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Abstract. As is well known, coherence does not distinguish the relative phase of a pair of real, 

sinusoidal time series; the coherence between them is always unity.  This behavior can limit the 

applicability of coherence analysis in the special case where the time series are band-limited 

(nearly-monochromatic) and where sensitivity to phase differences is advantageous.  We propose 

a simple modification to the usual formula for coherence in which the cross-spectrum is replaced 

by its real part.  The resulting quantity behaves similarly to coherence, except that it is sensitive 

to relative phase when the signals being compared are strongly band-limited.  Furthermore, it has 

a useful interpretation in terms of the zero-lag cross-correlation of real band-passed versions of 

the time series. 

 

Introduction 

The purpose of time series analysis is to extract useful knowledge from time series.  The 

word knowledge is used advisedly, and implies that the data are being distilled down into a more 

useful form that is capable of addressing a specific question posed by an analyst.  The choice of 

time series analysis technique should be guided by this principle. One analyzes time series in a 

way designed to best extract knowledge from them.  One should always be willing to adapt an 

analysis method to achieve this goal. 

The issue considered here is how best to quantify the similarity between time series that 

are 1) real (as contrasted to complex) and 2) band-limited (in the sense of being nearly 



monochromatic).  Such time series constitute an important special case, because most natural 

phenomena are described using real numbers and many are dominated by a single period of 

oscillation.  The daily period often contributes strongly to physiological and meteorological 

signals, the annual period to environmental and climatic signals, the precessional period (25.7 

ka) (e.g. Olsen & Kent, 1995) to sedimentary and paleontological signals, and so forth.  An 

important property of nearly-monochromatic signals is their relative phase. Whether two time 

series that are in-phase (as in Fig. 1A) or out-of-phase (as in Fig. 1B) may be important, for 

example, from the perspective of an analyst trying to unravel the dynamics of the underlying 

causative processes. 
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Fig. 1. A) Two nearly-monochromatic time series (black and red curves) with the relative phase, 

   . B) Two nearly-monochromatic time series (black and red curves) with relative phase, 

     . 
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 Traditional coherence analysis (e.g. Bendat & Pierson, 2010) has very limited application 

in this case, because of the well-known insensitivity of coherence to relative phase.  The 



coherence of two sinusoidal time series of the same period is always unity, irrespective of their 

relative phase.  Simply put, coherence does not distinguish a sine from a cosine. Given the 

general usefulness of coherence in other settings, it is well to ask why it “fails” in this special 

case and whether it can be modified to produce what may, in some circumstances, be a more 

useful measure of similarity. 

 When asking why any quantity encountered in time series analysis, such as coherence, 

behaves in a certain way, one must contend with the fact that most, if not all, such quantities can 

be derived from several different perspectives. Any answer will probably make sense only from 

one of these points of view.  Consider, for example, the estimated mean of a time series.  This 

deceptively simple quantity can be understood, alternately, as arising through the minimizing of 

error (a deterministic derivation) (e.g. Lawson & Hanson, 1974), or through the maximizing of 

likelihood (a probabilistic derivation) (e.g. Millar, 2011) or through the maximization of 

importance (an informational derivation) (Menke 2012), to name just a few.  The answer to a 

question concerning the mean, say for example, whether it should always be bounded by the 

smallest and largest datum, will necessarily refer to one of these perspectives. The same is true 

for coherence.  We adopt here a deterministic perspective: 

The coherence between two time series, at frequency,   ,  is closely-related to the 

zero-lag cross-correlation of band-passed versions of those time series, where the 

band-pass filter is one-sided and has center-frequency,   .  In fact, the former is 

merely a normalized and squared version of the latter. 

This is but one perspective among many, but one we find helpful because it brings out a 

relationship to the cross-correlation, another quantity useful in assessing the similarity between 



two time series. Cross-correlation is defined in the time-domain, as contrasted to coherence, 

which is defined in the frequency-domain, so the link provides complimentary information. 

