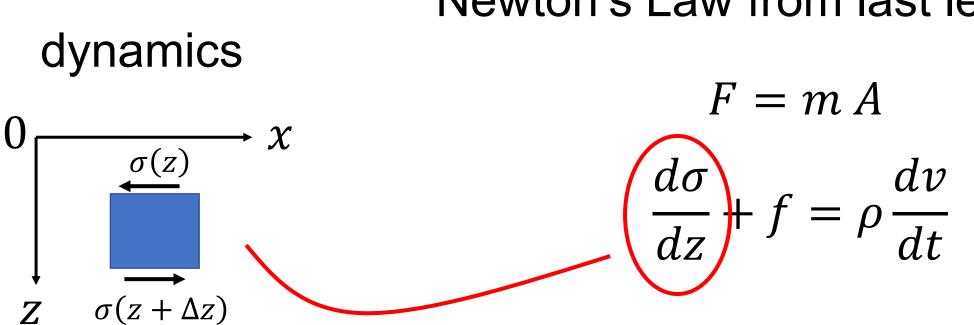


topography causes differences in pressure that can drive flow

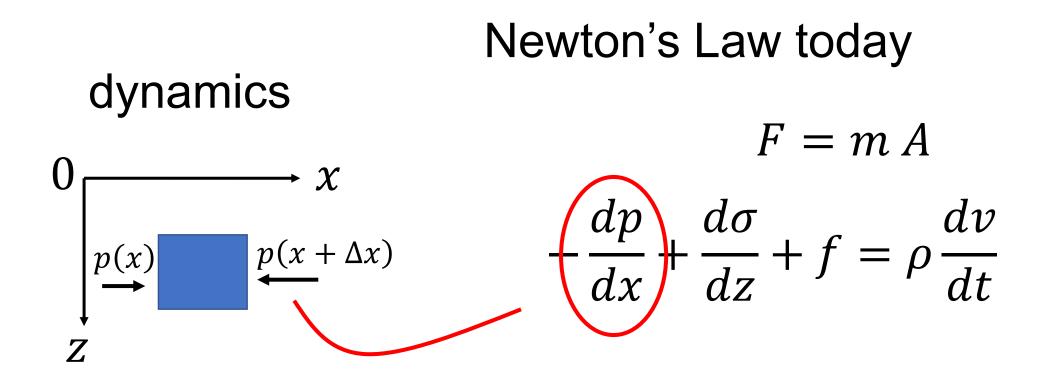


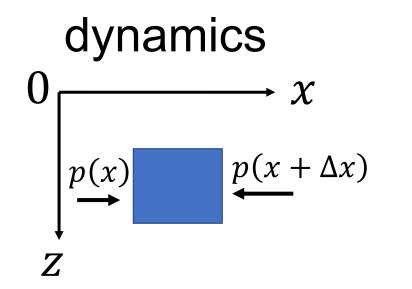
topography causes differences in pressure that can drive flow





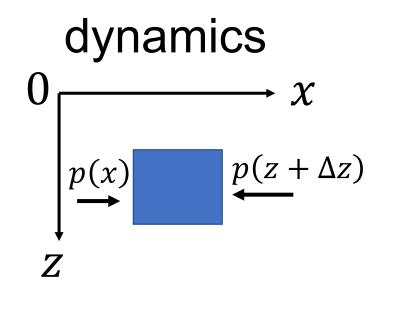
Newton's Law from last lecture





Newton's Law today

$$-\frac{dp}{dx} + \frac{d\sigma}{dz} + f = \rho \frac{d\nu}{dt}$$



Newton's Law today

$$-\frac{dp}{dx} + \frac{d\sigma}{dz} + \int f = \rho \frac{dv}{dt}$$

when
small
$$\frac{dp}{dx} = \frac{d\sigma}{dz}$$
 pressure balances
shear stress

