Steepest Slope of a Plane by Measuring Slopes in Two Orthogonal Directions This derivation intentionally uses no calculus

Bill Menke, 7/11/23

planar function $F(x, y)$
n-direction is up-slope t-direction is cross-slope
distance 0 to Δn broken into to pieces, a, b, so

$$
\Delta n=a+b
$$

derivation uses these facts:
movement along t-direction does not change $F(x, y)$
top triangle is same as bottom, as they are right triangles with the same hypotenuse Δx and the same angle θ
change in F from 0 to Δn broken into two parts, 0 to b (of length b) and b to Δn (of length a)

Part 1. relation between polar angle θ and $\Delta x, \Delta y$
$\tan \theta=\frac{\Delta x}{\Delta y}$
relation between a and b and $\theta, \Delta x, \Delta y$
$\sin \theta=\frac{a}{\Delta x} \quad \cos \theta=\frac{b}{\Delta y} \quad a=\Delta x \sin \theta \quad \mathrm{~b}=\Delta y \cos \theta$

Part 2. calculate $\Delta n / \Delta x$ and $\Delta n / \Delta y$
Δn is distance from 0 to a and from a to Δn
$\Delta n=a+b=\Delta x \sin \theta+\Delta y \cos \theta$
$\frac{\Delta n}{\Delta x}=\frac{\Delta x \sin \theta+\Delta y \cos \theta}{\Delta x}=\sin \theta+\frac{\Delta y}{\Delta x} \cos \theta=\sin \theta+\frac{\cos \theta}{\tan \theta}$
$=\frac{\sin ^{2} \theta}{\sin \theta}+\frac{\cos ^{2} \theta}{\sin \theta}=\frac{1}{\sin \theta}$
similarly $\frac{\Delta n}{\Delta y}=\frac{1}{\cos \theta}$

Part 3. relate polar angle θ to $\Delta F / \Delta x$ and $\Delta F / \Delta y$
$\tan \theta=\frac{\Delta x}{\Delta y}=\frac{\Delta x / \Delta F}{\Delta y / \Delta F}=\frac{(\Delta F / \Delta y) / c}{(\Delta F / \Delta x) / c} \quad$ with c unknown
$\sin \theta=(\Delta F / \Delta y) / c \quad \cos \theta=(\Delta F / \Delta x) / c$
c determined by condition
$\sin ^{2} \theta+\cos ^{2} \theta=1 \quad$ implies $\quad c^{2}=(\Delta F / \Delta x)^{2}+(\Delta F / \Delta y)^{2}$
change in F from 0 to Δn broken into two pieces
0 to b, a distance b
same as $\frac{\Delta F}{\Delta y} \Delta y$
a to Δn, a distance b

$$
\text { same as } \frac{\Delta F}{\Delta x} \Delta x
$$

so
$\Delta F=\frac{\Delta F}{\Delta x} \Delta x+\frac{\Delta F}{\Delta y} \Delta y$
divide by Δn and apply Part 2
$\frac{\Delta F}{\Delta n}=\frac{\Delta F}{\Delta x} \frac{\Delta x}{\Delta n}+\frac{\Delta F}{\Delta y} \frac{\Delta y}{\Delta n}=\frac{d F}{d x} \sin \theta+\frac{d F}{d y} \cos \theta$

Part 4. Apply Part 3

$\frac{\Delta F}{\Delta n}=\frac{d F}{d x} \sin \theta+\frac{d F}{d y} \cos \theta=\frac{1}{c}\left(\frac{d F}{d x}\right)^{2}+\frac{1}{c}\left(\frac{d F}{d y}\right)^{2}=\frac{c^{2}}{c}=c$
$\frac{\Delta F}{\Delta n}=\left[(\Delta F / \Delta x)^{2}+(\Delta F / \Delta y)^{2}\right]^{1 / 2}$
Part 5. write result in terms of slope angles, φ
$\tan \varphi=\frac{\Delta F}{\Delta n} \quad \tan \varphi_{x}=\frac{\Delta F}{\Delta x} \quad \tan \varphi_{y}=\frac{\Delta F}{\Delta y}$
$\tan \varphi=\left[\left(\tan \varphi_{x}\right)^{2}+\left(\tan \varphi_{y}\right)^{2}\right]^{1 / 2}$

