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Abstract.  8 

 9 
We investigate whether 2D anisotropic travel time tomography can uniquely determine both the 10 

spatially-varying isotropic and anisotropic components of the seismic velocity field.  This issue 11 
was first studied by Mochizuki (1997) for the special case of Radon’s problem (tomography with 12 

infinitely long rays), who found it to be non-unique.  Our analysis extends this result to all array 13 
geometries and demonstrates that all such tomographic inversions are non-unique. Any travel 14 

time dataset can be fit by a model that is either purely isotropic, purely anisotropic, or some 15 
combination of the two.  However, a pair of purely isotropic and purely anisotropic velocity 16 

models that predict the same travel times are very different in other respects, including spatial 17 
scale.  Thus, prior information can be used to select among equivalent solutions to achieve a 18 

“unique” solution embodying a given set of prior expectations about model properties. We 19 
extend the notion of a resolution test, used in traditional isotropic tomography, to the anisotropic 20 

case. Our Equivalent Heterogeneity Analysis focuses on the anisotropic heterogeneity equivalent 21 
to a point isotropic heterogeneity, and vice versa. We demonstrate that it provides insights into 22 

the structure of an anisotropic tomography problem that facilitates both the selection of 23 
appropriate prior information and the interpretation of results.  We recommend that it be 24 

routinely applied to all surface wave inversions where the presence of anisotropy is suspected, 25 
including those based on noise-correlation. 26 

Keywords: travel time tomography, seismic anisotropy, Radon’s problem, resolution, non-27 
uniqueness, ambient noise correlation, seismic surface waves 28 

 29 

INTRODUCTION 30 

This paper addresses the issue of using 2D tomographic inversion of travel time data (or 31 
equivalently, phase delay data) to image seismic velocity in the presence of both heterogeneity 32 

(variation with position) and anisotropy (variation with direction of propagation).  While a 33 
simpler problem than fully three-dimensional tomography, 2D tomography has wide uses in 34 

seismology, because several important classes of elastic waves can be viewed, at least 35 
approximately, as propagating horizontally across the surface of the earth. 2D tomography has 36 

been applied to mantle-refracted body waves such as Pn and Sn (e.g. Hearn, 1996; Pei et al., 37 
2007).  However, its widest application has been to Rayleigh and Love waves (surface waves), 38 

where a sequence of inversions is used to image the surface wave phase velocity at a suite of 39 
periods.  In the surface wave case, the earth’s material anisotropy leads to azimuthal anisotropy 40 

of phase velocity, which in turn causes an azimuthal variability of the travel time (or, 41 
equivalently, phase delay) of the surface wave. 42 

Starting in the 1970’s and continuing to the present, many authors have used long-period 43 

surface waves from large earthquakes observed at teleseismic distances to study the structure of 44 



the lithosphere (e.g. Yu and Mitchell, 1979; Tanimoto and Anderson, 1984; Nishimura and 45 
Forsyth, 1988; Montagner and Tanimoto, 1991; Ritzwoller and Levshin , 1998; Nettles, M. and 46 

A.M. Dziewonski, 2008).  Most, but not all, of these authors include azimuthal anisotropy in 47 
their inversions; those who omitted it nevertheless recognized its likely presence.  These authors 48 

are able to achieve impressive global or continental-scale images with spatial resolution of 100-49 
200 km, using surface wave periods as small as about 20s and source-receiver offsets as small as 50 

about 1000 km. Finer-scale resolution is difficult to achieve with earthquake sources, owing to 51 
the low signal-to-noise ratio at shorter periods and the paucity of shorter source-receiver offsets. 52 

However, during the last decade, the development of ambient noise-correlation techniques for 53 
reconstructing surface waves propagating between stations has opened up new opportunities for 54 

the use of surface waves in high-resolution seismic imaging (Shapiro and Campillo, 2004; 55 
Shapiro et al. 2005; Calkins et al., 2011).  Surface wave travel times, for periods as short as 8s, 56 

can now be routinely calculated by cross-correlating ambient noise observed at two stations, 57 
separated by a little as 50 km (Snieder, 2004; Bensen et al., 2007; Ekstrom et al. 2009). The 58 

revolutionary aspect of ambient noise correlation is that the number of measurements tends to be 59 
larger, and the spatial and azimuthal pattern of paths tends to be better, than traditional 60 

earthquake-source methods.  The resulting tomographic images often have sufficiently high 61 
resolution to permit detailed structural interpretations  (e.g. Lin et al., 2007; Yang et al., 2007; 62 

Lin et al., 2008; Zha et al., 2014). Owing to the excitement that noise-correlation has generated 63 
(both in the community and for this author), revisiting issues associated with 2D tomography is 64 

timely and appropriate.  In particular, we address here the question of the the degree to which 65 
this technique can distinguish anisotropy from heterogeneity.  Simply put, can it uniquely 66 

determine both? 67 

Seismic velocity is inherently both heterogenous and anisotropic. The latter can be due to 68 

intrinsic anisotropy of mineral grains aligned by large-scale ductile deformation (Hess, 1964; 69 
Raitt et al., 1969; Silver and Chan, 1988; Nicolas, 1989; Karato et al. 2008) or to the effective 70 

anisotropy of materials with fine-scale layering and systems of cracks (Backus, 1962; Menke, 71 
1983) or some combination of the two (Fitchner 2013).  This anisotropy needs to be accounted 72 

for in a tomographic inversion as it is a source of important information about earth processes.  73 
However, an anisotropic earth model is extremely complex and requires 21 functions of position 74 

for its complete description (e.g. Aki and Richards, 2002).  Notably, for the special case of 75 
surface waves propagating in a weakly anisotropic earth,  the phase velocity is sensitive to only a 76 

few combinations of these functions (Backus, 1965; Smith and Dahlen, 1973).  It is possible to 77 
formulate a tomographic inversion that includes all 21 functions (e.g. Wu and Lees, 1999). 78 

