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Summary. We investigate the practice of damping (also termed regularization) in inverse 

problems, meaning the use of prior information to supplement observations, in order suppress 

instabilities in the solution caused by noisy and incomplete data.  Our focus is on forms of 

damping that create smooth solutions, for smoothness is often considered a desirable – or at least 

acceptable – attribute of inverse theory solutions (and especially tomographic images).  Prior 

information leading to smoothness can be expressed either as a constraint equation (such as a 

spatial derivative of the solution being small) or as a covariance matrix (implying spatial 

correlation falls off at a specified rate).  We investigate both, and show that the consequences of 

particular choices for can be understood by analyzing a specific inverse problem, the data 

smoothing problem, in its continuum limit. Four cases are considered: 1) the first-derivative of 

the solution is close to zero; 2) the prior covariance is a two-sided declining exponential; 2) ) the 

second-derivative of the solution is close to zero;; and 4) the solution is close to its localized 

average. Analytic solutions are derived and analyzed for each case.  First-derivative damping is 

put forward as having several attractive properties and few, if any, drawbacks. 
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Introduction 

 

The concept of damping (also termed regularization) is central to solving many classes of 

inverse problems, and especially those involving generalizations of the least squares principle 

(Levenberg, 1944). Instabilities caused by incomplete data coverage, which would otherwise 

arise during the inversion process, are damped through the addition of prior information, which 



quantifies expectations about the behavior of the solution. Given properly chosen prior 

information, a unique and well-behaved solution can be determined even with noisy and 

incomplete data.  The trick, of course, is specifying the prior information is such a way that it 

adds only innocuous features to the solution; that is, the final product is not dominated by 

artifacts. 

 

Prior information can be implemented in two interrelated, but conceptually-distinct ways.  The 

first is as a constraint equation that looks just like a data equation, except that it is not based on 

any actual observations.  The second is as a covariance matrix, which quantifies how that we 

expect that different model parameters are correlated.  That these two ideas are related can be 

understood from the following example.  Suppose that    and    are two model parameters 

whose mean value we expect to be zero.  Then the equation          implements this prior 

information. Furthermore, any fluctuation of    and    from their typical values must be 

strongly and negatively correlated, else their mean would not be zero.  This approach treats    

and    as random variables with a negative covariance.  Thus, in some sense, a data equation 

implies a corresponding covariance matrix (and vice versa). 

 

Suppose that the prior information equation is linear and of the form     , where   is the 

vector of unknown model parameters and   and   are known. In many least-squares 

formulations, the prior information is imposed only approximately, with the strength of the 

information quantified by a parameter  .  Alternately, the model parameters can also be viewed 

as random variables, fluctuating around some mean value       with covariance matrix   . 

Following the reasoning above, we expect that   and    to be related, and in fact this 



relationship is well-known in least-squares theory (Tarantola and Valette, 1982a,b).  As we will 

review below, a detailed analysis of the least squares principle reveals that      
    

,    

           and       . Thus, one can translate between the two viewpoints by “simple” 

matrix operations. 

 

At this point, it would be possible to declare the issue settled. Our experience, however, it that it 

is far from settled, for two reasons.  The first reason is that the matrix operations relating    to 

   are not really simple enough to allow for much intuition.  It’s by no means obvious (at least 

to us!) how to predict    given    (or vice versa), without actually performing the matrix 

operations.  And even having done so, it‘s by no means obvious how a small modification to    

translates into a change in the corresponding    (or vice versa).  The second reason is that a very 

common use of damping is to implement the qualitative notion of smoothness. The real problem 

is choosing a    or an    that somehow embodies an intuitive notion of smoothness, and in 

understanding the consequences of one choice over another.  Furthermore, this choice needs to 

be understood in terms of its affect on the estimated solution, itself; that is, whether or not it 

actually possesses a smooth character. 

 

This paper addresses these issues through the analysis of a simple smoothing problem: finding a 

set of model parameters that are a smoothed version of the data.  This approach reduces the data 

equation to a minimum and highlights the role of prior information in determining the solution.  

Even with this simplification, the relationships between    and   , and their effect on the 

solution, is still very obtuse.  Surprisingly, an analysis of the continuum limit, where the number 

of model parameters becomes infinite and vectors become functions, provides considerable 



clarity.  We are able to derive simple analytic formula that relate    and   , as well as the 

smoothing kernel (generalized inverse) that relate the smoothed and unsmoothed data. The latter 

is of particular importance, because it allows assessment of whether or not the mathematical 

measure of smoothing corresponds to the intuitive one. 