 The appearance of a one-sided filter (Fig. 2A), may seem counter-intuitive, because such 

filters are almost never used in practice, or at least not when the data are real, for they turn a real 

time series into a complex one.  All the band-pass filters that an analyst would commonly use are 

two-sided (Fig. 2B), and so have real output.  The reason for its appearance here is that the usual 

definition of coherence is completely general. It does not presume that the signals being 

compared are real, and so builds in the possibility that negative and positive frequency 

components of the time series may behave completely differently from one another. This is 

contrast to real time series, where they are complex conjugate pairs. However, in being general, 

it cannot exploit an important property of real signals: that sines and cosines are distinguishable 

from one another.  As we show below, substituting a two-sided filter produces a version of 

coherence that distinguishes sines from cosines; that is, one that is sensitive to the relative phase 

of band-limited signals. 
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Fig. 2. A) Fourier transform of a one-sided band-pass filter, consisting of a single boxcar 

function centered at frequency,   , and with width,    . B) Fourier transform of a two-sided 

band-pass filter, also centered at frequency,   . 

------------------------------------------------------------------------------------------------------------------- 

Coherence-Like Measure of Similarity Based of Cross-Correlation. 

The problem we consider is how to quantify the similarity of two real, transient time 

series,      and     , in the vicinity of a specified frequency,   . The strategy we adopt is is to 

band-pass filter these time series and then to compute their zero-lag cross-correlation.  The filter 

selects out frequencies near    and the cross-correlation quantifies similarity, since it attains its 

largest value when           (ignoring, for the moment, the issue of normalization). We 

denote the filtered time series as,             and             where the symbol   denotes 

convolution. We require the filtered time series to be purely real, so that the filter,        has a 

two-sided Fourier transform with the symmetry,              , where the tilde denotes 

Fourier transformation and the asterisk denotes complex conjugation. We choose a filter with a 

purely-real Fourier transform, built from two unit-amplitude boxcar functions, one centered at 

    and the other at    , each of width 2Δω. This filter does not affect Fourier components 

within the pass-band and completely rejects those outside of it. 

The cross-correlation of two real time series is defined as: 

                        
  

  

 

(1) 

and has zero-lag value: 



                              
  

  

 

(2) 

The zero-lag cross-correlation of the filtered time series is: 

                                                   

                                    

(3) 

Here, we have relied on the identity,                      .  At zero lag, the cross-

correlation is proportional the integral of its Fourier transform,      : 

        
 

  
       

  

  

                 
 

  
      

  

  

   

(4) 

Inserting (3) into (4) and using the rule that the Fourier transform of a convolution is the product 

of the transforms and the rule that the transform of        is       , yields: 

              
 

  
                                      

  

  

   

 
 

  
              

      

      

    
 

  
              

      

      

    

 
 

 
                   

     

     

    
   

 
                                          

 (5) 

Here                denotes the mean value of      in the frequency band, ω0 ± Δω. Note that     

         is defined for     , only. The quantity             is the cross-spectrum.  Thus, 

the zero-lag cross-correlation of the real band-pass filtered time series depends upon the average 



value of the real part of their cross-spectrum in that pass-band.  The amplitude of     

         depends on the amplitude of two time series, as well as upon their degree of 

similarity.  We remove this dependence by normalizing by the energy    and    in the two time 

series, defined as: 
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The normalized measure of similarity, say  , is: 

   
            

  
      

     
                                        

                                                           

(7) 

Note that the quantity,   , which we nickname here similarity, varies between zero and unity. It 

has almost exactly the functional form of the quantity called coherence, except for the taking of 

the real part. The imaginary part cancelled from (5) precisely because the time series are real and 

the filter is two-sided. 

 

Coherence Related to Zero-Lag Cross-Correlation 

 As asserted in the Introduction, the usual formula for coherence can be obtained simply 

by switching to a one-sided filter, a single unit step function of width 2Δω centered at frequency 

   (where         ). The filtered time series     and     are complex, so that one 

must define a cross-correlation appropriate for complex signals; that is, replace      with       

in (1). These modifications lead to a version of (7) that is exactly the usual formula for the 

coherence:  



          
             

     
    

                                
 

                                             
                  

(8) 

As an aside, we note that our derivations of        and        hide an inconsistency in 

the interpretation of         
  as the power in the time series      at frequency,   . It represents 

power for a complex time series but only half the power for a real one, owing to the different 

intervals over which frequency,   , is defined.  This factor of two compensates for the apparent 

loss of power when the real part is taken in (5). 