However, most surface wave applications use a simplied form of anisotropy that is described by 79 
just the three functions.  One of these functions represents the isotropic part of the phase 80 

velocity. The other two represent the anisotropic part and encode a              angular 81 

dependence (where   is azimuth of propagation and     is the azimuth of the slow axis of 82 

anisotropy). 83 

The switch from one function in 2D isotropic tomography to three functions in the 84 
anisotropic case raises the issue of whether sufficient information is contained in travel time 85 

measurements to uniquely determine, even in principle, all three functions. Mochizuki (1997) 86 
studied the special case of Radon’s problem – tomography with infinitely long rays - and showed 87 

that travel time measurements at best can determine only one combination of the three unknown 88 
functions.  For more realistic experimental geometries, numerical tests succeeded in 89 



reconstructing simple patterns of anisotropy (e.g. Wu and Lees, 1999), suggesting that 90 
Mochizuki’s (1997) result was not applicable to these more realistic cases.  As will demonstrate 91 

below, the success of these tests was due to the addition of prior information that selected for the 92 
simple patterns from among an infinitude of possibilities, and not because Mochizuki’s (1997) 93 

result was not applicable. 94 

We demonstrate below that any travel time dataset can be fit by a model that is either 95 

purely isotropic, purely anisotropic, or some combination of the two.  However, the spatial 96 
patterns of isotropy or anisotropy that are equivalent in the sense of predicting the same travel 97 

times are very different in other respects, including spatial scale.  Thus, prior information can be 98 
used to select among equivalent solutions to achieve a “unique” solution embodying a given set 99 

of prior expectations about model properties. 100 

Spatial resolution analysis has proved an extremely powerful tool in understanding non-101 
uniqueness in traditional isotropic tomography problems (Backus and Gilbert, 1968; Wiggins, 102 

1972, see also Menke, 2012; Menke, 2014).  We extend ideas of resolution here to anisotropic 103 
tomography by focusing on the anisotropic heterogeneity equivalent to a point isotropic 104 

heterogeneity, and vice versa. We demonstrate that this Equivalent Heterogeneity Analysis 105 
provides insights into the structure of an anisotropic tomography problem that facilitates both the 106 

selection of appropriate prior information and the interpretation of results. 107 

PRINCIPLES OF 2D ANISOTROPIC TOMOGRAPHY 108 

 We limit our study to the case of weak two-dimensional heterogeneity and anisotropy, 109 

meaning that the phase velocity,  , can be expressed in terms of a constant background velocity, 110 

  , and a small perturbation,          , which is a function of position in the       plane and 111 

propagation azimuth,  : 112 

                

(1) 113 

The phase slowness,      , can be expressed to first order as: 114 

               
      

  

  
 
  

    
   

  

  
         

(2) 115 

where         and          
 
. We will use slowness, and not velocity, as the primary 116 

variable, because travel time depends linearly on slowness but nonlinearly on velocity. However, 117 

since the perturbations in velocity and slowness are proportional to one another,      , this 118 

choice, while convenient, is not fundamental. 119 

The perturbation in phase slowness           of a wave propagating in the       plane 120 

and with azimuth   (Figure 1a) is modeled as varying with both position and azimuth according 121 

to the formula (Smith and Dahlen, 1973): 122 

                                           



(3) 123 

Here,        represents the isotropic part of the model,         the anisotropic part and 124 

       , the azimuth of the axis of anisotropy. The slowest propagation occurs when      125 

(that is,    is the slow axis of anisotropy) and the fastest at right angles to it. Note that this model 126 

omits       terms, which though strictly-speaking necessary to fully-represent seismic 127 

anisotropy, are usually negligible. The trigonometric identity,                   128 

        , can be used to rewrite the formula as: 129 

                                             

(4) 130 

with 131 

                             

     
     

                           

(5) 132 

Thus, the anisotropic medium is specified by three spatially-varying material parameter 133 

functions,       ,         and        .  The function        describes the isotropic part of the 134 

slowness and the two functions         and         describe the anisotropic part. This 135 

parameterization avoids explicit reference to the direction of the slow axis of anisotropy. 136 

 We rely here on seismic ray theory (e.g. Cerveny, 2005) to link slowness to travel time.  137 
Widely used in seismology, it is a high-frequency approximation to the wave equation that is 138 

valid when diffraction effects can be ignored; that is, when slowness varies slowly and smoothly 139 
with position (when compared to wavelength of the observed seismic waves).  We believe that 140 

its use here leads to what is in some sense a ‘best case’ analysis of non-uniqueness; inversion of 141 
low-bandwidth data will be more non-unique than our ray-theory based analysis indicates (and as 142 

we will demonstrate, below, our ray-theory based analysis points to substantial non-uniqueness). 143 

The travel time,   (or equivalently the phase delay,     , where   is angular 144 

frequency), between a source at         and a receiver at         and separated by a distance,  , 145 

is approximated as the ray integrals: 146 

                      

  

  

                             
  

  

        

(6) 147 

Here,   is arc-length along the ray connecting source and receiver.  In some instances, it may 148 

suffice to approximate the ray as a straight line, in which case its azimuth,  , is constant and 149 
      are linear functions of arc-length,  : 150 

                                                    
     
     

 



                      

(7) 151 

Here             are abbreviations for                    , respectively. In this straight-line 152 

case, after inserting Equation 4 into Equation 6 and applying the straight line ray assumption, the 153 

travel time becomes: 154 

                              

                
  

  

                       
  

  

    

                      
  

  

                          

 (8) 155 

Here,   ,    and    are abbreviations for the three integrals. Note that all three integrals are of the 156 

same form; that is, line integrals of their respective integrands over the same straight line 157 
segments. 158 