 

Background and Definitions 

Generalized least squares (Levenberg, 1944, Lawson and Hansen, 1974; Tarantola and Valette, 

1982a,b; see also Menke 1984, 2012; Menke and Menke, 2011) is built around a data equation, 

       , which describes the relationship between unknown model parameters,  ,  and 

observed data,     , and a prior information equation        , which quantifies prior 

expectations (or “constraints”) about the behavior of the model parameters.  The errors in the 

data equation and the prior information equation are assumed to be Normally-distributed with 

zero mean and covariance of    and   , respectively. 

The generalized least squares solution is obtained by minimizing the generalized error,     : 

              
 
  

                      
 
  

            

(1) 

The first term on the r.h.s represents the sum of squared errors in the observations, weighted by 

their certainty (that is, the reciprocal of their variance) and the second represents the sum of 

squared errors in the prior information, weighted by their uncertainty. 

Suppose now that   
  =  

    and   
  =  

   , for some matrices    and   . We can 

rearrange (1) into the form                
         by defining: 



   
   
   

               
   

   

   
   

             

(2) 

This is the form of a simple least squares minimization of the error associated with the combined 

equation     .  The matrices    and    now have the interpretation of weighting matrices, 

with the top rows of      being weighted by    and the bottom rows by   . The least-

squares solution is: 

                

(3) 

or, expanding out   and   into their components: 

                       

                 
                       

                   
        

    

(4) 

 

The matrix     is called the generalized inverse. 

An obvious choice of weighting matrices is       
    

 and       
    

, where   
    

 and 

  
    

 are symmetric square roots; however, any matrices that satisfy   
      

   and 

  
      

   are acceptable, even non-symmetric ones. In fact, if    and    are arbitrary unary 

matrices satisfying   
      

     , then         
    

 and         
    

 are acceptable 

choices, too. A non-symmetrc matrix   , with singular value decomposition     , can be 

transformed into symmetric matrix   
     

    
 with the transformation        , since 



                  is symmetric and since    , as the product of two unary matrices, 

is itself unary. For reasons that will become apparent later in the paper, we give   
   its own 

name,   , so that      
   . 

Two other important quantities in inverse theory are the covariance    and resolution    of the 

estimated model parameters     . The covariance expresses how errors in the data and prior 

information cause errors in the solution.  The resolution expresses the degree to which a given 

model parameter can be uniquely determined (Backus and Gilbert, 1968; 1970; Wiggins, 1972).  

These quantities are given by: 

         
                                   

(5) 

              
    

(6) 

 

Formulation of the Data Smoothing Problem 

In order to understand the role of prior information in determining the solution, we consider a 

simplified problem with            and       . These choices define a data smoothing 

problem, when   is viewed as a discretized version of a continuous function     ,.  The model 

parameters      represent a smoothed version of the data     , with the equation        

representing prior information that quantifies just in what sense the data are smooth. The 

matrices    and   appear only as a product in (2), so we define      .  This behavior 

implies that we can understand the prior information equation      either as an equation of 



the form      with non-trivial      but trivial weighting      or as the equation      

with the trivial      but with non-trivial weighting     .  The effect is the same, but the 

interpretation is very different. Subsequently, when we refer to    (or   or   ) it will be with 

the presumption that we are adopting the     viewpoint. The combined equation is then: 

       
 
 
      

   

 
  

(7) 

with solution      obeying: 

                  
 

(8) 

 

Note that the generalized inverse is             
  

. Finally, we mention that when two prior 

information equations are available, say       and      , (7) becomes: 

 

 
 
  

  

    
    

 
 

  

(9) 

and the solution satisfies the equation: 

 

   
      

                 
 

(10) 

 



The several covariance matrices that appear in this problem should not be confused, for they are 

not the same. The covariance            of the prior information equation     quantifies 

the error in that equation; that is, its scatter about the  -axis.  The covariance   =        
  

 of 

the estimated model parameters quantifies the errors in     ; that is, how error in the data and 

error in the prior information propagate into the solution. Furthermore, neither of the covariance 

matrices is equal to the auto-covariance of the generalized inverse, which is proportional to its 

cross-correlation                 
  

. This quantity expresses the scales inherent in the 

data-smoothing process. 

