Solid Earth Dynamics

Bill Menke, Instructor
Lecture 26

Solid Earth Dynamics

Today is the Last Formal Lecture

Review Session Thursday
Come with questions ...

Solid Earth Dynamics

Glaciology
Crevasses

need extensional horizontal stress to open crevasse

case 1: Compressing glacier, $r<0$

case 1: Glacier thickens

case 1: Extending glacier, $r>0$

case 1: Extending glacier, $r<0$

Crevasses form

Questions that we will answer today

What must the extension rate be to get crevasses?

How deep into the glacier will the crevasses extend?

First the answer ...
... then the analysis

Modes of deformation

Lab observation:
flow law independent of overall pressure, $-p=\frac{\sigma_{x}+\sigma_{z}}{2}$
Solution, use effective stress

$$
\begin{aligned}
& \sigma_{x}^{\prime}=\sigma_{x}+p=\sigma_{x}-\frac{\sigma_{x}+\sigma_{z}}{2} \\
& \sigma_{z}^{\prime}=\sigma_{x}+p=\sigma_{z}-\frac{\sigma_{x}+\sigma_{z}}{2}
\end{aligned}
$$

Lab observation:
flow law independent of overall pressure, $-p=\frac{\sigma_{x}+\sigma_{z}}{2}$
Solution, use effective stress

$$
\begin{aligned}
& {\sigma_{x}^{\prime}}_{x}=\sigma_{x}-\frac{\sigma_{x}+\sigma_{z}}{2}=\frac{\sigma_{x}-\sigma_{z}}{2} \\
& {\sigma_{z}^{\prime}}^{\prime}=\sigma_{z}-\frac{\sigma_{x}+\sigma_{z}}{2}=-{\sigma_{x}^{\prime}}^{2}
\end{aligned}
$$

flow law when both normal and shear stresses occur
flow law when both normal and shear stresses occur
$\dot{\varepsilon}_{x}=($ effective viscosity $) \sigma_{\mathrm{x}}^{\prime}$
$\dot{\varepsilon}_{x z}=($ effective viscosity $) \tau_{x z}$
flow law when both normal and shear stresses occur
flow law when both normal and shear stresses occur

flow law when both normal and shear stresses occur
third power flow law when both normal and shear stresses occur

$$
\dot{\varepsilon}_{x}=A \tau^{2} \sigma_{x}^{\prime} \quad \dot{\varepsilon}_{x z}=A \tau^{2} \tau_{x z}
$$

with τ a measure of the overall state of stress

$$
\begin{aligned}
& \tau=\sqrt{1 / 2\left(\sigma_{x}^{\prime}\right)^{2}+1 / 2\left(\sigma_{z}^{\prime}\right)^{2}+\left(\tau_{x z}\right)^{2}} \\
& \tau^{2}=1 / 2\left(\sigma_{x}^{\prime}\right)^{2}+1 / 2\left({\sigma_{z}^{\prime}}_{z}\right)^{2}+\left(\tau_{x z}\right)^{2}
\end{aligned}
$$

sometimes called the "stress invariant"
also define $\dot{\varepsilon}$ as a measure of the overall state of strain rate

$$
(\dot{\varepsilon})^{2}=1 / 2\left(\dot{\varepsilon}_{x}\right)^{2}+1 / 2\left(\dot{\varepsilon}_{z}\right)^{2}+\left(\dot{\varepsilon}_{x z}\right)^{2}
$$

sometimes called the "starin-rate invariant"
it can be shown that $\dot{\varepsilon}$ and τ obey the flow law

$$
\dot{\varepsilon}=A \tau^{3}
$$

deforms to

deforms to

$$
\dot{\varepsilon}_{x z}=1 / 2 \frac{d u}{d z}+1 / 2 \frac{d v}{d x}
$$

factor of $1 / 2$ needed to remove effect of rotation

$$
\text { conservation of volume: areas are equal } \frac{d u}{d x}=-\frac{d v}{d z}
$$