We now focus upon the tomographic imaging problem; that is, what can be learned about 159 

the material parameter functions,       ,         and         when the travel time function    160 

has been measured for specific source-receiver geometries.  Note that the background slowness, 161 

  , does not appear explicitly in the formula relating    to  ,    and   , implying that the 162 

results of our analysis will be independent of its value (as long as the assumption of weak 163 

heterogeneity and anisotropy holds).  Thus, we are free to set     , but with the understanding 164 

that this choice is made to eliminate the need to carry an irrelevant parameter through the 165 
analysis, rather than as a statement about the actual background slowness. Any background 166 

slowness can be superimposed, without impacting the results. 167 

ANALYSIS OF A STAR ARRAY 168 

 Intuitively, we expect that travel time measurements made along several short ray paths 169 

centered on the same point, say        , but with different azimuths, say           (a “star 170 
array”, as in the Figure 1b), would be sufficient to determine the average material properties 171 

(including the mean direction of the slow axis) near that point. This result can be demonstrated 172 

by writing the average of   as         , and similarly for      and     . These averages 173 

depend upon the ray azimuth,  , since the line integral depends upon path.  However, for smooth 174 

models and for sufficiently small  ,        can be approximated by the first three terms of its 175 

Taylor series: 176 

 177 

                   
  

  
 
       

         
  

  
 
       

       

(9) 178 



in a small region of the       plane that includes the whole ray. Inserting Equation 9 into the 179 

formula for    in Equation 8, and using the relations               and              , 180 
we find that: 181 

                          
  

  
 
       

         
  

  
 
       

         
    

    

 

 
        

 
   
 
 
 

 
 
 

  
    

 
  
  

  
 
       

     
 
 
 

 
 
 

 
    

 
  
  

  
 
       

     
 
 
 

 
 
 

  

             

(10) 182 

Note that the first integral equals   and the other two integrals are zero. We conclude that 183 
                  and similarly for      and     . Furthermore, these averages are 184 
independent of ray direction, as long as the ray is short enough for the linear approximation to be 185 

valid.  The travel time equation for ray   is then: 186 

   
   
  

                             

(11) 187 

Here,    is an abbreviation for the path-averaged slowness       . The average material 188 

properties,    ,      and     , can be determined by travel time measurements along three 189 

distinct rays.  For example, if            =            : 190 

   
   
  

              

   
   
  

            

   
   
  

            

(12) 191 

then             ,             and            .   192 

Once    ,      and     , have been determined, the average slow axis,     , and average 193 

anisotropy,    , can be computed as: 194 

         
       

                                 

(13) 195 



We use approximate signs, because    and   are non-linear functions of    ,    and   , and so 196 

strictly speaking, the average values      and     are not exactly what is obtained by the 197 

substitution of average values    ,      and      into the functions. Nevertheless, this 198 

approximation is usually adequate. 199 

One star array can be used to estimate the material parameters in the vicinity of a single 200 

point in a spatially-varying model. A grid of them can be used to estimate these properties on a 201 
grid of points, and hence to produce a low-resolution estimate of the model.  An example is 202 

shown in Figure 2, where a test model is imaged by two grids of star arrays, a fine grid of small 203 
star arrays and a coarse grid of large star arrays. As expected, the finer, denser grid does a better 204 
job recovering the test model, but in both cases both isotropic and anisotropic features are 205 

correctly recovered, or at least those features with a scale length greater than the size   of the star 206 

arrays. 207 

The incorporation of star arrays into an experimental design has practical advantage, 208 
since it provides data that can discriminate anisotropy from heterogeneity.  The caveat is that its 209 

success depends on correctly choosing the length   of the arrays, which must be smaller than the 210 
spatial scale over which the material parameters vary.  This point brings out the role of prior 211 

information in achieving a unique solution.  From the point of view of uniqueness, very small 212 
star arrays are advantageous.  However, very small star arrays may not be capable of measuring 213 

travel time accurately, since measurement error does not usually scale with array size. Travel 214 
time measurements made with small-aperture arrays tend to be very noisy. 215 

RADON’S PROBLEM 216 

Radon’s problem is to deduce slowness in a purely isotropic model (that is, the case 217 

            ), using travel time measurements along a complete set of infinitely long 218 

straight-line rays; that is, rays corresponding to sources and receivers at   . By complete, we 219 
mean that measurements have been made along rays with all possible orientations and positions. 220 

In practice, infinitely long rays are not realizable; a feasible experiment approximating Radon’s 221 
geometry has the sources and receivers on the boundary of the study region. The non-uniqueness 222 

of the anisotropic version of Radon’s problem has been investigated in detail by Mochizuki 223 
(1997), who concludes that it is substantially non-unique. Mochizuki’s (1997) result, which is based on a 224 
Fourier representation of slowness, will be discussed later in this section. We first review more general 225 
aspects of the problem. 226 

In the traditional formulation of Radon’s problem, straight line rays are parameterized by 227 

their distance,  , of closest-approach to the origin and the azimuth   of the     direction (Figure 228 
1c). The travel time equation (Equation 8) becomes: 229 

                     
 

      

    

(14) 230 

Since        , we can view travel time as a function of either   or  ; that is, as either 231 

        or        . In the discussion below we use the latter form, since it is more compatible 232 

with our previous usage. 233 



Radon’s problem has been studied extensively. The problem of determining        234 

from         is known to be unique, as long as data from a complete set of rays are available. 235 
The Fourier Slice Theorem (e.g. Menke 2012; Menke, 2014) shows that exactly enough 236 

information is available in         to construct the Fourier transform            at all 237 

wavenumbers        . Thus,        is uniquely determined, since a function is uniquely 238 

determined by its Fourier transform. An implication of the Fourier Slice Theorem is that any 239 

travel time function,        , can be exactly fit by an isotropic model, irrespective of whether 240 

or not the true model from which it was derived was purely isotropic.  A tomography experiment 241 
that uses infinitely long rays cannot prove the existence of anisotropy. 242 

