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Eqn. 11.28 of Menke (2024) is a formula for the solution to the nonlinear implicit Normal inverse 

problem.  Here, I provide a supplementary (and approximate) formula for the posterior covariance of the 

solution: 

[cov 𝐱(𝑛)] ≈ (𝐈 − [cov 𝐱]𝐅𝑇[𝐅[cov 𝐱]𝐅𝑇]−1𝐅)[cov 𝐱] 

(where the notation is explained below). 

We consider a Normal prior pdf 𝑝(𝐱) ∝ exp{−½𝐸(𝐱)} with  

𝐸(𝐱) = (𝐱 − �̅�)𝑇[cov 𝐱]−1(𝐱 − �̅�)𝑇 

where 𝐱 is a concatenation of data and model parameters. The mean �̅� is a concatenation of the observed 

data and the prior model parameters and has covariance [cov 𝐱]. The implicit nonlinear problem has 

solution 𝐱(𝑛) that maximizes 𝑝(𝐱) with the constraint that the theory 𝐟(𝐱) = 0 is satisfied (here 𝐟 is of 

length 𝐿).  The problem is to compute the posterior covariance [cov 𝐱(𝑛)] of the solution 𝐱(𝑛). The 

superscript (𝑛) is a reminder that the solution is determined iteratively by 𝑛 iterations of the method. 

The steps that we shall use are: 

(1) Transform 𝐱 to a new coordinate system 𝐲 which has its origin at 𝐱(𝑛) and for which  [cov 𝐲] is the 

identity matrix (Fig. 1). 

(2) Approximate 𝐟(𝐱) = 0 as a hyperplane in the vicinity of 𝐱(𝑛) and identify two subspaces of 𝐲, one of 

which is in the plane (the null space 𝑦0) and the other which is normal to the plane (the 𝑝-space 𝑦𝑝). 

Singular value decomposition is used to identify the subspaces. 

(3) The part of [cov 𝐲(𝑛)] in the 𝑝-space must be is zero, as a perturbation would cause it leave the plane, 

which is forbidden by the constraint.  The part of [cov 𝐲(𝑛)] in null space equals the corresponding part of 

[cov 𝐲], as the plane does not constrain perturbations within it. Consequently, [cov 𝐲(𝑛)] is just the part of 

[cov 𝐲] in the null space. 

(4) Finally, [cov 𝐲(𝑛)] is transformed back to  [cov 𝐱(𝑛)]. 

Step 1. We use the linear transformation rule for Normally-distributed random variables: Let 𝐱 be 

Normally-distributed with mean �̅� and covariance [cov 𝐱] and let 𝐲 = 𝐀𝐱 + 𝐛.  Then 𝐲 is Normally-

distributed with mean �̅� = 𝐀�̅� + 𝐛 and covariance [cov 𝐲] = 𝐀[cov 𝐱]𝐀𝑇. 

We choose 𝐀 and b in the transformation so that 𝐲(𝑛) ≡ 𝐲(𝐱(𝑛)) = 0 (that is, 𝐲(𝑛) is at the origin) and 

[cov 𝐲] = 𝐈: (that is, 𝐲 are uncorrelated and with unit variance): 

𝐲(𝐱(𝑛)) = 𝐀𝐱(𝑛) + 𝐛 = 0   and    [cov 𝐲] ≡ 𝐀[cov 𝐱]𝐀𝑇 = 𝐈    and [cov 𝐱] =  𝐀−1[cov 𝐲]𝐀−1T 

which implies 

𝐀 = [cov 𝐱]−½    and    𝐛 = −[cov 𝐱]−½𝐱(𝑛) 

Then, various transformed and untransformed variables are 



 

Fig. 1. (A) The solution 𝐱(𝑛) is the point on 𝐟(𝐱) = 0 (curve) that maximizes the 

pdf 𝑝(𝐱) (shaded). A plane (dashed) is tangent to the curve at the solution.  (B) 

A coordinate transformation takes 𝐱(𝑛) to 𝐲(𝑛) = 0 and makes the prior pdf 

uncorrelated and with uniform variance.  

 

�̅� = [cov 𝐱]−½(�̅� − 𝐱(𝑛))    and    [cov 𝐲] = 𝐈  

𝐲 = [cov 𝐱]−½(𝐱 − 𝐱(𝑛))    and    𝐱 = 𝐱(𝑛) + [cov 𝐱]½𝐲 

𝐱 − 𝐱(𝑛) = [cov 𝐱]½𝐲    and    𝐲 − �̅� = [cov 𝐱]−½(𝐱 − �̅�) 

(Step 2) Expanding the theory in a Taylor series and keeping the first two terms yields 

𝐟(𝐱) = 𝟎 = 𝐟(𝐱(𝑛)) + 𝐅(𝐱 − 𝐱(𝑛))    with    𝐹𝑖𝑗 ≡
d𝑓𝑖

d𝑥𝑗
|

𝐱(𝑛)

 

