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Consider the assertion, “The quadratic formula fails when applied to seismological problems”.  

By quadratic formula, I mean the one that one learns in high school: 

if    𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0   then   𝑥 =
−𝑏

2𝑎
±

√𝑏2 − 4𝑎𝑐

2𝑎
 

This result can be proved by inserting the formula for 𝑥 into the quadratic equation and 

simplifying the terms.  
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The result is completely general for the domain of complex numbers, without any qualification 

concerning the meaning of the unknown, 𝑥. So the assertion that it fails for one application (say, 

seismology) and not for another (say, high school algebra) is surprising; one should not accept it 

without a very careful argument attesting to its veracity. Of course, this is just a hypothetical; in 

fact, the quadratic formula does not fail when applied to seismology. 

The quadratic formula, above, does not necessarily apply to other domains.  It will fail for the 

domain of, e.g., matrices, because the above proof requires that some of the products, e.g., 𝑏 and 

√𝑏2 − 4𝑎𝑐, commute, whereas matrix multiplication is non-commutative. Parenthetically, I note 

that the extension to the matrix quadratic equation is known, bears some similarity to the 

quadratic formula, but is far more complicated (Yuan et al., 2021, Applied Mathematics and 

Computation 410, 126463). 

The situation is the same for the assertion, “The adjoint method fails to compute correct 

sensitivity kernels when applied to glacial isostatic problems”. It should be viewed very 

skeptically in the absence of a very convincing rationale.  The adjoint method to which I am 

referring is: 

if    𝐸 = (𝐡, 𝐮)    and    𝓛(𝐦)𝐮 = 𝐟 

then   
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Here, 𝓛(𝐦)𝐮 = 𝐟 is a linear partial differential equation for a vector field, 𝐮(𝑥, 𝑦, 𝑧, 𝑡, 𝐦), 

considered to depend upon parameters, 𝐦, and 𝐸 is a scalar quantity that depends on 𝐮 via an 

inner product with a known function, 𝐡.  The sensitivity kernel, 
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the change in 𝐸 caused by a perturbation, ∆𝑚𝑖, of one of the parameters away from the reference 

value, 𝐦0. 

As with the quadratic formula, the proof does not depend upon the interpretation of 𝐮, 𝐡, or 𝐸, or 

on the dimension of 𝐮.  Here it is: 
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Here, I have used the well-known formula for the derivative of an inverse operator, which can be 

obtained by using the chain rule to differentiate the equation, 𝓛−𝟏𝓛 = 𝓘, where 𝓘 is the identity 

operator. The only assumption made is that the operator, 𝓛, is invertible; that is, that the partial 

differential equation has a unique solution  (a condition which is true for the glacial isostatic 

problem).  Parenthetically, I mention that when the equation is not uniquely invertible, the only 

change in the method is the need for the additional constraint that 𝐮 minimizes 𝐸, which leads to 

the a different equation for 𝛌, namely, 𝓛𝓛†𝛌 = 𝓛𝐡. The divergence is one such operator. The 

equation, ∇ ∙ 𝐮 = 0 (where 𝐮 now is a 3-vector), is un-invertible because it does not constrain the 

curl of 𝐮. 

Given that one can prove the general case, I believe that the assertion the adjoint method doesn’t 

work in glacial isostatic problems to be false.  However, it is worth considering why it might 

seem to be true. 

One possibility is that a sensitivity kernel calculated by the adjoint method seems different from 

one calculated by some other means. In such a case, I would be extremely attentive to whether 

the two “sensitivity kernels” actually refer to the same derivative.  Consider that although 

𝜕𝐴 𝜕𝑚𝑖⁄  and 𝜕𝐵 𝜕𝑚𝑖
′⁄  are both sensitivity kernels, they are not equal unless 𝐵 = 𝐴 and 𝑚𝑖

′ =

𝑚𝑖.  Most geophysical problems are sufficiently complicated that even variables with the same 

letter names, but in different publications, may refer to different quantities (though, more often 

than not, closely related ones).  Sensitivity kernels obey the chain rules: 
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so it is possible (at least in principle) to convert one to another to facilitate an inter-comparison.  

A related possibility concerns the positions at which the sensitivity kernels are evaluated.  A 

parameter, say, 𝑚𝑗 might be associated with a position, say (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗).  And the quantities, 𝐸 and 

𝐡, might be associated with a different position, say (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) (in which case we should index 

them as 𝐸(𝑖) and 𝐡(𝑖)).  A plot of the sensitivity kernel as a function of variable (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) and 

fixed (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) is not the same as a plot with variable (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and fixed (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗). 