 

Data Smoothing in the Continuum Limit 

We now take the continuum limit, replacing      and      with the functions      and     , 

where   is an independent variable (e.g. position).  The matrix   becomes the linear operator  , 

its transpose    becomes the adjoint    of the corresponding operator and its inverse     

becomes the inverse     of the corresponding operator. Depending upon context, we will 

interpret the identity matrix either as multiplication by   or convolution by the Dirac delta 

function,        Equations (8) and (10) become the differential equations: 

                        

   
      

                  

(11a,b) 

Equation (11a) has a solution in terms of its Green function integral: 



              
  

                              

(12) 

 

Here we have introduced the inner product symbol       for notational simplicity. The Green 

function         is the continuous analog to the generalized inverse    . It satisfies the 

differential equation: 

                         

(13) 

 

The covariance of the estimated solution and the resolution are now functions of        and are 

given by: 

                            

(14) 

Similarly, the continuous analogs of    and and    are: 

 

      
                      

                      
      

(15) 

 

These two functions satisfy the equations: 

 

            
                                           



(16a,b) 

 

These equations follow from    being the inverse of       and    being the inverse of  . 

Therefore,       
                                        , so           

and similarly,                         , so       . 

 

Before launching into a series of more realistic case studies, we briefly examine the trivial case 

where the prior information equation is       , imposed with strength  .  The corresponding 

linear operator is just the constant,    .  Whether this equation, which merely implies that the 

solution is small, implements some kind of smoothing is dubious; but it makes a useful example, 

nonetheless. Furthermore, the smallness constraint finds wide application in other inverse 

problems, especially those which, unlike this one, have a few completely unresolved model 

parameters.  Equation (13) implies that the Green function is                        , 

which corresponds to the solution                  . As the prior information is made 

very weak,     and          ; the solution is the observed data.  As the prior information 

is made very strong,     and        ; the solution is forced to zero. Equation 16a implies 

that the prior covariance is       
              , which is the continuum analogue of 

         Thus, the parameter     functions as a variance and the errors associated with the 

prior information equation are uncorrelated.  Equation 14 indicates that the covariance of the 

estimated model parameters is                          .  These errors, too, are 

uncorrelated, but with a variance that is smaller than either    or    , as is expected, since 

combining information reduces variance. Finally, Equation 14 also indicates that the resolution is 

                        ; that is, the model parameters are fully-resolved, in the sense 



that       at some arbitrary point    is controlled solely by      , and not by its value at any 

other points. 

 

Four Case Studies 

 

We discuss four possible ways of the quantifying the intuitive notion of a function being smooth.  

In Case 1, a smooth function is taken to be one with a small first-derivative, a choice motivated 

by the notion that a function that changes only slowly with position is likely to be smooth.  In 

Case 2, a smooth function is taken as one with large positive correlations for points separated by 

less than some specified scale length.  This choice is motivated by the notion that the function 

must be approximately constant, which is to say smooth, over that scale length.  In Case 3, a 

smooth function is taken to be one with small second-derivative, a choice motivated by the 

notion that this derivative is large at peaks and troughs, so that a function with only small peaks 

and troughs is likely to be smooth.  Finally, in Case 4, a smooth function is taken to be one that is 

similar to it localized average.  This choice is motivated by the notion that averaging smoothes a 

function, so that any function that is approximately equal to its own localized average is likely to 

be smooth. All four of these cases are plausible ways of quantifying smoothness.  As we will 

show below, they all do lead to smooth solutions, but solutions that are significantly different 

from one another.  Furthermore, several of these cases have unanticipated side effects. 

 

Case 1. We take flatness (small first-derivative) as a measure of smoothness. The prior 

information equation is          , so that         . The parameter   quantifies the 

strength by which the flatness constraint is imposed, as so plays the role of               . The 



operator has translational invariance, so we expect that the Green function                 

depends only upon the separation distance        (as also will   ,   ,    and  ). Without loss 

of generality, we can set     , so that (13) becomes: 

    
  

   
               

(17) 

 

Here, we utilize the relationship that              . The solution to this well-known 1D 

Screened Poisson equation is: 

     
   

 
             

(18) 

This solution can be verified by substituting it into the differential equation: 

  

  
  

   

 
                              

   

   
 

   

 
                           

   
   

 
                             

   

 
                  

(19) 