Part 3

ultra-simplified model of equilibrium shape of glacial topography

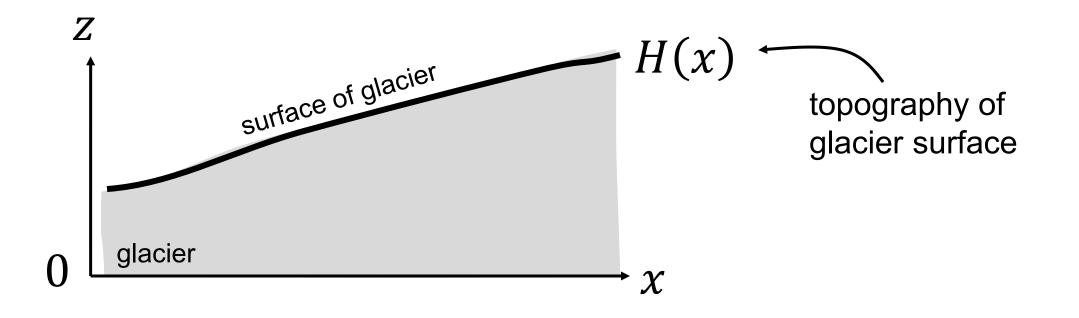
combines ideas

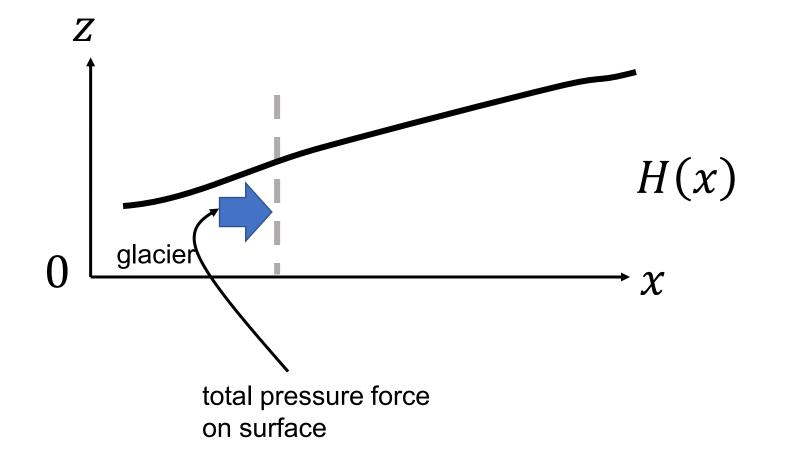
take vertical averages to "get rid of" vertical dimension

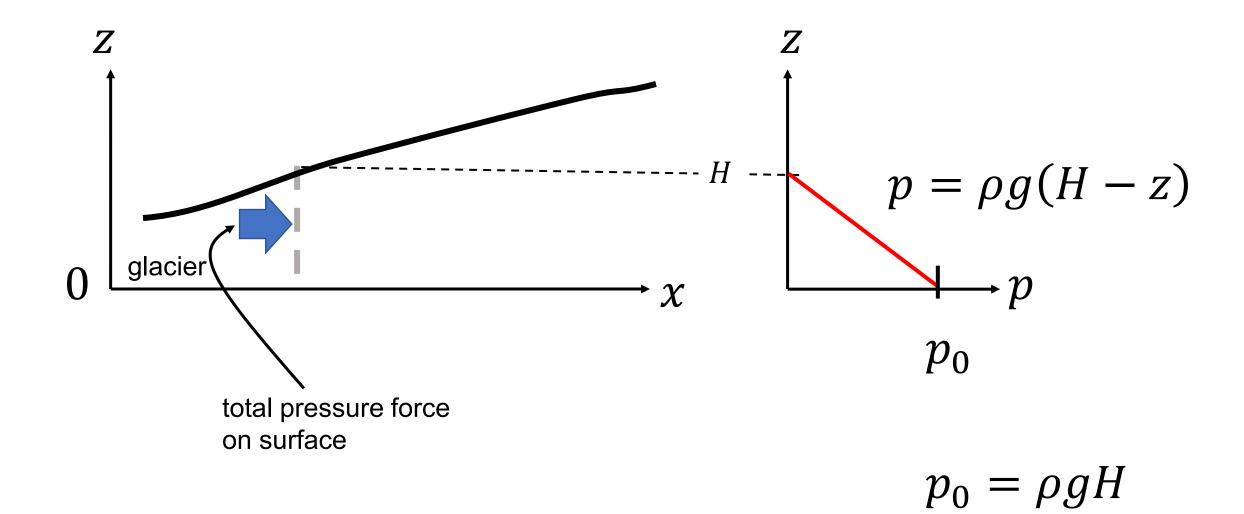
assume plastic rheology, ice just short of flowing

