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(1) I am concerned here with the viscosity term in the Navier Stokes equation, in the case where the 

viscosity is spatially-heterogenous and dragged along by the flow.  In the coupled temperature – flow 

problem, the dragging of viscosity is handled naturally by its dependence on temperature.  Viscosity 

advects because the temperature field that creates it advects. But what about a glacial loading problem in 

which temperature is not included?  My belief is that viscosity must still undergo advection.  The 

viscosity term in the Navier Stokes equations should be thought of as 𝜇(𝐱, 𝑡) where 𝑡 is the “current 

time”.  However, the viscosity that one wants to know is the “initial viscosity”, 𝜇(𝐼)(𝐱) ≡ 𝜇(𝐱, 𝑡 = 0).  

So, I think this distinction needs to be made when one sets up the inverse problem, because the flow field 

past a stationary high-viscosity body with be very significantly perturbed by it (as in Stokes flow around a 

sphere), but the flow field containing a moving high-viscosity body less so. 

(2) Basic equations 

Incompressible flow 

𝑣𝑗,𝑗 = 0 

Viscous rheology 

𝜏𝑖𝑗 = 𝜇(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) − 𝑝 

Momentum-conservation (which I believe is correct even when viscosity, 𝜇, is a function of time. 

𝜌
𝜕𝑣𝑖

𝜕𝑡
+ 𝑣𝑖,𝑗𝑣𝑗 = 𝜏𝑖𝑗,𝑗 = 𝜇(𝑣𝑖,𝑗𝑗 + 𝑣𝑗,𝑗𝑖) + 𝜇,𝑗(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) − 𝑝,𝑖 

Momentum-conservation given incompressible flow 

𝜌
𝜕𝑣𝑖

𝜕𝑡
+ 𝜌𝑣𝑖,𝑗𝑣𝑗 = 𝜇𝑣𝑖,𝑗𝑗 + 𝜇,𝑗(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) − 𝑝,𝑖 

Incompressible advection (viewing 𝜇 as a linear function of temperature, a conserved advecting quantity). 

𝜕𝜇

𝜕𝑡
+ 𝑣𝑗𝜇,𝑗 = 0 

(3) One could solve the coupled problem in which one explicitly advects viscosity.  However, in glacial 

isostatic problems, the overall flow distance is small. In this case, one might be able to use a low order 

approximation. Considering viscosity a function of time, for small times 

Viscosity and its gradient at time, 𝑡 = 0 

𝜇(𝐼)(𝐱) ≡ 𝜇(𝐱, 𝑡 = 0)     and     
𝜕𝜇(𝐼)

𝜕𝑡
≡

𝜕𝜇

𝜕𝑡
|

𝐱,𝑡=0
   and    𝜇,𝑖

(𝐼)(𝐱) ≡ 𝜇,𝑖(𝐱, 𝑡 = 0) 

Taylor’s theorem to get viscosity at a small, later time 

𝜇(𝐱, 𝑡) = 𝜇(𝐼)(𝐱) +
𝜕𝜇(𝐼)

𝜕𝑡
𝑡 



Advection equation at time, 𝑡 = 0 

𝜕𝜇(𝐼)

𝜕𝑡
+ 𝑣𝑘𝜇,𝑘

(𝐼)
= 0 

Insert into Taylor’s theorem 

𝜇 = 𝜇(𝐼) − 𝑣𝑘𝜇,𝑘
(𝐼)

𝑡 

Take gradient 

𝜇,𝑗 = 𝜇,𝑗
(𝐼)

− 𝑣𝑘𝜇,𝑗𝑘
(𝐼)

𝑡 − 𝑣𝑘,𝑗𝜇,𝑘
(𝐼)

𝑡 

Insert into momentum-conservation plus incompressible 

𝜌
𝜕𝑣𝑖

𝜕𝑡
+ 𝑣𝑖,𝑗𝑣𝑗 = [𝜇(𝐼) − 𝑣𝑘𝜇,𝑘

(𝐼)
𝑡] 𝑣𝑖,𝑗𝑗 + [𝜇,𝑗

(𝐼)
− 𝑣𝑘𝜇,𝑗𝑘

(𝐼)
𝑡 − 𝑣𝑘,𝑗𝜇,𝑘

(𝐼)
𝑡] (𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) − 𝑝,𝑖 

Note that the terms explicitly containing time 𝑡 represent a correction for the advection of the material. 

(4) If now one considers a point heterogeneity, 𝜇(𝐼)(𝐱) = 𝑚𝛿(𝐱 − 𝐱𝐻), the partial derivative of the 

differential operator with respect to 𝑚 will contain 𝑡𝛿, 𝑡𝛿,𝑘 and 𝑡𝛿,𝑗𝑘. 