We now inquire whether it is possible to find a purely anisotropic model in which only 243 

        is non-zero and that exactly fits the travel time data.  Superficially, this proposition 244 

seems possible, since travel time equation (Equation 8 with       ) can be manipulated into 245 

exactly the same form as Radon’s equation, simply by dividing through by      : 246 

         
       

     
               

 

      

    

(15) 247 

However, the new “travel time” function,          is singular at angles where the cosine is 248 
zero, making the application of the Fourier Slice Theorem invalid.  Physically, these are the ray 249 

orientations at which    can have no effect on travel time. Therefore, no choice of    will fit the 250 

travel time along those rays.  The same problem would arise if we were to try to fit the travel 251 

time with a model in which only         is non-zero. 252 

 A purely anisotropic model that includes both         and         can be made to 253 

work.  We first define: 254 

                                                        

(16) 255 

Note that           . The travel time integrals analogous to Equation 15 are: 256 

          
        

     
                             

 

      

    

          
        

     
                             

 

      

    

(17) 257 

The quantities     and      have no singularities, so we can construct a         and a         258 

that fits them exactly.  Finally, we note that  259 



                   
 

      

                       
 

      

                 

(18) 260 

We have constructed a purely anisotropic expression that fits the travel time data exactly. 261 

Note that the linear combination of isotropic and anisotropic models,            ,          262 

and         , satisfy the travel time data exactly for any value of the parameter,  .  A whole 263 
family of models with different mixes of heterogeneity and anisotropy can be constructed.  If we 264 

define: 265 

                                                   

                                    

(19) 266 

where      and      are chosen to have appropriately-placed zeros that removed the 267 

singularities but are otherwise arbitrary, then    ,          , and           can be 268 

separately inverted to a set of  ,    and    that, taken together, fit the travel time data exactly.    269 

Evidently, many such functions      and      exist, since one set of acceptable choices is: 270 

            
   

 

   

                     
   

 

   

 

(20) 271 

where    and    are arbitrary (up to a convergence requirement). 272 

 273 

MOCHIZUKI (1977) ANALYSIS OF RADON’S PROBLEM 274 

We now return to Mochizuki’s (1997) analysis of non-uniqueness. Mochizuki’s (1997) considers 275 
a very general form of slowness: 276 

              
              

           

 

   

 

(21) 277 

Note that all possible angular behaviors are considered, including those with odd  .  The 278 
contribution of the even-  terms is unchanged when source and receiver are interchanged; that is, when   279 
is replaced with    . This behavior is characteristic of anisotropy. The contribution of the odd-  terms 280 
switches sign when the source and receiver are interchanged. This behavior is not characteristic of 281 
anisotropy, but can be used to model other wave propagation effects, such as those arising from 282 

dipping layers.  The parameterization used in this paper (Equation 4) includes only the     283 

isotropic term and the two     anisotropic terms. 284 



Mochizuki’s (1997) first result shows that the even-  terms can be determined independently of 285 

the odd-  terms.  The former depends only upon the sum of          and             and the 286 
latter depends only upon the difference. Provided that measurements made in both directions are 287 

averaged, the odd-  terms, arising say from dipping layers, will not bias the estimate of anisotropy. 288 

Mochizuki’s (1997) second result addresses the issue of non-uniqueness.  It is an adaptation of 289 

the Fourier Slice Theorem and uses as primary variables the 2D Fourier transforms     
        and 290 

    
        of the spatially-varying  ’s in Equation 21. Here        are radial and azimuthal 291 

wavenumbers, respectively.  The travel time data are shown to be sufficient to constrain exactly 292 

one linear combination of    
 ’s and exactly one linear combination of    

 ’s, rather than all of the 293 

   
 ’s and    

 ’s, individually.  This result implies that the     isotropic terms and the     294 
anisotropic terms (the focus of this paper) cannot be separately determined.  This is the same 295 
behavior investigated earlier in this section through Equation 19. 296 

EQUIVALENT HETEROGENEITIES FOR RADON’S PROBLEM 297 

While a range of isotropic and anisotropic models can fit a given travel time data set, not 298 
all of them may be sensible when judged against prior information about the study region.  It 299 

may be possible to rule out some models because they contain features that are physically 300 
implausible, such as very small-scale isotropic heterogeneity or rapidly fluctuating directions of 301 

the slow axis of anisotropy. 302 

Some insight on this issue can be gained by studying the types of solutions that are 303 
possible when the true model contains a single point-like heterogeneity that is either purely 304 

isotropic or purely anisotropic.  As shown in Appendix B, these solutions can be derived 305 
analytically for Radon’s problem.  However, from the perspective of anisotropic tomography, 306 

Radon’s problem is just one of many source-receiver configurations – and not the most 307 
commonly encountered, either. Hence, we will focus on universally-applicable inversion 308 

techniques based on generalized least squares (e.g. Menke, 2012; Menke, 2014; see also 309 
Appendix A), rather than on methods applicable only to Radon’s problem. Almost all seismic 310 

tomography suffers from non-uniqueness due to under-sampling.  The same regularization 311 
(damping) schemes that are used to handle this type of non-uniqueness also have application to 312 

non-uniqueness associated with anisotropy. 313 

We consider a sequence of experiments in which an exact travel time dataset is computed 314 
from the true model and then inverted for an estimated model, using the inverse method 315 

described in Appendix A and a regularization (damping) scheme that alternately forces the 316 
estimated model to be purely isotropic or purely anisotropic. This process, which we call 317 