GOAL

Understand stress in a glacier that is expanding or contracting

relate that to crevassing
so primarily interested in σ_{x}

MODEL SETEP
model of glacier with variable thickness

model of glacier with variable thickness

newton's law $\left\{\begin{aligned} \frac{d \sigma_{x}}{d x}+\frac{d \tau_{x z}}{d z} & =-\sigma g \sin \theta \\ \frac{d \tau_{x z}}{d x}+\frac{d \sigma_{z}}{d z} & =-\sigma g \cos \theta\end{aligned}\right.$
state of stress

$$
4 \tau^{2}=\left(\sigma_{x}-\sigma_{z}\right)^{2}+4 \tau_{x y}^{2}
$$

$$
\begin{array}{cc}
\text { flow law } & \left\{\begin{array}{c}
\dot{\varepsilon}_{x}=\frac{d u}{d x}=A \tau^{2} 1 / 2\left(\sigma_{x}-\sigma_{z}\right) \\
\dot{\varepsilon}_{x y}=1 / 2\left(\frac{d u}{d z}+\frac{d v}{d x}\right)=A \tau^{2} \tau_{x y} \\
\begin{array}{c}
\text { state of } \\
\text { strain-rate }
\end{array}
\end{array} \quad 2 \dot{\varepsilon}^{2}=\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d v}{d z}\right)^{2}+1 / 2\left(\frac{d u}{d z}+\frac{d v}{d x}\right)^{2}\right.
\end{array}
$$

Approximation:

Long glacier, so all stresses independent of x

Variation of Stress with Position

newton's law $\left\{\begin{array}{l}\frac{d \sigma_{x}}{d x}+\frac{d \tau_{x z}}{d z}=-\rho g \sin \theta \\ \frac{d \tau_{x z}}{d x}+\frac{d \sigma_{z}}{d z}=-\rho g \cos \theta\end{array}\right.$

Goal: deduce σ_{x}
newton's law $\left\{\begin{array}{l}\frac{d \sigma_{x}}{d x}+\frac{d \tau_{x z}}{d z}=-\rho g \sin \theta \text { implies } \tau_{x z}=-\rho g z \sin \theta \\ \frac{d \tau_{x z}}{d x}+\frac{d \sigma_{z}}{d z}=-\rho g \cos \theta \text { implies } \sigma_{z}=-\rho g z \cos \theta\end{array}\right.$

Goal: deduce σ_{x}
solution of $\quad \tau_{x z}=-\rho g z \sin \theta$
Newton's law

$$
\sigma_{z}=-\rho g z \cos \theta
$$

state of stress $\quad 4 \tau^{2}=\left(\sigma_{x}-\sigma_{z}\right)^{2}+4 \tau_{x y}^{2} \quad$ quadratic equation for σ_{x}

$$
\begin{aligned}
& 4 \tau^{2}=\sigma_{x}^{2}-2 \sigma_{z} \sigma_{x}+\sigma_{z}^{2}+4 \tau_{x y}^{2} \\
& 0=1 \sigma_{x}^{2}-2 \sigma_{z} \sigma_{x}+\underbrace{\sigma_{z}^{2}+4 \tau_{x y}^{2}-4 \tau^{2}}_{\mathrm{C}}
\end{aligned}
$$

solution of $\quad \tau_{x z}=-\rho g z \sin \theta$
Newton's law

$$
\sigma_{z}=-\rho g z \cos \theta
$$

state of stress $4 \tau^{2}=\left(\sigma_{x}-\sigma_{z}\right)^{2}+4 \tau_{x y}^{2} \quad$ quadratic equation for σ_{x}

$$
\begin{array}{ll}
B=-2 \sigma_{z} & 4 \tau^{2}=\sigma_{x}^{2}-2 \sigma_{z} \sigma_{x}+\sigma_{z}^{2}+4 \tau_{x y}^{2} \\
B^{2}-4 A C= & 0=1 \sigma_{x}^{2}-2 \sigma_{z} \sigma_{x}+\sigma_{z}^{2}+4 \tau_{x y}^{2}-4 \tau^{2} \\
=4 \sigma_{z}^{2}-4 \sigma_{z}^{2}-16 \tau_{x y}^{2}+16 \tau^{2}
\end{array}
$$

quadratic formula for σ_{x}

$-1 / 2 B \pm 1 / 2 \sqrt{B^{2}-4 A C}$

$$
\begin{aligned}
& B=-2 \sigma_{z} \\
& B^{2}-4 A C= \\
& \quad=16 \tau^{2}-16 \tau_{x y}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{x}=\sigma_{z} \pm 2 \sqrt{\tau^{2}-\tau_{x y}^{2}} \\
& \sigma_{x}=-\rho g z \cos \theta \pm 2 \sqrt{\tau^{2}-(\rho g z \sin \theta)^{2}}
\end{aligned}
$$