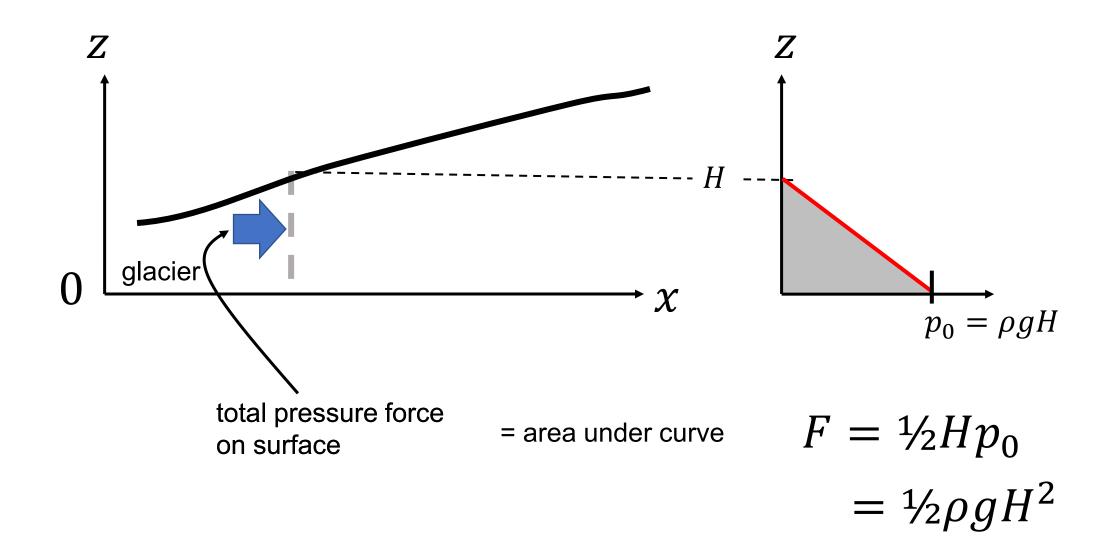
assume shear stress is biggest at bottom (which is true for the stream model from last lecture)

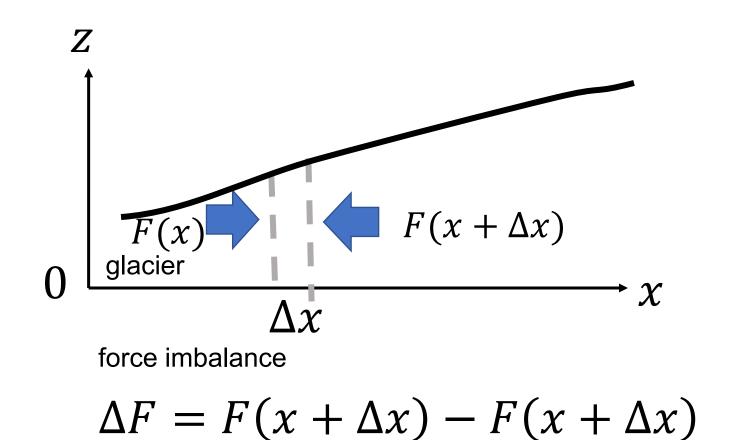
basal stress is just at yield stress of ice

