Discussion of Units in 149: Effective Pressure Diffusivity of a Long, Thin Pipe

Bill Menke, October 1, 2023 after a discussion with Einat Lev

1. The pressure p has units of N / m^{2}, so the equation $\left(\frac{\partial}{\partial t}+\kappa \frac{\partial^{2}}{\partial x^{2}}\right) p=f$ has units of $N / s m^{2}$. Consequently, f has units of $N / s m^{2}$ and κ has units of m^{2} / s. Note that κt has units of m^{2}.
2. The Green Function equation integral is $p(x, t)=\iint g\left(x, x_{0}, t, t_{0}\right) f\left(x_{0}, t_{0}\right) d x d t$. As p has units of $N / m^{2}, f$ has units of N / sm^{2}, and $d x d t$ has units of $s m, g$ has units of

$$
\frac{N}{m^{2}}=g \frac{N}{s m^{2}} s m \text { so } g \text { has units of } \frac{N}{m^{2}} \frac{s m^{2}}{N} \frac{1}{s m}=\frac{1}{m}
$$

3. The Green function equation $\left(\frac{\partial}{\partial t}+\kappa \frac{\partial^{2}}{\partial x^{2}}\right) g(x, 0, t, 0)=\delta(x) \delta(t)$ has solution

$$
g(x, 0, t, 0)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 \kappa t}} \exp \left\{-\frac{1}{2} \frac{x^{2}}{2 \kappa t}\right\}
$$

This solution requires $x^{2} / \kappa t$ to be dimensionless, which it is. It also agrees with the previous result that g has units of $1 / m$.
4. For the force $f(x, t)=E_{0} \delta(x) \delta(t)$, the solution is $p=E_{0} g(x, 0, t, 0)$. The constant E_{0} has units

$$
\frac{N}{s m^{2}}=E_{0} \frac{1}{s m} \text { so } E_{0} \text { has units of } \frac{N}{s m^{2}} s m=\frac{N}{m^{2}} m
$$

This can be interpreted as a pressure, say of p_{0} over an interval, say Δx; that is, $E_{0}=$ $p_{0} \Delta x$. Although this superficially looks like an energy per unit area, it is actually a moment per unit area.
5. The original derivation defines a quantity $\beta=\frac{1}{\rho} \frac{\partial \rho}{\partial p}$. Thus, β has units of reciprocal pressure, that is $\frac{m^{2}}{N}$.
6. The original derivation defines a quantity k such that velocity $v=-k \nabla p$. The units of k are

$$
\frac{m}{s}=k \frac{1}{m} \frac{N}{m^{2}} \text { so } k \text { has units of } \frac{m}{s} m \frac{m^{2}}{N}=\frac{m^{4}}{N s}
$$

7. The original derivation defines $\kappa=k / \beta$, which has units $\frac{m^{4}}{N s} \frac{N}{N m^{2}}=\frac{m^{2}}{s}$ which agrees with the units in (1), above.
8. Wikipedia give the Hagen-Poiseuille equation as $\Delta p=8 \mu L Q / \pi R^{4}$, where L is pipe length, R is pipe radius and Q is volumetric flow rate. Substituting $Q=v \pi R^{2}$ yields

$$
\Delta p=\frac{8 \mu L Q}{\pi R^{4}}=\frac{8 \mu L v \pi R^{2}}{\pi R^{4}}=\frac{8 \mu L v}{R^{2}} \quad \text { or } \quad \frac{R^{2}}{8 \mu} \frac{\Delta p}{L}=v
$$

As in the original derivation, we identify $k=R^{2} / 8 \mu$.
9. According to Wikipedia, μ has units of $N s / m^{2}$. Thus, k has units of

$$
m^{2} \frac{m^{2}}{N s}=\frac{m^{4}}{N s}
$$

Which agrees with (6), above.
10. According to (4), above, the pressure corresponding to $f(x, t)=E_{0} \delta(x) \delta(t)$ is $p=$ $E_{0} g(x, 0, t, 0)$. According to (6), above, velocity is related to pressure via $v=-k \frac{\partial p}{\partial x}$. The Green function in (3) implies

$$
\begin{gathered}
v=-k E_{0} \frac{\partial}{\partial x} g(x, 0, t, 0)=-\frac{k E_{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 \kappa t}} \frac{\partial}{\partial x} \exp \left\{-\frac{1}{2} \frac{x^{2}}{2 \kappa t}\right\} \\
=\frac{k E_{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 \kappa t}} \frac{x}{2 \kappa t} \exp \left\{-\frac{1}{2} \frac{x^{2}}{2 \kappa t}\right\}
\end{gathered}
$$

11. The units of the right-hand side of the previous equation are

$$
k E_{0} \frac{1}{\sqrt{\kappa t}} \frac{x}{\kappa t}=\frac{m^{4}}{N s} \frac{N m}{m^{2}} \frac{1}{m} \frac{m}{m^{2}}=\frac{N m^{6}}{N m^{5} s}=\frac{m}{s}
$$

Which agrees with the units of velocity, m / s, on left-hand side.