Here, we have relied on the fact that                  and                    . Note 

that      is a two-sided declining exponential with unit area and decay rate    . Because of the 

translational invariance, the integral in (12) has the interpretation of a convolution, and the Green 



function has the interpretation of a smoothing kernel. The solution is the observed data      

convolved with this smoothing kernel: 

               

(20) 

The solution (Figure 1) is well-behaved, in the sense that the data are smoothed over a scale 

length   without any change in their mean value (since      has unit area). Furthermore, the 

smoothing kernel monotonically decreases towards zero, without any side-lobes, so that the 

smoothing creates no extraneous features. The covariance and resolution of the estimated 

solution are both equal to the green function,           Note that the variance and resolution 

trade off, in the sense that the size of the variance is proportional to    , whereas the width of the 

resolution is proportional to  ; as the strength of the flatness constraint is increased, the size of 

the variance decreases and the width of the resolution increases. 

The autocorrelation of the data,                , where   signifies cross-correlation, 

quantifies the scale lengths present in the observations. In general, the autocorrelation of the 

model parameters,                , will be different, because of the smoothing.   The 

two are related by convolution with the autocorrelation of the Green function,            

    , since                                           (see Menke and Menke 

2011, their Equation 9.24).  The reader may easily verify (by direct integration) that the 

autocorrelation of (18) is: 

      
   

 
                     



(21) 

This is a monotonically-declining function of     with a maximum (without a cusp) at the origin.  

The smoothing broadens the autocorrelation (or auto-covariance) of the data in a well-behaved 

way. 

The variance    of the prior information satisfies (16a): 

   
  

   
             

(22) 

This is a 1D Poisson equation, with solution: 

       
   

 
                                

(23) 

 This solution can be verified by substituting it into the differential equation: 

   

  
   

   

 
                  

    

   
            

                    

(24) 

 

The covariance          implies that the errors associated with neighboring points of the prior 

information equation        are highly and positively correlated, and that the degree of 

correlation declines with separation distance, becoming negative at large separation. 



 

Finally, we note that the operator          is not self-adjoint, so that it is not the continuous 

analog of the symmetric matrix   
    

.  We can construct the correct operator by introducing the 

Hilbert transform,  ; that is, the linear operator that phase-shifts a function by    . 

It obeys the rules      ,       and                .  The modified operator 

            is self-adjoint and satisfies    
        . 

 

Case 2: In Case 1, we worked out the consequences of imposing a specific prior information 

equation     0, among which was the equivalent covariance   . Now we take the opposite 

approach, imposing    and solving for, among other quantities, the equivalent prior information 

equation     0. We use a two-sided declining exponential function: 

                           
    

 
 
 

 
              

(25) 

 

This form of prior covariance was introduced by Abers et al. (1994).  Here     is variance and 

    is a scale factor that controls decreases of covariance with separation distance       .  In 

analogy to (17) and (18), this prior covariance is the inverse of the operator: 

    
 

    
     

  

   
    

(26) 

The Green function solves the equation: 



          
  

   
                                        

 

    
  

(27) 

In analogy to (17) and (18), the Green function is: 

 

        
  

 
            

(28) 

This Green function (Figure 2) has the form of a two-sided, decaying exponential and so is 

identical in form to the one encountered in Case 1. As the variance of prior information is made 

very large,       and      , implying that the area under the Green function approaches 

unity – a desirable behavior for a smoothing function. However, as variance is decreased, 

      and      , implying that the Green Function is tending toward zero area – an 

undesirable behavior, because it reduces the amplitude of the smoothed function. 

The behavior of the Green function at small variance can be understood by viewing the prior 

information as consisting of two equations, a flatness constraint of the form     

           (the same condition as in Case 1) and an additional smallness constraint of the 

form         , with        .  When combined via (11b), the two equations lead to 

the same differential operator as in (26): 

   
      

                    
  

   
             

(29) 



Note that the strength of the smallness constraint is proportional to             , which 

depends on both   and  . The smallness constraint leads to a Green function with less than unit 

area, since it causes the solution      to approach zero as     and     . No combination 

of   and   can eliminate the smallness constraint while still preserving the two-sided declining 

exponential form of the Green function. 