$$
\sigma_{x}=-\rho g z \cos \theta \pm 2 \sqrt{\substack{\text { still need tp } \\ \text { figure out } \tau}}
$$

two solutions

$$
\begin{aligned}
& \sigma_{x}=-\rho g z \cos \theta-2 \sqrt{\tau^{2}-(\rho g z \sin \theta)^{2}} \\
& \sigma_{x}=-\rho g z \cos \theta+2 \sqrt{\tau^{2}-(\rho g z \sin \theta)^{2}}
\end{aligned}
$$

Compressive
Possibly Extensional (crevasses)

Why two solutions?
As we will see in few slides
its because the glacier can be either extending or compressing.

Variation of Velocity with Position

flow law $\begin{cases}\dot{\varepsilon}_{x}=\frac{d u}{d x}=A \tau^{2} 1 / 2\left(\sigma_{x}-\sigma_{z}\right) & \frac{d}{d x} \\ \text { implies } & \frac{d^{2} u}{d x^{2}}=0 \\ \dot{\varepsilon}_{x y}=1 / 2\left(\frac{d u}{d z}+\frac{d v}{d x}\right)=A \tau^{2} \tau_{x y} & \frac{d}{\frac{d}{d x}} \\ \text { implies } & \frac{d^{2} u}{d x d z}+\frac{d^{2} v}{d x^{2}}=0\end{cases}$
implies

$$
\begin{array}{ll}
u=u_{0} \pm r x+f(z) & \text { with } \\
v= \pm r(H-z) & f(z=0)=0
\end{array}
$$

still need to figure out f

$$
\begin{array}{ll}
u=u_{0} \pm r x+f(z) & \\
\text { with } \\
v= \pm r(H-z) & \\
f(z=0)=0
\end{array}
$$

$\pm r$:
$+r$: glacier extending and thinning
$-r$: glacier compressing and thickening

$$
\begin{aligned}
& u=u_{0} \pm r x+f(z) \\
& v= \pm r(H-z)
\end{aligned}
$$

flow law $\begin{aligned} \frac{d u}{d x} & =1 / 2 A \tau^{2}\left(\sigma_{x}-\sigma_{z}\right) \quad u=u_{0} \pm r x+f(z) \\ \sigma_{x} & =\sigma_{z}+\frac{2}{A \tau^{2}} \frac{d u}{d x} \\ \sigma_{x} & =\sigma_{z} \pm r \frac{2}{A \tau^{2}}\end{aligned}$

$$
u=u_{0} \pm r x+f(z)
$$

compare with

$$
\sigma_{x}=\sigma_{z} \pm r \frac{2}{A \tau^{2}} \quad \sigma_{x}=\sigma_{z} \pm 2 \sqrt{\tau^{2}-\tau_{x y}^{2}}
$$

$$
u=u_{0} \pm r x+f(z)
$$

so two solutions of quadratic equation correspond to choice of $\pm r$

$$
\sigma_{x}=\sigma_{z} \pm r \frac{2}{A \tau^{2}} \quad \sigma_{x}=\sigma_{z} \pm 2 \sqrt{\tau^{2}-\tau_{x y}^{2}}
$$

so choosing between the two roots

is the same a choosing the sign of r

$$
u=u_{0} \pm r x+f(z)
$$

extending
compressing

Figuring out f and τ

Step 1 of determining τ and f : relate f to τ

$$
\left.\begin{array}{l}
\dot{\varepsilon}_{x y}=1 / 2\left(\frac{d u}{d z}+\frac{d v}{d x}\right)=A \tau^{2} \tau_{x y} \\
u=u_{0}+r x+f(z) \\
v=r(H-z) \\
\tau_{x z}=-\sigma g z \sin \theta
\end{array}\right] \quad \begin{aligned}
& \text { combine } \\
& \frac{d f}{d z}=-(2 A \sigma g \sin \theta) z \tau^{2}
\end{aligned}
$$