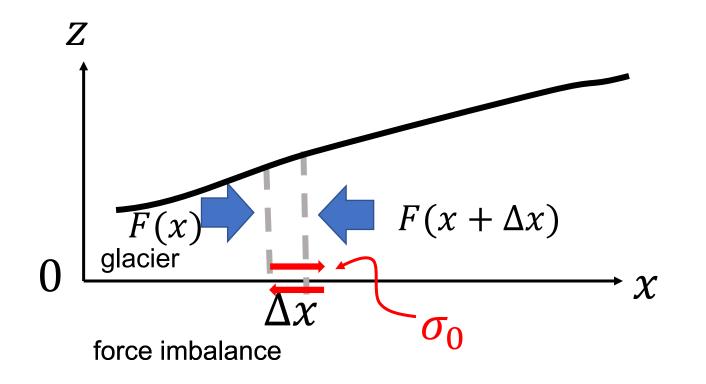






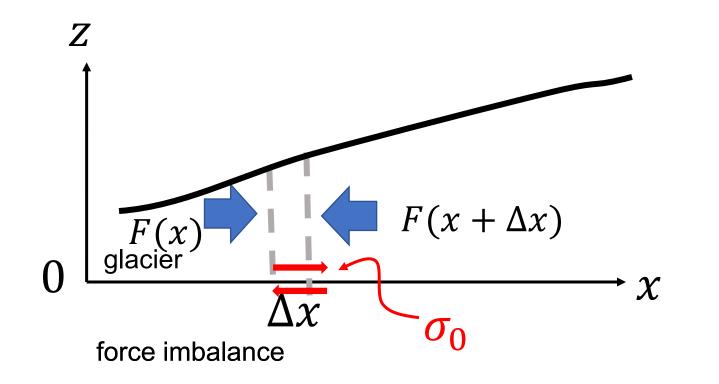






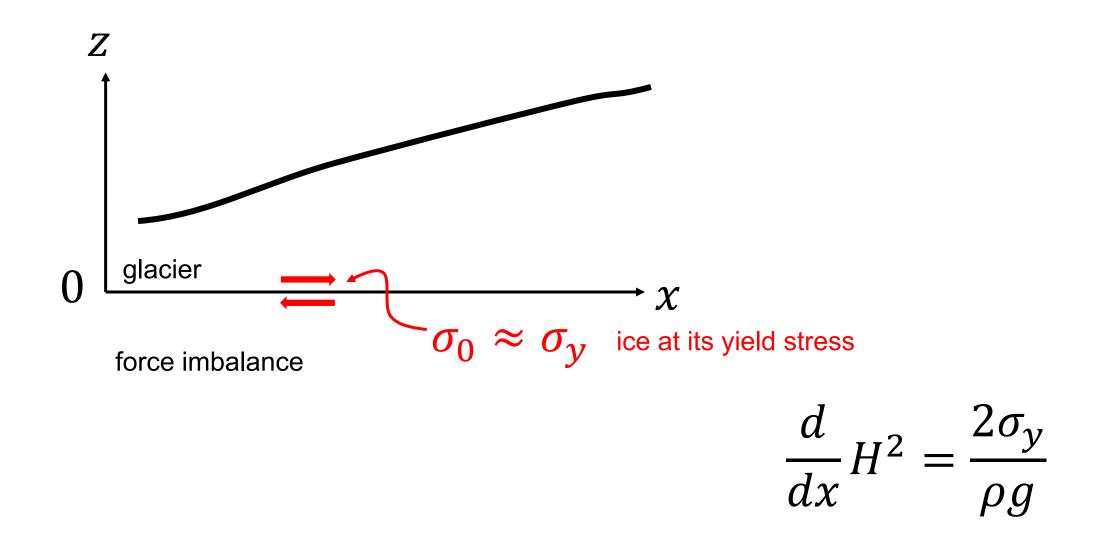
balanced by shear stress on base of glacier

