ENVIRONMENTAL DATA ANALYSIS WITH MATLAB

WILLIAM MENKE

PROFESSOR OF EARTH AND ENVIRONMENTAL SCIENCE
COLUMBIA UNIVERSITY

JOSHUA MENKE

SOFTWARE ENGINEER
JOM ASSOCIATES

COPYRIGHT 2011 BY ELSEVIER, INC.
ALL RIGHTS RESERVED.
CONTENTS

CHAPTER 1: DATA ANALYSIS WITH MatLab

 SECTION 1.1 WHY MatLab?
 SECTION 1.2 GETTING STARTED WITH MatLab.
 SECTION 1.3 GETTING ORGANIZED.
 SECTION 1.4 NAVIGATING FOLDERS.
 SECTION 1.5 SIMPLE ARITHMETIC AND ALGEBRA.
 SECTION 1.6 VECTORS AND MATRICES.
 SECTION 1.7 MULTIPLICATION OF VECTORS OF MATRICES
 SECTION 1.8 ELEMENT ACCESS.
 SECTION 1.9 TO LOOP OR NOT TO LOOP.
 SECTION 1.10 THE MATRIX INVERSE.
 SECTION 1.11 LOADING DATA FROM A FILE
 SECTION 1.12 PLOTTING DATA.
 SECTION 1.13 SAVING DATA TO A FILE.
 SECTION 1.14 SOME ADVICE ON WRITING SCRIPTS

CHAPTER 2: A FIRST LOOK AT DATA

 SECTION 2.1 LOOK AT YOUR DATA!
 SECTION 2.2 MORE ON MatLab GRAPHICS.
 SECTION 2.3 RATE INFORMATION.
 SECTION 2.4 SCATTER PLOTS AND THEIR LIMITATIONS

CHAPTER 3: PROBABILITY AND WHAT IT HAS TO DO WITH DATA ANALYSIS

 SECTION 3.1 RANDOM VARIABLES.
 SECTION 3.2 MEAN, MEDIAN AND MODE.
 SECTION 3.3 VARIANCE.
 SECTION 3.4 TWO IMPORTANT PROBABILITY DENSITY FUNCTIONS
 SECTION 3.5 FUNCTIONS OF A RANDOM VARIABLE.
 SECTION 3.6 JOINT PROBABILITIES.
 SECTION 3.7 BAYESIAN INFERENCE
 SECTION 3.8 JOINT PROBABILITY DENSITY FUNCTIONS.
SECTION 3.9 COVARIANCE.
SECTION 3.10 MULTIVARIATE DISTRIBUTIONS.
SECTION 3.11 THE MULTIVARIATE NORMAL DISTRIBUTIONS.
SECTION 3.12 LINEAR FUNCTIONS OF MULTIVARIATE DATA

CHAPTER 4: THE POWER OF LINEAR MODELS
SECTION 4.1 QUANTITATIVE MODELS, DATA AND MODEL PARAMETERS.
SECTION 4.2 THE SIMPLEST OF QUANTITATIVE MODELS
SECTION 4.3 CURVE FITTING
SECTION 4.4. MIXTURES.
SECTION 4.5. WEIGHTED AVERAGES.
SECTION 4.6. EXAMINING ERROR.
SECTION 4.7. LEAST SQUARES.
SECTION 4.8. EXAMPLES.
SECTION 4.9. COVARIANCE AND THE BEHAVIOR OF ERROR.

CHAPTER 5: QUANTIFYING PRECONCEPTIONS
SECTION 5.1 WHEN LEAST-SQUARE FAILS.
SECTION 5.2 PRIOR INFORMATION.
SECTION 5.3 BAYESIAN INFERENCE
SECTION 5.4 THE PRODUCT OF NORMAL PROBABILITY DENSITY DISTRIBUTIONS.
SECTION 5.5 GENERALIZED LEAST SQUARES.
SECTION 5.6 THE ROLE OF THE COVARIANCE OF THE DATA
SECTION 5.7. SMOOTHNESS AS PRIOR INFORMATION.
SECTION 5.8. SPARSE MATRICES.
SECTION 5.9 REORGANIZING GRIDS OF MODEL PARAMETERS

