Discussion of Units in 149: Effective Pressure Diffusivity of a Long, Thin Pipe

Bill Menke, October 1, 2023 after a discussion with Einat Lev

- 1. The pressure *p* has units of N/m^2 , so the equation $\left(\frac{\partial}{\partial t} + \kappa \frac{\partial^2}{\partial x^2}\right)p = f$ has units of N/sm^2 . Consequently, *f* has units of N/sm^2 and κ has units of m^2/s . Note that κt has units of m^2 .
- 2. The Green Function equation integral is $p(x,t) = \iint g(x,x_0,t,t_0) f(x_0,t_0) dxdt$. As p has units of N/m^2 , f has units of N/sm^2 , and dxdt has units of sm, g has units of

$$\frac{N}{m^2} = g \frac{N}{sm^2} sm$$
 so g has units of $\frac{N}{m^2} \frac{sm^2}{N} \frac{1}{sm} = \frac{1}{m}$

3. The Green function equation $\left(\frac{\partial}{\partial t} + \kappa \frac{\partial^2}{\partial x^2}\right) g(x, 0, t, 0) = \delta(x)\delta(t)$ has solution $g(x, 0, t, 0) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\kappa t}} \exp\left\{-\frac{1}{2} \frac{x^2}{2\kappa t}\right\}$

This solution requires $x^2/\kappa t$ to be dimensionless, which it is. It also agrees with the previous result that g has units of 1/m.

4. For the force $f(x, t) = E_0 \delta(x) \delta(t)$, the solution is $p = E_0 g(x, 0, t, 0)$. The constant E_0 has units

$$\frac{N}{sm^2} = E_0 \frac{1}{sm}$$
 so E_0 has units of $\frac{N}{sm^2} sm = \frac{N}{m^2} m$

This can be interpreted as a pressure, say of p_0 over an interval, say Δx ; that is, $E_0 = p_0 \Delta x$. Although this superficially looks like an energy per unit area, it is actually a *moment* per unit area.

- 5. The original derivation defines a quantity $\beta = \frac{1}{\rho} \frac{\partial \rho}{\partial p}$. Thus, β has units of reciprocal pressure, that is $\frac{m^2}{N}$.
- 6. The original derivation defines a quantity k such that velocity $v = -k\nabla p$. The units of k are

$$\frac{m}{s} = k \frac{1}{m} \frac{N}{m^2}$$
 so k has units of $\frac{m}{s} m \frac{m^2}{N} = \frac{m^4}{Ns}$

- 7. The original derivation defines $\kappa = k/\beta$, which has units $\frac{m^4}{Ns} \frac{N}{Nm^2} = \frac{m^2}{s}$ which agrees with the units in (1), above.
- 8. Wikipedia give the Hagen–Poiseuille equation as $\Delta p = 8\mu LQ/\pi R^4$, where *L* is pipe length, *R* is pipe radius and *Q* is volumetric flow rate. Substituting $Q = \nu \pi R^2$ yields

$$\Delta p = \frac{8\mu LQ}{\pi R^4} = \frac{8\mu L\nu \pi R^2}{\pi R^4} = \frac{8\mu L\nu}{R^2} \quad \text{or} \quad \frac{R^2}{8\mu} \frac{\Delta p}{L} = \nu$$

As in the original derivation, we identify $k = R^2/8\mu$.

9. According to Wikipedia, μ has units of Ns/m^2 . Thus, k has units of

$$m^2 \frac{m^2}{Ns} = \frac{m^4}{Ns}$$

Which agrees with (6), above.

10. According to (4), above, the pressure corresponding to $f(x,t) = E_0 \delta(x) \delta(t)$ is $p = E_0 g(x, 0, t, 0)$. According to (6), above, velocity is related to pressure via $v = -k \frac{\partial p}{\partial x}$. The Green function in (3) implies

$$v = -kE_0 \frac{\partial}{\partial x} g(x, 0, t, 0) = -\frac{kE_0}{\sqrt{2\pi}} \frac{1}{\sqrt{2\kappa t}} \frac{\partial}{\partial x} \exp\left\{-\frac{1}{2} \frac{x^2}{2\kappa t}\right\}$$
$$= \frac{kE_0}{\sqrt{2\pi}} \frac{1}{\sqrt{2\kappa t}} \frac{x}{2\kappa t} \exp\left\{-\frac{1}{2} \frac{x^2}{2\kappa t}\right\}$$

11. The units of the right-hand side of the previous equation are

$$k E_0 \frac{1}{\sqrt{\kappa t}} \frac{x}{\kappa t} = \frac{m^4}{Ns} \frac{Nm}{m^2} \frac{1}{m} \frac{m}{m^2} = \frac{Nm^6}{Nm^5 s} = \frac{m}{s}$$

Which agrees with the units of velocity, m/s, on left-hand side.