Equivalent Heterogeneity Analysis, results in four estimated models: 318 

(A) The purely isotropic model equivalent to a point-like isotropic heterogeneity 319 

(B) The purely anisotropic model equivalent to a point-like isotropic heterogeneity 320 

(C) The purely isotropic estimated model equivalent to a point-like anisotropic heterogeneity. 321 

(D) The purely anisotropic estimated model equivalent to a point-like anisotropic 322 
heterogeneity 323 



Note that we have included (A) in this tabulation, even though a perfect experiment (such 324 
as Radon’s problem) would determine that the estimated and true models are identical.  325 

In real experiments, both the inherent non-uniqueness associated with anisotropy and the 326 
practical non-uniqueness caused by a poor distribution of sources and receivers are 327 

present.  Cases (B) and (C) explore how isotropy and anisotropy trade off; and cases (A) 328 
and (D) function as traditional resolution tests. Taken as a group, the structure of these 329 

four estimated models can help in the interpretation of inversions of real data. 330 

Figure 3 shows equivalent heterogeneities for Radon’s problem (or actually the 331 

closest feasible approximation with sources and receivers on the boundary of the study 332 
region).  An isotropic heterogeneity (Figure 3a) can be more-or-less exactly recovered by 333 

a purely isotropic inversion (Figure 3b), except for a little smoothing resulting from the 334 
regularization (even so, the travel time error is less than 1%).  The purely anisotropic 335 

estimated model (Figure 3c) is radially-symmetric (as is expected, since the true 336 
heterogeneity and the ray pattern both have exact rotational symmetry) and is spatially-337 

diffuse.  Its effective diameter is at least twice the diameter as the true isotropic 338 
heterogeneity.  An analytic calculation (Appendix B) indicates that the strength of the 339 

anisotropy falls off as (distance)
-2

. The equivalence of a point-like isotropic heterogeneity 340 
and a spatially-distributed radial anisotropic heterogeneity could possibly be problematic 341 

in some geodynamical contexts.  For instance, a mantle plume might be expected to cause 342 
both a thermal anomaly on the earth’s surface, which would be expressed as a point-like 343 

isotropic anomaly, and a radially-diverging flow pattern, which would be expressed as a 344 
radial pattern of fast axes.  Unfortunately, the two features cannot be distinguished by 345 

Radon’s problem (or, as we will show below, by any other experimental configuration, 346 
either). 347 

The anisotropic heterogeneity (Figure 3d) is not exactly recovered by the purely-348 

anisotropic inversion (Figure 3f).  The estimated model has a much wider anomaly, with a more 349 
complicated pattern of slow axes, although with some correspondence with the true model in its 350 

central region.  Yet this result is not a mistake; it fits the travel times of the much simpler true 351 
model to within a percent. It is a consequence of the extreme non-uniqueness of anisotropic 352 

inversions.  The purely-isotropic estimated model (Part E) is dipolar in shape with slow lobes 353 
parallel to the slow axis of the true heterogeneity, as is predicted by Mochizuki (1997) and as 354 

discussed in Appendix B.  The amplitude of the heterogeneity falls of as (distance)
-2

. The dipolar 355 
shape might be construed as good news in the geodynamical context, since geodynamical 356 

situations in which isotropic dipoles arise are rare; an interpretation in terms of anisotropy will 357 
often be preferable. 358 

An extended region of spatially-constant anisotropy (Figure 4a) can be thought of as a 359 

grid of many point-line anisotropic heterogeneities (as in Figure 3d) that covers the extended 360 
region.  The equivalent isotropic heterogeneity is constructed by replacing each point-like 361 

anisotropic heterogeneity with an isotropic dipole and summing (Figure 4b). Within the interior 362 
of the region, the positive and negative lobes of adjacent dipoles overlap and cancel, causing the 363 

interior to be homogeneous or nearly so.  The dipoles on the boundary will not cancel, so the 364 
homogenous region will be surrounded by a thin zone of strong and very rapidly fluctuating 365 

isotropic heterogeneities.  This pattern is very easily recognized.  In many cases, the 366 



interpretation of the region as one of spatially-constant anisotropy will be geodynamically more 367 
plausible than that of a homogenous isotropic region with an extremely complicated boundary. 368 

EQUIVALENT HETEROGENEITIES FOR MORE REALISTIC ARRAYS 369 

 A few experimental geometries in seismic imaging, such as imaging an ocean basin with 370 
sources and receivers located on its coastlines, correspond closely to Radon’s problem.  371 

However, stations more commonly are placed within the study region, for example, on a regular 372 
grid (Figure 5). 373 

Intuitively, one might expect this array geometry to be a significant improvement over 374 

Radon’s, as the stations in the interior of the study region provide short ray paths like those of 375 
the star-array discussed earlier.  Unfortunately, this is not the case, at least for the sparse station 376 

spacing used in the example (Figure 6).  The scale lengths over which one can form star-arrays is 377 
just too large to be relevant to the imaging of the point-like heterogeneities used here. The 378 

equivalent heterogeneities are quite similar in shape, but arguably worse than those of Radon’s 379 
problem, since they exhibit a strong rectilinear bias which is due to rows and columns of the 380 

array.  Switching to a hexagonal array with the same station spacing (not shown) removes the 381 
rectilinear bias, but still results in equivalent heterogeneities very similar in shape to those of 382 

Radon’s problem. 383 

While the procedure set forward in Equation 17 for fitting travel time with either purely 384 

isotropic or purely anisotropic models was developed in the context of Radon’s problem, it is 385 
equally applicable to all other array configurations, since no part of its derivation requires that 386 

the rays be infinitely long (though they do have to be straight). Fundamentally, all anisotropic 387 
tomography – even the star array - suffers from the same non-uniqueness.  The appearance of 388 

uniqueness in the star array is created by the addition of prior information that the model varies 389 
smoothly (no faster than linearly) across the array. Smoothness constraints can resolve non-390 

uniqueness in other settings, as well.  For instance, it would allow the selection of a large-391 
anisotropic-domain solution (Figure 4a) over a more highly spatially-fluctuating isotropic 392 

solution (Figure 4b). Such considerations allowed Wu and Lees (1999) to successfully recover a 393 
model containing just a few large anisotropic domains. 394 

