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General idea:  One has images of seismic velocity perturbations, ∆𝑣𝑝 and ∆𝑣𝑠.  One hypothesizes 

that they contain geographical regions where ∆𝑣𝑝 and ∆𝑣𝑠 scale with some fixed but unknown 

ratio, and other patches where they do not scale. One wants to identify the patches where they 

scale and determine the ratio. 

 

For simplicity, I implement this proof-of-concept example as a one-dimensional problem in a 

position variable, 𝑧𝑖 (1 ≤ 𝑖 ≤ 𝑁), and not as a two (or three) dimensional image.  Call the 

observed velocity perturbations, 𝑑𝑖
(𝐴)

 and 𝑑𝑖
(𝐵)

, where 𝑑 is for "data".  Suppose that 𝑁 = 𝑁1 ×
𝑁2, where there are 𝑁1 geographical patches each of size 𝑁2.  The model that I consider is 

 

𝑑𝑖
(𝐵)

=  𝑚𝑖
(𝐴)

+ 𝑚𝑗
(𝐵)

𝑑𝑖
(𝐴)

   where   𝑗 = mod(𝑖, 𝑁2) + 1 

(1) 

 

Here, 𝑚 is for "model parameter" (the unknowns).  The total number of model parameters is 

𝑀 = 𝑁 + 𝑁1.  There are 𝑁 model parameters, 𝑚𝑖
(𝐴)

, one for every position, and there are 𝑁1 

model parameters, 𝑚𝑖
(𝐵)

, one for every geographical patch.  The 𝑑𝑖
(𝐵)

 data can be constructed in 

two ways:  in a geographical patch where they do not scale with 𝑑𝑖
(𝐴)

, from the 𝑚𝑖
(𝐴)

, which 

specify their value; and in a geographical patch where they do scale with 𝑑𝑖
(𝐴)

, from the 𝑚𝑗
(𝐵)

, 

which specifies the ratio of 𝑑𝑖
(𝐴)

 to 𝑑𝑖
(𝐵)

.  The inverse problem is under-determined, with 𝑁1 

more unknowns than data. 

 

My proposal is to resolve the under-determinacy by adding prior information of sparsity; that is, 

to make as many model parameters zero as possible.  In patches where the data scale, sparsity 

implies that the 𝑚𝑖
(𝐴)

 are zero.  In patches where the data do not scale, sparsity implies that the 

𝑚𝑖
(𝐵)

 are zero.  I use a re-weighting scheme that solves the problem 

 

find the 𝐦 that minimizes  ‖𝐝(𝐵) − 𝐆𝐦‖
2

2
+ ‖𝐦‖0

0 

(2) 

 

where 𝐦 = [𝐦(𝐴) 𝐦(𝐵)]𝑇 and 𝐆 is a matrix that implements Eq. (1).  Note that 𝐆 depends 

upon 𝐝(𝐴).  In practice, the 𝐿0 norm, ‖. ‖0
0, is approximated with the 𝐿0.1 norm. 

 

A numerical experiment is shown in Fig. 1 and Fig. 2.  The various weighting parameters in the 

inversion need to be tuned manually and with some care, but the estimated solution is close to 

the true one. 

 

A limitation of this approach is the geographical regions need to be specified; they are not 

chosen by the inversion. 

 



Although I have modeled the ratio as being piecewise-constant in the geographical regions, one 

could imagine using a more complicated spline representation (as long as the spline can be 

exactly zero in a region). 

 

I have used data that are the velocity perturbations, themselves, which leads to a rather simple 𝐆. 

However, the method is completely general.  One could easily substitute a 𝐆 that linked any kind 

of data to the model parameters (such as travel time data).  Thus, the method is not restricted to 

post-processing images that arise, say, from seismic tomography.  It could be built into the 

tomography, itself. 

 

 

Fig. 1 Synthetic data, 𝑑𝑖
(𝐴)

 and 𝑑𝑖
(𝐵)

, plotted as a function of position, 𝑧𝑖.  In this test, 𝑁1 = 10, 

𝑁2 = 20 and the geographical regions are 1 𝑧-unit wide.  (Top) The true 𝑑𝑖
(𝐴)

 data (black) are 

drawn from an uncorrelated Normal distribution. (Bottom) The true 𝑑𝑖
(𝐵)

 data (black) are 

computed using 𝐝(𝐵) = 𝐆𝐦, where 𝐦 is the true model parameters as shown in Fig. 2 and where 

𝐆 depends on the true 𝐝(𝐴). The predicted 𝐝(𝐵) closely match the true data. 

 

 
 

Fig. 2. The two parts of the model, 𝑚𝑖
(𝐴)

 (top) and 𝑚𝑖
(𝐵)

 (bottom), as a function of position, 𝑧𝑖.  

The synthetic true model (black) was chosen randomly.  In each of the ten geographical regions, 

either 𝑚𝑖
(𝐵)

 is zero (in which case 𝑚𝑖
(𝐴)

 is drawn from an uncorrelated Normal distribution), or 

𝑚𝑖
(𝐵)

 is non-zero (in which case 𝑚𝑖
(𝐴)

 is zero).  The estimated model (red) is close to the true 

model. 

 

The reweighting method is described in Chapter 8 of Menke, W., Geophysical Data Analysis: 

Discrete Inverse Theory, Fourth Edition, Elsevier, pp 350, 2018, ISBN: 9780128135556. 

 


