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Assumption. Each datum d; is drawn from a different Normal p.d.f.,
p(d;). These p.d.f.’s are uncorrelated, have distinct (and known)
variances, s;°, but the same (and unknown) mean, m.

Estimate of the mean and its variance. The model equation is based on
the statement that each datum equals the mean, di=m, with each row of
weighted by its certainty, s;*;

Note that this equation is normalized, in the sense that the covariance Cs
= |. Both the generalized least-squares method and the maximum
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likelihood method lead to the same equation for m™, namely:
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This equation has solution
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Note that the estimated mean is a linear function of the data, with the
form m*' = Mf, with M = [FTF]~1FT. By the standard rule of error
propagation, variance of m*'is:
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(since Cs = 1).

If all the variances are equal, s;=s, and these equations reduces to:
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which are the usual formulas for the estimated mean and its variance.

If one datum, say dy, has a variance that is much smaller than all the
others, then:
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That is, only the most certain datum counts.