Irregular arrays, and especially arrays with shapes tuned to linear tectonic features such 395 

as spreading centers, are common in seismology.  The array (Figure 7) we consider here has a 396 
shape similar to the Eastern Lau Spreading Center (ELSC) array, a temporary deployment of 397 

ocean-bottom seismometers that took place in 2010-2011 (Zha et al., 2013).  It consists of two 398 
linear sub-arrays that are perpendicular to the spreading center, a more scattered grouping of 399 

stations parallel to the spreading center and between the linear sub-arrays, and a few outlying 400 
stations. While the central stations are closely spaced, we simulate the high noise level often 401 

encountered in ocean-bottom seismometers by omitting rays shorter than one fifth the overall 402 
array diameter. 403 

Because of the irregularity of the array, the Equivalent Point heterogeneities are a strong 404 

function of the position of point-like heterogeneity.  Results for several positions of the point-405 
like heterogeneity must be analyzed in order to develop a good understanding of the behavior of 406 

the array.  We start with a point-like heterogeneity at the center of the array, where the station 407 
density is the highest (Figure 7).  The array resolves both a true isotropic heterogeneity (compare 408 



Figure 7a and b) and a true anisotropic heterogeneity (compare Figure 7d and f) very well. The 409 
anisotropic heterogeneity that is equivalent to the true isotropic heterogeneity (compare Figure 410 

7a and c) has a large size and a very disorganized pattern of slow directions. If encountered when 411 
interpreting real-world data, it is arguably legitimate to use Occam’s Razor to reject this 412 

extremely complex anisotropic heterogeneity in favor of the much simpler isotropic one.  As in 413 
all previous cases, the isotropic heterogeneity equivalent to the true point-like anisotropic 414 

heterogeneity is dipolar in character, though owing to the irregularity of the array, a little more 415 
irregular in shape than the cases considered previously.   416 

When the true point-like heterogeneity is placed at the margin of the array, the Equivalent 417 
Heterogeneities take on more complicated shapes (Figure 9)  but retain some of the same 418 

features discussed previously. Note, for instance, that the anisotropic heterogeneity equivalent to 419 
the point-like isotropic heterogeneity (Figure 8c) is much more linear in character than in 420 

previous examples.  This linear pattern could be problematical for geodynamic interpretations in 421 
a spreading center environment, where linear mantle flow patterns are plausible. This result is a 422 

reminder that imaging results from the periphery of an array should always be interpreted 423 
cautiously. 424 

DISCUSSION AND CONCLUSIONS 425 

All 2D anisotropic tomography problems suffer from the same non-uniqueness first 426 

identified by Mochizuki (1997) for Radon’s problem.  Any travel time dataset can be fit by a 427 
model that is either purely isotropic, purely anisotropic, or some combination of the two, if 428 

heterogeneities of all shapes and spatial scales are permitted.  However, the spatial patterns of 429 
equivalent isotropic and anisotropic heterogeneities are substantially different.  When one is 430 

point-like, the other is spatially-extended. Thus, prior information can be used to select among 431 
equivalent solutions to achieve a “unique” solution embodying a given set of prior expectations 432 

about model properties. 433 

We extend ideas of resolution analysis, first developed by Backus and Gilbert (1968) and 434 

Wiggins (1972) to understand non-uniqueness in a spatial context, to the anisotropic tomography 435 
problem. The resulting Equivalent Heterogeneity Analysis provides insights into the structure of 436 

an anisotropic tomography problem that facilitates both the selection of appropriate prior 437 
information and the interpretation of results. We recommend that it be routinely applied to all 438 

surface wave inversions where the presence of anisotropy is suspected, including those based on 439 
ambient noise correlation. 440 

Data and Resources. Station locations for the Eastern Lau Spreading Center array are freely 441 

available and accessed through Incorporated Research Institutions for Seismology (IRIS) Data 442 
Management Center (DMC) as Array YL. 443 
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 573 

APPENDIX A: FOURIER DATA KERNELS FOR THE 2D TOMOGRAPHY INVERSE 574 

PROBLEM 575 

Here we formulate the 2D tomography problem using a Fourier (sines and cosines) 576 

representation of slowness.  A Fourier basis has two advantages over the usual pixilated basis: 577 
the ray integrals can be performed analytically; and smoothness regularization can be 578 

implemented simply by suppressing higher wavenumber components. The ray integrals that 579 
appear in the formula for travel time (Equation 8) all have the form: 580 
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(A1) 581 

where        is a smooth function of two spatial variables,      . Ray   is a straight line 582 

connecting a source at         to a receiver at        . The function        is meant to represent 583 

any of the material property functions, so      when    ,           when      and  584 

          when     . 585 

We approximate the function        using a two-dimensional Fourier series: 586 

          

  

   

           
                 

                
                

        

  

   

 

(A2) 587 

with basis functions: 588 

   
              

   
        

   
            

              
   
        

   
   

   
              

   
        

   
            

              
   
        

   
   

(A3) 589 

 590 

These basis functions contain the spatial wavenumbers: 591 

  
   

              
   

      

(A4) 592 

All coefficients multiplying sines of zero wavenumber are constrained to be equal to zero: 593 

                  

(A5) 594 

The spatial wavenumbers have uniform spacing     and     along the wavenumber axes. Thus, the 595 

function        is represented by                    real coefficients (or model parameters), 596 