CHAPTER 6: DETECTING PERIODICITIES
SECTION 6.1 DESCIBING SINUSOIDAL OSCILLATIONS
SECTION 6.2 MODELS COMPOSED ONLY OF HARMONIC FUNCTIONS.
SECTION 6.3 GOING COMPLEX
SECTION 6.4 LESSONS LEARNED FROM THE INTEGRAL TRANSFORM
SECTION 6.5. NORMAL CURVE.
SECTION 6.6. SPIKES.
SECTION 6.7. AREA UNDER A FUNCTION.
SECTION 6.8. TIME-DELAYED FUNCTION.
SECTION 6.9. DERIVATIVE OF A FUNCTION.
SECTION 6.10. INTEGRAL OF A FUNCTION
SECTION 6.11. CONVOLUTION.
SECTION 6.12. NON-TRANSIENT SIGNALS.

CHAPTER 7: THE PAST INFLUENCES THE PRESENT
SECTION 7.1 BEHAVIOR SENSITIVE TO PAST CONDITIONS.
SECTION 7.2 FILTERING AS CONVOLUTION.
SECTION 7.3 SOLVING PROBLEMS WITH FILTERS.
SECTION 7.4 PREDICTION THE FUTURE
SECTION 7.5 A PARALLEL BETWEEN FILTERS AND POLYNOMIALS
SECTION 7.6 FILTER CASCADES AND INVERSE FILTERS
SECTION 7.7 MAKING USE OF WHAT YOU KNOW.

CHAPTER 8: PATTERNS SUGGESTED BY DATA
SECTION 8.1 SAMPLES AS MIXTURES.
SECTION 8.2 DETERMINING THE MINIMUM NUMBER OF FACTORS.
SECTION 8.3. APPLICATION TO THE ATLANTIC ROCKS DATASET
SECTION 8.4. SPIKY FACTORS
SECTION 8.5. TIME-VARIABLE FUNCTIONS.

CHAPTER 9: DETECTING CORRELATIONS AMONG DATA
SECTION 9.1 CORRELATION IS COVARIANCE
SECTION 9.2 COMPUTING AUTOCORRELATION BY HAND.
SECTION 9.3 RELATIONSHIP TO CONVOLUTION AND POWER SPECTRAL DENSITY.
SECTION 9.4. CROSS-CORRELATION.
SECTION 9.5. USING THE CROSS-CORRELATION TO ALIGN TIME SERIES.
SECTION 9.6 LEAST SQUARES ESTIMATION OF FILTERS
SECTION 9.7. THE EFFECT OF SMOOTHING ON TIME SERIES.
SECTION 9.8. BAND-PASS FILTERS.
SECTION 9.9. FREQUENCY-DEPENDENT COHERENCE
SECTION 9.10. WINDOWING BEFORE COMPUTING FOURIER TRANSFORMS.
SECTION 9.11. OPTIMAL WINDOW FUNCTIONS

CHAPTER 10: FILLING IN MISSING DATA

SECTION 10.1 INTERPOLATION REQUIRES PRIOR INFORMATION.
SECTION 10.2 LINEAR INTERPOLATION
SECTION 10.3 CUBIC INTERPOLATION
SECTION 10.4 KRIGING
SECTION 10.5 INTERPOLATION IN TWO DIMENSIONS
SECTION 10.6. FOURIER TRANSFORMS IN TWO DIMENSIONS.

CHAPTER 11: ARE MY RESULTS SIGNIFICANT?

SECTION 11.1 THE DIFFERENCE IS DUE TO RANDOM VARIATION!
SECTION 11.2. THE DISTRIBUTION OF THE TOTAL ERROR.
SECTION 11.3. FOUR IMPORTANT PROBABILITY DENSITY FUNCTIONS.
SECTION 11.4. A HYPOTHESIS TESTING SCENARIO.
SECTION 11.5. TESTING IMPROVEMENT IN FIT.
SECTION 11.6. TESTING THE SIGNIFICANCE OF A SPECTRAL PEAK
SECTION 11.7. BOOTSTRAP CONFIDENCE INTERVALS.

CHAPTER 12: NOTES