Errata
 Geophysical Inverse Theory: Discrete Inverse Theeory, MATLAB Edition By William Menke

Last updated
February 12, 2014

Page xxv, about line 12
Type: Typo in text
Replace NM with MN
$K \times M$, the product $\mathbf{P}=\mathbf{N M}$ is an $N \times M$ matrix defined according to the rule

Page xxvi, line 15
Type: Typo in text
Replace NM with MN
a. Matrix multiplication, $\mathbf{P}=\mathbf{N M}$, has a useful interpretation in terms of dot prod-

Page 37, Caption of Figure 2.17

Type: Incorrect MatLab script number in caption
Replace 14 with 15

FIGURE 2.17 Histograms (blue curves) of 5000 realizations of a random variable d for the probability density function (red curves) $p(d)=1 / 2 c \exp (-/ d / / c)$ with $c=2$. (A) Realizations computed by transforming data drawn from a uniform distribution and (B) realizations computed using the Metropolis-Hastings algorithm. MatLab script gda02_14.
2.2. Suppose d is a Gaussian random variable with zerghthean and unit variance. What is the probability density function of $E=e^{2}$? Hint: Since the sign of d gets lost when it is squared, you can assume that $p(d)$ is one-sided, that is, defined for only $d \geq 0$ and with twice the amplitude of the usual Gaussian.

Page 86, First two paragraphs of Section 4.14 Type: Wrong words, "row" and "rows" should be "column" and "columns" in several places Replace as indicated

4.12 TECHNIQUES FOR COMPUTING RESOLUTION

In very large problems, the model resolution matrix \mathbf{R} can be cumbersome to compute, owing to its large $M \times M$ size and non-sparse character. Furthermore, time is rarely available for examining all of its column reows within the model volume, are usually sufficient.

Suppose that we call the k th ${ }^{\text {colum }} \mathbf{R}$ the vector $\mathbf{r}^{(k) T}$. Then the identity $\mathbf{R}=\mathbf{R I}$ can be rewritten as

$$
\begin{equation*}
R_{i k}=\sum_{j=1}^{M} R_{i j} \delta_{j k} \rightarrow r_{i}^{(k)}=\sum_{j=1}^{N} R_{i j} m_{j}^{(k)} \quad \text { with } \quad m_{j}^{(k)}=\delta_{j k} \tag{4.40}
\end{equation*}
$$

Here we have identified the k th column of \mathbf{I} as "model parameter" vector $m_{j}^{(k)}$ that is zero except for its k th element, which is unity. Recalling that $\mathbf{R}=\mathbf{G}^{-\mathrm{g}} \mathbf{G}$, we can write

$$
\begin{equation*}
\mathbf{r}^{(k)}=\mathbf{R} \mathbf{m}^{(k)}=\mathbf{G}^{-\mathrm{g}} \mathbf{G} \mathbf{m}^{(k)}=\mathbf{G}^{-\mathrm{g}} \mathbf{d}^{(k)} \quad \text { with } \quad \mathbf{d}^{(k)}=\mathbf{G} \mathbf{m}^{(k)} \tag{4.41}
\end{equation*}
$$

Thus, the k th synthetic data $\mathbf{d}^{(k)}$ corresponding to a specific model parameter vector $\mathbf{m}^{(k)}$, one that is zero except for its k th element, which is unity (that is, a unit spike at row k). This suggests a procedure for calculating the resolution: construct the desired $\mathbf{m}^{(k)}$, solve the forward problem to generate $\mathbf{d}^{(k)}$, solve the inverse problem, and then interpret the result as the k thfow ${ }^{\circ}$ of the resolution matrix (Figure 4.9A, B).

Page 86, First paragraph of Section 4.12
Type: Vector should not be transformed Delete superscript T as indicated
wimm me moues voime, are usuany sumciem.
Suppose that we call the k th row of \mathbf{R} the vector $\mathbf{r}^{(k)}{ }^{2}$. Then the identity
$\mathbf{R}=\mathbf{R I}$ can be rewritten as

Page 87, Caption of Figure 4.9
Type: Wrong words, "row" should be "column" in several places
Replace as indicated
FIGURE 4.9 Resolution of an acoustic tomography problem solved with the minimum length method. The physical model space is a 20×20 grid of pixels on an (foumb 2 grid. Data are measured only along rows and columns, as in Figure 1.2. (Top row) One Rew of the resolution matrix, for a model parameter near the center of the (x, y) griduraflculated using two methodstu(A) by computing the complete matrix \mathbf{R} and extracting one T enand (B) by calculating the fow separately. (Botton row) Checkerboard resolution test showing (C) true checkerboard and (D) reconstructed checkerboard. MatLab scripts gda04_07 and gda04_08.

Author's Note The resolution matrix \mathbf{R} for weighted damped least squares (eqn 3.45), is symmetric, so the distinction between its rows and columns is not important. In the BackusGilbert case, \mathbf{R} is not symmetric, so the distinction between rows and columns is important.

A row of \mathbf{R} is interpreted as follows: Row k gives the weights of all the true model parameters that contribute to observed model parameter k .

A column of R is interpreted as follows: Column k gives the pattern of estimated model parameters that would be observed if the true model parameters were all zero, except for the k -th.

Thus, when one asks, "How would a true model that contained only a spike spread out to become a blurry set of estimated model parameters?", one needs a column of R.

Page 91, Equation 5.23
Type: Typo in equation
In second equation, delete first occurrence of m_{l}

$$
\begin{equation*}
\frac{\partial L}{\partial m_{1}}=0=\frac{1}{2} \sigma^{-2} 2 n h_{1} \sum_{i=1}^{N}\left(d_{i}^{\mathrm{obs}}-m_{1}\right) \tag{5.3}
\end{equation*}
$$

Page 103, Equation 5.23
Type: Typo in equation Replace A with g

Page 114, Problem 5.5

Type: Typo in text
Replace 5.55 with 5.17
5.4 This problem builds upon Problem 5.3. Suppose that you are fitting a cubic polynomial to data, $d_{i}=m_{1}+m_{2} z_{i}+m_{3} z_{i}^{2}+m_{4} z_{i}^{3}$, but have a priori information that $m_{1}=2 m_{2}=4 m_{3}=8 m_{4}$. Write a MatLab script to solve this problem using Equation (5.55). Use a range of values for the variance σ_{m}^{2} of the a 17

Page 114, Problem 5.7
Type: Typo in text
Replace 5.5 with 5.6

5.7 This problem expands upon Problem 5.5. Suppose that the random numbers

Page 219, Equation 11.50
Type: Typo in equation
Replace $-\infty$ with $+\infty$ in top limit of integral

$$
\begin{equation*}
\mathscr{L}^{\dagger} d(x)=-a \frac{\mathrm{~d}}{\mathrm{~d} x} d(x)+b \int_{x}^{+\infty} d\left(x^{\prime}\right) \mathrm{d} x^{\prime} \tag{11.50}
\end{equation*}
$$

Page 219, Equation 11.51
Type: Typo in equation
Replace $-\infty$ with $+\infty$ in top limit of integral

$$
\begin{equation*}
\left.\frac{\delta E}{\delta m}\right|_{\mathbf{m}^{(0)}}=2 a \frac{\mathrm{~d}}{\mathrm{dx} x}\left[d^{\mathrm{obs}}(x)-d^{(0)}(x)\right]-2 b \int_{x}^{+\infty}\left[d^{\mathrm{obs}}\left(x^{\prime}\right)-d^{(0)}\left(x^{\prime}\right)\right] \mathrm{d} x^{\prime} \tag{11.51}
\end{equation*}
$$