Step 2 of determining τ and f : another way to relate f to τ into the state of strain rate law
substitute

$$
\begin{aligned}
& u=u_{0}+r x+f(z) \\
& v=r(H-z) \\
& \dot{\varepsilon}=A \tau^{3}
\end{aligned} \quad{ }_{2 \dot{\varepsilon}^{2}=\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d v}{d z}\right)^{2}+1 / 2\left(\frac{d u}{d z}+\frac{d v}{d x}\right)^{2}}
$$

Step 3 of determining τ and f : eliminate f to get equation for τ

$$
\begin{aligned}
& 2 A^{2} \tau^{6}=2 r^{2}+1 / 2\left(\frac{d f}{d z}\right)^{2} \\
& \frac{d f}{d z}=-(2 A \rho g \sin \theta) z \tau^{2}
\end{aligned}
$$

$$
\text { - cubiic equation in } \tau^{2}
$$

$$
2\left(\tau^{2}\right)^{3}-1 / 2(2 \rho g z \sin \theta)^{2}\left(\tau^{2}\right)^{2}-2\left(\frac{r}{A}\right)^{2}=0
$$

$$
\left(\tau^{2}\right)^{3}-(\rho g z \sin \theta)^{2}\left(\tau^{2}\right)^{2}-\left(\frac{r}{A}\right)^{2}=0
$$

cubic equation for τ^{2} note τ^{2} depends on z
cubic has 3 roots
but τ^{2} must be positive
Descartes rule of signs

The number of positive roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting the zero coefficients). if the number of sign changes is one, then there are exactly one positive roots

$$
+\left(\tau^{2}\right)^{3}-(\rho g z \sin \theta)^{2}\left(\tau^{2}\right)^{2}-\left(\frac{r}{A}\right)^{2}=0
$$

1 sign change

Step 4 of determining τ and f : solve for f

solve $\frac{d f}{d z}$ for f

$$
\frac{d f}{d z}=-(2 A \sigma g \sin \theta) z \tau^{2} \quad \text { with } \quad f(z=0)
$$

Putting it together

What must the extension rate be to get crevasses?

How deep into the glacier will the crevasses extend?
equation for τ^{2}
$\left(\tau^{2}\right)^{3}-(\rho g z \sin \theta)^{2}\left(\tau^{2}\right)^{2}-\left(\frac{r}{A}\right)^{2}=0$
$z=0$
$\left(\tau^{2}\right)^{3}-\left(\rho g z \sin \left(\tau^{2}\right)^{2}-\left(\frac{r}{A}\right)^{2}=0\right.$
large z

$$
\tau^{2}=\left(\frac{r}{A}\right)^{2 / 3}
$$

$\left(\tau^{2}\right)^{3}-(\rho g z \sin \theta)^{2}\left(\tau^{2}\right)^{2}-\left(\lambda_{A}\right)^{2}=0$

$$
\tau^{2}=(\rho g z \sin \theta)^{2}
$$

equation for σ_{x}

$$
\sigma_{x}=-\rho g z \cos \theta \pm 2 \sqrt{\tau^{2}-(\rho g z \sin \theta)^{2}}
$$

$$
z=0
$$

$$
\tau^{2}=\left(\frac{r}{A}\right)^{2 / 3}
$$

$$
\sigma_{x}= \pm 2 \sqrt{\left(\frac{r}{A}\right)^{2 / 3}}
$$

large z

$$
\tau^{2}=(\rho g z \sin \theta)^{2} \quad \sigma_{x}=-\rho g z \cos \theta
$$

equation for σ_{x}

$$
\sigma_{x}=-\rho g z \cos \theta \pm 2 \sqrt{\tau^{2}-(\rho g z \sin \theta)^{2}}
$$

$z=0$

$$
\tau^{2}=\left(\frac{r}{A}\right)^{2 / 3}
$$

large z

$$
\tau^{2}=\rho g z \sin \theta
$$

$$
\sigma_{x}= \pm 2 \sqrt{\left(\frac{r}{A}\right)^{2 / 3}}
$$

To get crevasses, you must chose the + solution and σ_{x} must exceed the yield stress

Indian climber spent three days stricken on the world's 10th tallest peak (이 Image: Twitter/@anuragmaloo)

NEWS	POLITICS	FOOTBALL	CELEBS	TV	ROYALS	MONEY

Climber rescued alive after spending three DAYS inside skyscraper-sized

crevasse