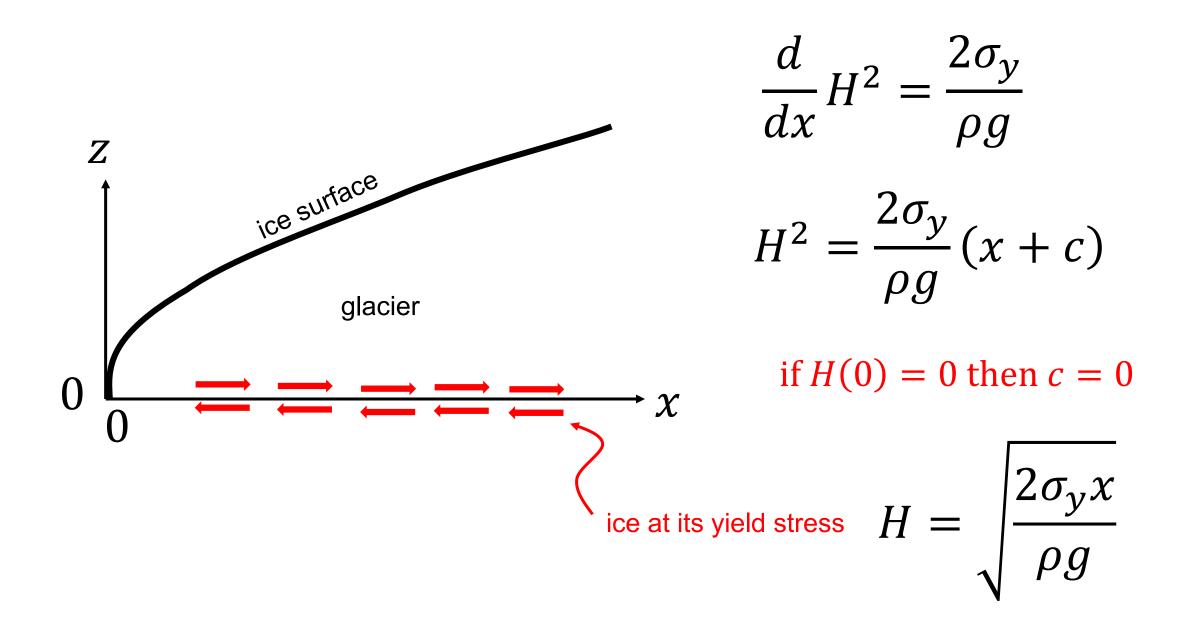
$$\Delta F = \Delta x \sigma_0$$

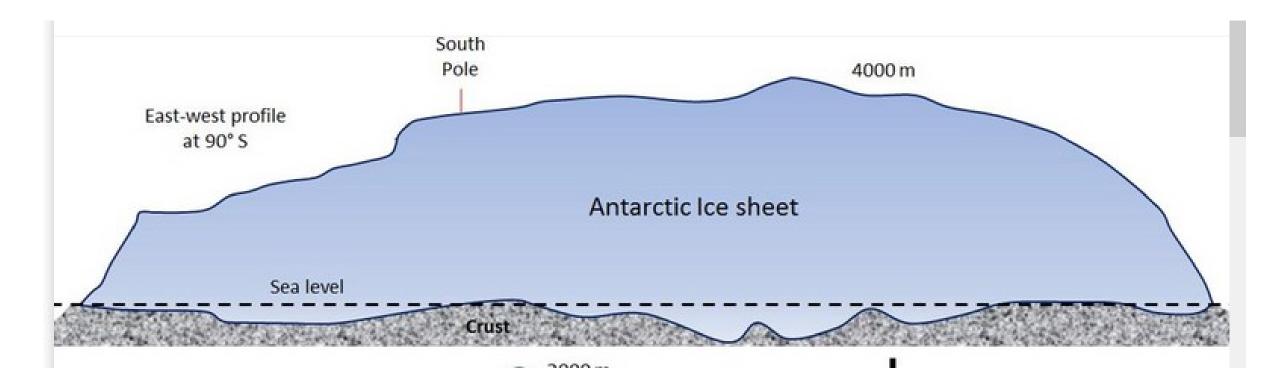


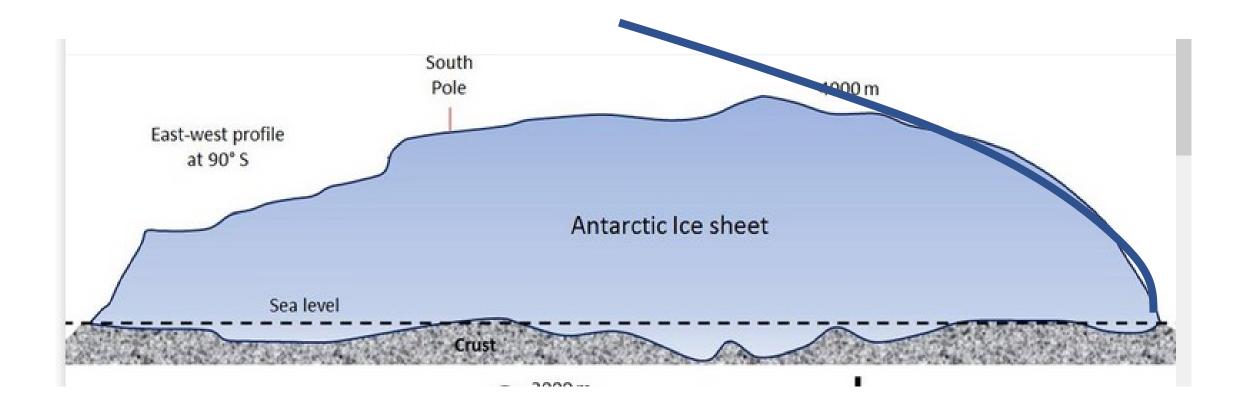
balanced by shear stress on base of glacier

$$\Delta F = \Delta x \sigma_0 \qquad \qquad \text{or} \quad \frac{\Delta F}{\Delta x} = \sigma_0$$









Part 3

ultra-simplified model of change in bed character

modeled as a change in basal shear stress