The theory is satisfied at the solution point 𝐱(𝑛), implying that 

𝐅(𝐱 − 𝐱(𝑛)) = 0 

Rewriting in terms of y 

𝐅[cov 𝐱]½𝐲 = 𝟎 

We now introduce the singular value decomposition 

𝐔𝑝𝚲𝑝𝐕𝑝
𝑇 = 𝐅[cov 𝐱]½ 

together with the null spaces 𝐔0 and 𝐕0, which satisfy 𝐕𝑝𝐕𝑝
𝑇 + 𝐕0𝐕0

𝑇 = 𝐈. Note that the condition 

𝐅[cov 𝐱]½𝐲 = 𝐔𝑝𝚲𝑝𝐕𝑝
𝑇𝐲 = 0 implies that 𝐲 is the null space of 𝐅[cov 𝐱]½.   Solving for 𝐕𝑝 

𝐕𝑝 =  [cov 𝐱]½𝐅𝑇𝐔𝑝𝚲𝑝
−1 

It follows that that 

𝐅[cov 𝐱]𝐅𝑇 = (𝐅[cov 𝐱]½)(𝐅[cov 𝐱]½)
𝑇

= (𝐔𝑝𝚲𝑝𝐕𝑝
𝑇)(𝐔𝒑𝚲𝑝𝐕𝑝

𝑇)
𝑇

= 𝐔𝑝𝚲𝑝𝐕𝑝
𝑇𝐕𝑝𝚲𝑝𝐔𝑝

𝑇 = 𝐔𝑝𝚲𝑝
2 𝐔𝑝

𝑇  

and that  

[𝐅[cov 𝐱]𝐅𝑇]−1 = 𝐔𝑝𝚲𝑝
−2𝐔𝑝

𝑇  



It also follows that 

𝐕𝑝𝐕𝑝
𝑇 =  [cov 𝐱]½𝐅𝑇𝐔𝑝𝚲𝑝

−1𝚲𝑝
−1𝐔𝑝

𝑇 𝐅[cov 𝐱]½ = [cov 𝐱]½𝐅𝑇[𝐅[cov 𝐱]𝐅𝑇]−1 𝐅[cov 𝐱]½ 

(Step 3) In the 𝐲 coordinate system, the covariance matrix is [cov 𝐲] = 𝐈. The part of it in the null space is  

[cov 𝐲(𝑛)] = 𝐕0𝐕0
𝑇 = 𝐈 − 𝐕𝑝𝐕𝑝

𝑇 

(Step 4) Transforming back into the 𝐲 coordinate system 

[cov 𝐱(𝑛)] = 𝐀−1(𝐈 − 𝐕𝑝𝐕𝑝
𝑇)𝐀−1T = 

[cov 𝐱]½(𝐈 − [cov 𝐱]½𝐅𝑇[𝐅[cov 𝐱]𝐅𝑇]−1 𝐅[cov 𝐱]½)[cov 𝐱]½ = 

[cov 𝐱] − [cov 𝐱]𝐅𝑇[𝐅[cov 𝐱]𝐅𝑇]−1 𝐅[cov 𝐱] 

We introduce an approximate sign as a reminder that this formula is derived via a linear approcimation: 

[cov 𝐱(𝑛)] ≈ [cov 𝐱](𝐈 − 𝐅𝑇[𝐅[cov 𝐱]𝐅𝑇]−1𝐅[cov 𝐱]) 

which is equal to 

[cov 𝐱(𝑛)] ≈ (𝐈 − [cov 𝐱]𝐅𝑇[𝐅[cov 𝐱]𝐅𝑇]−1𝐅)[cov 𝐱] 

We test this formula using a simple nonlinear implicit problem with 𝑁 = 20 pairs of (𝑑𝑖
𝑜𝑏𝑠, 𝑧𝑖

𝑜𝑏𝑠) 

observations satisfying the “straight line” theory 𝑓𝑖(𝐱) ≡ 𝑚1 + 𝑚2𝑧𝑖 − 𝑑𝑖 = 0. The observed data scatter 

about the true values (𝑚1 = 1, 𝑚2 = 2) with uncorrelated noise (𝜎𝑑=𝜎𝑧=0.1) and the prior information of 

(𝑚1, 𝑚2) scatters about the true values with (𝜎1=𝜎2=1) (Fig. 2).  The problem is solved 100,000 times, 

creating ensembles of 𝐦(𝑖) (estimated solutions) and [cov 𝐱(𝑛)]
(𝑖)

 (linearized posterior covariance 

matrices, using 𝐅 from the last iteration). 

`  

Fig. 2.  Test using the theory 𝑓𝑖(𝐱) ≡ 𝑚1 + 𝑚2𝑧𝑖 − 𝑑𝑖 = 0, where both the observed 𝑧s 

and 𝑑s have error.  The pdf 𝑝(𝐱) ≡ 𝑝(𝐝𝑜𝑏𝑠, 𝐳𝑜𝑏𝑠, 𝐦𝑝𝑟𝑖) is uncorrelated and Normal. 

True data (black line), observed data (black dots) and estimated data (green line and 

dots), with black bars connecting corresponding observations and predictions. 

 



The sample covariance of the 𝐦(𝑖) ensemble is used as a proxy for the true posterior covariance of the 

𝑚s. It is found to be: 

 [[ 0.00939108 -0.01379218] 

 [-0.01379218  0.02768052]] 

 

The mean of the [cov 𝐱(𝑛)]
(𝑖)

 ensemble is used as proxy for the linearized posterior covariance of the 𝑚s.  

It is found to be: 

[[ 0.00923739 -0.01342771] 

 [-0.01342771  0.02692984]] 

 

These two estimates agree to within a few percent, giving us confidence that the linearized formula is a 

reasonably accurate approximation. 
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