    ,     ,      and     . The motivation for using a Fourier basis is that smoothness constraints 597 

easily can be implemented by preferentially damping the higher wavenumber coefficients. We 598 

use here a sine and cosine basis, as contrasted to a complex exponential basis, because the latter 599 
would require complicated constraints on the symmetry of the complex coefficients in order to 600 

guarantee that        is purely real. 601 

 We now insert the Fourier series into the line integral and rearrange: 602 



  

  

   

       
  
          

  
         

  
         

  
      

  

   

 

    
       

  
             

    

             
       

  
             

    

     

    
       

  
             

    

             
       

  
             

    

     

(A6) 603 

Here     
  ,     

  ,     
   and     

   are data kernels that relate the model parameters to the travel time 604 

data via a linear algebraic equation. The line integrals can be performed analytically, since the 605 

integrands are elementary trigonometric functions and since   and   are linear functions of arc-606 

length,   (       and       , as in Equation 7).  The result is: 607 
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(A7) 611 

Here the I’s are the integrals: 612 

                                  
  

 

 
              

        
  

              

        
 

                 
              

        
  

              

        
 

  
       

  

               
              

        
  

              

        
  

  
       

 

               
              

        
  

              

        
 

(A8) 613 

Note that in the limit     , these integrals all approach zero. Note also that the integrals have 614 

removable singularities as          ,  In the      , case we find: 615 

               
  
 
 
       

   
 

  
  

              

        
 

               
 

 
          

   
                  

        
 

                
 

 
          

   
                  

        
 

               
  
 
 
       

   
 

  
  

              

        
 

(A9) 616 

And in the        case, we find: 617 

               
              

        
 
  
 
 
       

   
 

  
  

               
                  

        
 
 

 
          

   



               
                  

        
 
 

 
          

   

               
              

        
  

  
 
 
       

   
 

  
  

(A10) 618 

A typical tomography problem has many thousands of rays, so in all likelihood a few of them 619 

will correspond to these exceptional cases.  Software that implements the tomographic inversion 620 
must therefore detect and deal with them. 621 

 In an anisotropic tomography problem, each of the three material property functions is 622 

represented by its own Fourier series. The series for        has coefficients, say, 623 

    
     

     
     

   , the series for        ,     
     

     
     

   and the series for        , 624 

    
     

     
     

  . All of these coefficients can be grouped into a single model parameter vector,  , of 625 

length            .  The travel time measurements can be arranged in a vector,  , of length, say, 626 

 .  Data and model parameters are connected by the linear matrix equation     , where the elements 627 
of the matrix,  , are the data kernels derived above.  This equation can be solved by a standard method, 628 
such as generalized least squares. 629 

 In our implementation, we add a second equation,     , the effect of which is to suppress (or 630 
damp) the higher wavenumber components of the model.  The matrix,  , is an     diagonal matrix 631 
whose elements depend upon the wavenumbers of the corresponding model parameter and whether it 632 

belongs to the Fourier series of the isotropic function   or the anisotropic functions    and   . 633 

              
    

   
   

 

                      
    

   
   

 

(A11) 634 

The relative smoothness of the isotropic and anisotropic parts of the estimated model can be controlled by 635 
judicious choice of the constants     ,     ,      and     . 636 

APPENDIX B: EQUIVALENT POINT HETEROGENEITIES FOR RADON’S 637 
PROBLEM  638 

Anisotropic Heterogeneity Equivalent to a Point Isotropic Heterogeneity. Our goal is to 639 

design a pattern of anisotropy         that is equivalent to a point isotropic heterogeneity at the 640 

origin, in the sense that both lead to travel time        for rays passing through the origin, 641 
and zero travel time for rays that miss the origin.  The problem has radial symmetry, so we work 642 

in polar coordinates      .  Because of the symmetry, the slow axis of anisotropy   everywhere 643 

must point away from the origin (that is,     ), so: 644 

 
  
  
   

     
     

                                                   

(B1) 645 



Here      is an as yet undetermined function that depends only upon radius,  .  Note that 646 

     
    

  
   

     .  Now consider an indefinitely long straight-line ray that passes a 647 

distance    from the origin (Figure 10).  Since the problem has radial symmetry, we may 648 

consider this ray to be parallel to the  -axis without loss of generality. A point      , with 649 

        
     , on the ray makes an angle   with respect to the slow axis of anisotropy (that 650 

is, the radial direction). The travel time    is the integral of        along this ray.  Note that: 651 

                                     
  

     
      

  
 

     
      

(B2) 652 

The function      must be chosen so that: 653 

                                  
  

  

 

(B3) 654 

The reader may verify that the correct choice is          , where   is an arbitraty constant, 655 

by using integrals 2.173.1 and 2.175.4 of Gradshteyn and Ryzhik (1980) (a result that we have 656 

also checked numerically). The travel time along the      ray is infinite, since the function      657 
has a non-integrable singularity at the origin and the ray passes through it. However, the radial 658 

symmetry of the problem actually implies zero – not infinite - anisotropy at the origin.  We 659 

resolve this inconsistency by defining a scale length   over which the anisotropy falls to zero: 660 

      
  

       
 

(B4) 661 

This function behaves as      when     and as        when    . It is integrable because 662 

it has no singularity at the origin. The reader may verify that the choice             leads to 663 

a ray with travel time       , by using integral 2.132.3 of Gradshteyn and Ryzhik (1980) (a 664 

result that we have also checked numerically).  The equivalent anomaly is then: 665 

 
  
  
  

      
 

 
   

       
   
     
     

    