 $\frac{d}{dx}H^2 = \frac{2\sigma_y}{\rho g}$

 $\sigma_y(x)$

position-dependent yield stress

 $H = H_0 + \delta H$

topography a small perturbation on top of flat

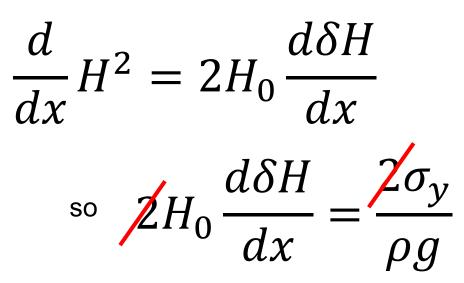
 $\frac{d}{dx}H^2 = \frac{2\sigma_y}{\rho g}$

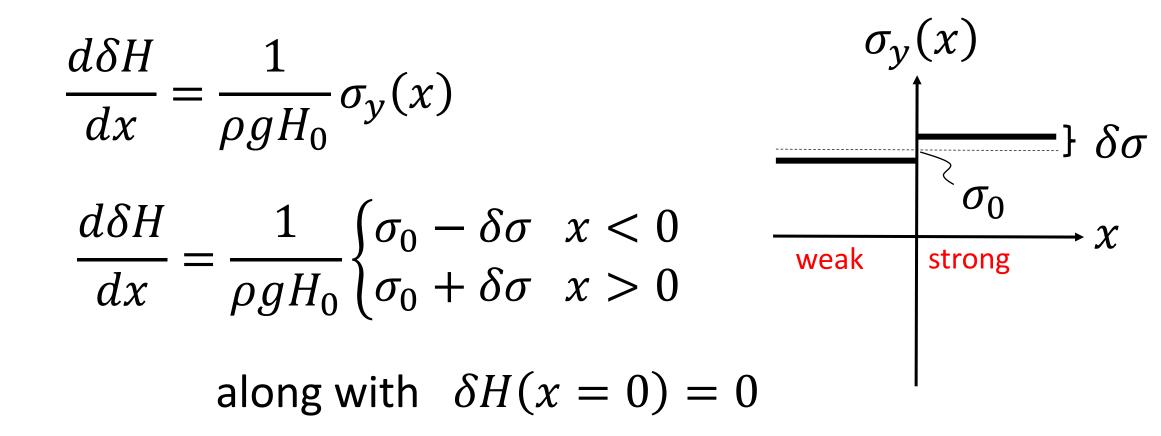
- $\sigma_y(x)$ position-dependent yield stress
- $H = H_0 + \delta H$ topography a small perturbation on top of flat