 

Similarity and Coherence of Real Band-Limited Signals 

Suppose that time series      and      are monochromatic, with equal frequency,   , but 

with different amplitudes,    and   , and relative phase,  : 

                                          

(9) 

The similarity,       , is most easily calculated using its time-domain definition. Taking, 

without loss of generality, the window of observation to be       , we have: 

     
              

  

 

  
    

 

 
              

                
  

 

  
    

 

 
 

                                              
      

 
       

  

 

 

         
       

      
          

(10) 



Thus,    is unity when the two sinusoids are in-phase       and declines monotonically to 

zero when they are out-of-phase        . 

The coherence,       , is calculated by recognizing that a sine function is built up of 

two complex exponentials of frequency     and     and that the one-sided filter selects only 

the one with positive frequency: 

                                                     

         
  

  
            

  

  
       

  

  
         

(11) 

We then find: 

     
                         

  

 

      
               

                        

         
       

      
    

(12) 

Thus,    is unity irrespective of the relative phase of the two sinusoids. This behavior is a 

consequence of the one-sided filter, which turns both          and          into functions 

proportional to the same complex exponential,          . 

 

Examples and Conclusions 

We consider the example of a sequence of nearly-monochromatic wavelets, formed by 

taking the product of a phase-shifted sinusoid of frequency,   , and a Normal envelope function 

of half-width,  : 

                         
         



(13) 

Figure 3A-C illustrates pairs of these wavelets with different phase relationships. Note that the 

wavelets are not merely time-shifted versions of one another, since the position of the zeros 

crossings of the sinusoid (parameterized by  ) can and the position of the center of the envelope 

(parameterized by   ) can be independently varied.  One might imagine a time series analysis 

scenario where      represents the external forcing applied to some dynamical system, and      

represents the response. In such a context, the distinction between these different wavelet shapes 

is important, say for detecting whether or not some anticipated interaction has occurred.  In this 

case, the similarity,        (red curves in Figure 3D-E) is a more useful quantity than the 

coherence,        (black curves), since it varies strongly with the phase-relationships, whereas 

coherence does not. 

 We have not performed an exhaustive analysis of the differences between        and 

      , when they are applied to broad-band signals.  The key difference is the effect of the 

taking of the real part:  

                                 

                                                              

(14) 

where the Fourier transforms are written in terms of their real and imaginary parts,              

and             . Since    and    differ by a manifestly positive amount, we are guaranteed 

that      . However, without further specification of the behavior or    and   , no further 

characterization is possible. In the special case where both time series contain a common 

function       so that                 and                 and where     ,      and 

     are all broad-band, we find: 



 

 

          
               

                                       

           
               

                                      

(15) 

We might expect in the case that      , since the crossterms are averages of functions that 

oscillate around zero and therefore likely to be small. Numerical tests (Figure 4) support this 

idea, at least for non-transient broad-band time series with a moderate degree of correlation. 

 In summary, we recommend this simple modification of coherence in cases where the 

time series that are being compares are narrow-band and where phase relationships between 

them are considered important.  For pure sinusoids differing by phase,  , it obeys the rule 

        , that is, similarity monotonically decreases from unity, when  =0, to zero, when 

     .  In other respects, it behaves very similarly to coherence. Finally, it has a very intuitive 

time-domain interpretation:        gives you exactly what you would get if you normalized each 

time series by the square-root of its energy, band-pass filtered each with a two-sided boxcar filter 

centered around frequency,   , and computed their zero-lag cross-correlation. 
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Fig. 3. (A-C) Sequence of three pairs of nearly-monochromatic time series with frequency 

      and with relative phase of,    ,      . and      , respectively. (D-F) 

Corresponding coherence,      , and similarity (black curve) and       (red curve).  Note that 

     , is approximately unity for all three cases, whereas       decreases as the relative phase 

increases. In this example    is set to     . 
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Fig. 4. (A-C) Sequence of three pairs of broad-band time series with an approximately (A) 

frequency-independent coherence, (B) coherence that increases with frequency and (C) 

coherence that decreases with frequency. (D-F) Corresponding coherence,       (black curve), 

and similarity and       (red curve), which are approximately equal, although also obeying the 

rule       . In this example    is set to     . 
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