(B5) 666 

This result indicates that the anisotropic heterogeneity equivalent to a point isotropic 667 
heterogeneity is not point-like, but rather is spatially-distributed.  Furthermore, while its intensity 668 

falls off with distance, it does so relatively slowly, as (distance)
-2

.   669 

The sum of the spatially-distributed anisotropic anomaly and the negative of the point-670 

like isotropic anomaly is a null solution, meaning that it has no travel time anomaly.  Any 671 



number of these null solutions can be added to the estimated model without changing the degree 672 
to which it fits the data. 673 

Isotropic Heterogeneity Equivalent to a Point Anisotropic Heterogeneity. Our goal is to 674 

design an isotropic heterogeneity        (where       are polar coordinates) that is equivalent 675 

to a point anisotropic heterogeneity at the origin, in the sense that both lead to travel time 676 

                  for rays passing through the origin, and zero travel time for rays that 677 

miss the origin.  Here    is the azimuth of the slow axis of anisotropy. Inspired by the previous 678 

result, we try the function: 679 

       
          

  
 

(B6) 680 

As before, we must demonstrate that the ray integral is zero for any ray passing a distance      681 

away from the origin. Since    is arbitrary, we can choose the ray to be parallel to the  -axis 682 

without loss of generality (Figure 9). We now manipulate (A2.6) using standard trigonometric 683 
identities: 684 

          

  
         

       

  
         

       

  
 

         
                 

  
         

       

  
 

         
     

 

      
   

         
   

      
   

  

(B7) 685 

The ray integral of the first term has already been shown to be zero. The ray integral of the 686 

second term is zero because the second term is an odd function of  . Thus, the travel time of all 687 

rays with      is zero. 688 

As in the previous section, the travel time along the      ray is infinite, since the function 689 

    has a non-integrable singularity at the origin and the ray passes through it. However, 690 
depending upon the ray orientation, (A2.5) implies that the point at the origin has both negative 691 

and positive   – a contradiction.  As before, we resolve this inconsistency by requiring that the 692 

heterogeneity falls to zero within a small distance   of the origin.  The heterogeneity is then: 693 

       
      
 

   

       
            

(B8) 694 

This anomaly is similar in form to the one given in Equation 45 of Mochizuki (1997) for the 695 

isotropic anomaly equivalent to a spatially-compact anisotropic heterogeneity with a Gaussian 696 



spatial pattern. The sum of the spatially-distributed isotropic anomaly and the negative of the 697 
point-like anisotropic anomaly is another null solution. 698 
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Figures and Captions 700 

 701 

Fig. 1. (a) Coordinate system used in this paper. Ray (black line) has with azimuth   and 702 

endpoints at         and        . Slow and fast directions of anisotropy (grey lines) have 703 

azimuth    and       , respectively.  (b) Star array consisting of three short rays, centered at 704 

point        .  (c) In Radon’s problem, the position an orientation of a ray is parameterized by 705 

its distance   of closest approach to the origin and by the azimuth   of the ray-perpendicular 706 

direction. Note that        . 707 

  708 



 709 

 710 

Fig. 2. Model estimated by a grid of star arrays.  (a) Cartesian grid of star arrays. (b) The true 711 

model consists of circular heterogeneities.  Each heterogeneity has a constant isotropic part,  , 712 

(depicted in grey shades), anisotropic part,  , and slow axis,    (depicted with black bars, whose 713 

length scales with   and whose orientation reflects   ).  The bold bar in the lower left 714 

corresponds to      . (c) Estimated model. (d)-(f) Same as (a)-(c), except for a sparser grid of 715 

larger star arrays.  716 
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 718 

 719 

Fig. 3.  Equivalent Heterogeneities for Radon’s Problem. (a) True model has purely isotropic 720 

circular heterogeneity (   ) at its center.  (b) Purely isotropic estimated model.  (c) Purely 721 

anisotropic estimated model.  (d) True model has purely anisotropic circular heterogeneity 722 

(            ) at its center. (e) Purely isotropic estimated model.  (f) Purely anisotropic 723 

estimated model. All estimated models have less than 1% travel time error.  724 

 725 
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 727 

 728 

Fig. 4. Equivalent Heterogeneities for Radon’s Problem. (a) True model has a large, circular, 729 

purely anisotropic heterogeneity  (            )) at its center.  (b) Purely isotropic 730 

estimated model, which has less than 1% error, has strongest heterogeneity around its edges. 731 
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 736 

 737 

 738 

Fig. 5. (a) Regular grid of stations. (b) Rays connecting all pairs of stations are used in the 739 
tomographic inversion. 740 
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 742 

 743 

Fig. 6. Equivalent Heterogeneities for a regular grid of stations. (a) True model has purely 744 

isotropic circular heterogeneity (   ) at its center.  (b) Purely isotropic estimated model.  (c) 745 

Purely anisotropic estimated model.  (d) True model has purely anisotropic circular 746 

heterogeneity (            ) at its center. (e) Purely isotropic estimated model.  (f) Purely 747 

isotropic estimated model. All estimated models have less than 1% travel time error. 748 
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 750 

 751 

Fig. 7. (a) Irregular array of stations, with a shape similar to the 2009-2010 Eastern Lau 752 

Spreading Center array. (b) Rays between all stations separated by at least 20 km. 753 
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 755 

 756 

Fig. 8. Equivalent Heterogeneities for irregular array. (a) True model has purely isotropic 757 

circular heterogeneity (   ) at its center.  (b) Purely isotropic estimated model.  (c) Purely 758 

anisotropic estimated model.  (d) True model has purely anisotropic circular heterogeneity 759 

(            ) at its center. (e) Purely isotropic estimated model.  (f) Purely anisotropic 760 

estimated model. All estimated models have less than 1% travel time error.  761 
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 763 

764 
Fig. 9. Equivalent Heterogeneities for irregular array. Same as Figure 8, except with the 765 

heterogeneity moved to the edge of the array. 766 
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 768 

Fig. 10. Geometry of ray used in travel time integral. 769 
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