$$H^{2} = (H_{0} + \delta H)^{2} \approx H_{0}^{2} + 2H_{0}\delta H$$
$$\frac{d}{dx}H^{2} = 2H_{0}\frac{d\delta H}{dx}$$

 $\frac{d}{dx}H^2 = \frac{2\sigma_y}{\rho g}$

and





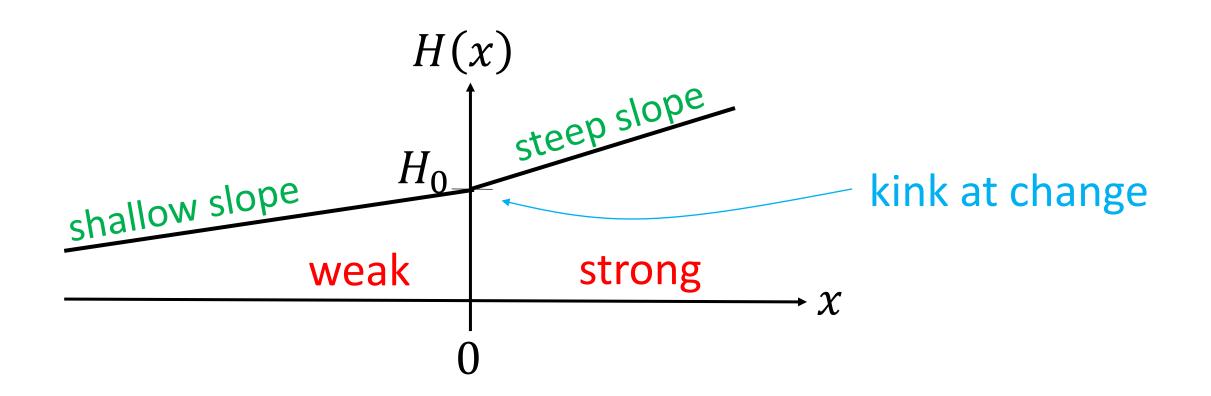
$$\frac{d\delta H}{dx} = \frac{1}{\rho g H_0} \sigma_y(x)$$

$$\frac{d\delta H}{dx} = \frac{1}{\rho g H_0} \begin{cases} \sigma_0 - \delta \sigma & x < 0 \\ \sigma_0 + \delta \sigma & x > 0 \end{cases}$$

$$\frac{\delta \sigma_0}{\varphi_0} = 0$$

$$\frac{\delta H}{\delta H}$$

$$= \frac{1}{\rho g H_0} \begin{cases} (\sigma_0 - \delta \sigma) x + c_1 & when \ x < 0 \\ (\sigma_0 + \delta \sigma) x + c_1 & when \ x > 0 \end{cases}$$
but when $c_1 = 0$ for $\delta H(x = 0) = 0$



$$\delta H = \frac{x}{\rho g H_0} \begin{cases} (\sigma_0 - \delta \sigma) & when \ x < 0 \\ (\sigma_0 + \delta \sigma) & when \ x < 0 \end{cases}$$

