Successor PDF for the Metropolis-Hastings Algorithm on a Finite Interval

Bill Menke, January 31, 2024

This may be well-known, but I could not immediately turn up a reference.
The Metropolis-Hastings algorithm requires a pdf, $q\left(x^{*} \mid x^{(i)}\right)$, which specifies the probability of a successor x^{*} given the current ensemble member $x^{(i)}$, and a pdf $q\left(x^{(i)} \mid x^{*}\right)$, which specifies the probability of the current position $x^{(i)}$ given the successor x^{*}. On the open interval, $-\infty<x<$ $+\infty$, one often uses the Normal pdf

$$
n(x, \bar{x}, \sigma) \equiv \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-1 / 2(x-\bar{x})^{2} / \sigma^{2}\right\}
$$

Together with the choices

$$
q\left(x^{*} \mid x^{(i)}\right)=n\left(x^{*}, x^{(i)}, \sigma\right) \quad \text { and } \quad q\left(x^{(i)} \mid x^{*}\right)=n\left(x^{(i)}, x^{*}, \sigma\right)
$$

because methods of sampling the Normal pdf to produce a successor are widely available, and because the standard deviation σ is naturally interpreted as the scale of the neighborhood around \bar{x} in which the successor x^{*} is highly probable. With these choices, an important ratio r used by the algorithm is unity

$$
r \equiv \frac{q\left(x^{(i)} \mid x^{*}\right)}{q\left(x^{*} \mid x^{(i)}\right)}=1
$$

The question is, what choices work for the half-open interval $0<x<\infty$ and the finite interval $x_{L}<x<x_{R}$.

My idea is to use a pdfs that are proportional to a Normal pdf within the interval, but are zero outside of it. This produces a new pdf that is proportional to the Normal pdf

$$
n^{\prime}(x, \bar{x}, \sigma) \equiv F(\bar{x} . \sigma) n(x, \bar{x}, \sigma) \quad \text { where } F(\bar{x} . \sigma) \equiv \frac{1}{N\left(x_{R}, \bar{x}, \sigma\right)-N\left(x_{V}, \bar{x}, \sigma\right)}
$$

Here, $N(x, \bar{x}, \sigma)$ is the cumulative Normal distribution. Software for evaluating $N(x, \bar{x}, \sigma)$ is widely available. The ratio is then

$$
r=\frac{N\left(x_{R}, x^{(i)}, \sigma\right)-N\left(x_{V}, x^{(i)}, \sigma\right)}{N\left(x_{R}, x^{*}, \sigma\right)-N\left(x_{V}, x^{*}, \sigma\right)}
$$

A remaining issue is how to sample $n^{\prime}(x, \bar{x}, \sigma)$. My strategy is to repeatedly sample $n(x, \bar{x}, \sigma)$, discarding values outside the $x_{L}<x<x_{R}$ interval and repeating until one inside it occurs. In Python

```
while True:
    xstar = np.random.normal(loc=xi,scale=sigma);
    if( (xstar>=xL) and (xstar<=xR):
        break:
```

In practice, one chooses the neighborhood to be a small fraction of the interval; that is, $\sigma \ll$ $\left(x_{R}-x_{L}\right)$, so when $x^{(i)}$ is near the center of the interval, success usually occurs on the first iteration, and when $x^{(i)}$ is near the end of the interval, it usually occurs with one or two iterations.

I have tested these ideas by using Metropolis-Hastings to sample the exponential pdf

$$
p(x)=\frac{1}{s} \exp \{-x / s\} \quad \text { with } \quad 0<x<+\infty
$$

with scale factor $s=0.75$ and neighborhood parameter $\sigma=0.50$, with favorable results Fig. 1). These ideas are easily generalizable to multiple dimension; that is when \mathbf{x} is a vector.

Fig 1. Results of numerical test. The true exponential pdf (black) compared with an empirical pdf (red) created by binning a 100,000-member ensemble created using the Metropolis-Hastings algorithm.