An operator   that reproduces the form of     given in (23) is: 

          
 

  
                        

(30) 

 

The function    solves (16b),           , which for the operator in (30) has the form of a 

one-sided exponential: 

 

         
 
              

(31) 

 

Here,      is the Heaviside step function.  Because of the translational invariance, the inner 

product in (15) relating    to    is a convolution.  That, together with the rule that the adjoint of 

a convolution is the convolution backwards in time, implies that      =              

           , where   signifies cross-correlation. The reader may easily verify that the 

autocorrelation of (31) reproduces the formula for    given in (25).  Unfortunately, the Hilbert 



transform of (31) cannot be written as a closed-form expression, so no simple formula for the 

symmetrized form of   , analogous to   
   

, can be given. 

 

Case 3: We quantify the smoothness of      by the smallness of its second-derivative. The 

prior information equation is            , implying           .  Here the parameter   

quantifies the strength by which the smoothness constraint is imposed, and so has the 

interpretation of                  Since the second derivative is self-adjoint, we have: 

      
  

   
 

(32) 

The Green function      satisfies the differential equation: 

 

   
  

   
             

(33) 

 

This well-known differential equation has solution (Hetenyi 1979; see also Menke and Abbott 

1989; Smith and Wessel 1990): 

 

                                           

(34) 

 

with 



                     
  

   
  

(35) 

 

This Green function arises in civil engineering, where it is represents the deflection      of a 

elastic beam of flexural rigidity    floating on a fluid foundation, due to a point load at the origin 

(Hetenyi 1979).  In our example, the model      is analogous to the deflection of the beam and 

the data to the load; that is, the model is a smoothed version of the data. Furthermore, variance is 

analogous to the reciprocal of flexural rigidity. The beam will take on a shape that exactly 

mimics the load only in the case when it has no rigidity; that is, infinite variance. For any finite 

rigidity, the beam will take on a shape that is a smoothed version of the load, where the amount 

of smoothing increases with   . 

The area under this Green function can be determined by computing its Fourier transform, since 

area is equal to the zero-wavenumber value. Transforming position   to wavenumber   in (33) 

gives               , which imples         ; that is, the Green function has unit 

area. This is a desirable property.  However, the Green function (Figure 3) also has small 

undesirable side-lobes.  

Case 4: The prior information equation is that      is close to its localized average      

    , where      is an averaging kernel. We use the same two-sided declining exponential as 

above (e.g. Equation 18) to perform the averaging: 

     
 

 
           

(36) 



The prior information equation is then: 

                        

(37) 

Here   quantifies the strength of the information, and so has the interpretation of of 

                  Both the averaging kernel and the Dirac delta function are symmetric, so the 

operator   is self-adjoint. The Green function      satisfies: 

                                              

(38) 

We now make use of the fact that the operator                is the inverse to 

convolution by        Applying    twice to (37) yields the associated differential equation: 

         
   

   
     

   

   
                                 

(39) 

We solve this associated equation by finding its Green function (that is, solving (39) with 

         ) and then by convolving this Green function by the actual     .  The Green 

function of (39) can be found using Fourier transforms, with the relevant integral given by 

equation 3.728.1 of Gradshteyn and Ryzhik (1980) (which needs to be corrected by dividing 

their stated result by a factor of 2).  The result is: 

                                                                  

(40) 

 



where: 

   
 

 
 
 

                      

   
 

 
 
 

                      

         
 

 
 

  

    
   

 

   
    

 

 
  

    
 

 
 
 

          

  
    

    
          

           

  
 

                      
   

 
 
   

         
   

 
 
   

 

(41) 

The Green function (Figure 4) consists of the sum of a Dirac delta function and a spatially-

distributed function reminiscent to the elastic plate solution in Case 3.  Thus, the function      

is a weighted sum of the data      and a smoothed version of that same data.  Whether this 

solution represents a useful type of smoothing is debatable; it serves to illustrate that peculiar 

behaviors can arise out of seemingly innocuous forms of prior information.  

The area under the Green function can be determined by taking the Fourier transform of (39): 

                                            

(42) 



 

and evaluating it at zero wavenumber. Thus,         ; that is, the area is unity – a desirable 

property.  However, like Case 3, the solution also has small undesirable side-lobes. 

Discussion and Conclusions 

The main result of this paper is to show that the consequences of particular choices of damping 

in inverse problems can be understood in considerable detail by analyzing the data smoothing 

problem in its continuum limit. This limit converts the usual matrix equations of generalized 

least squares into differential equations.  Even though matrix equations are easy to solve using a 

computer, they usually defy simple analysis. Differential equations, on the other hand, often can 

be solved exactly, allowing the behavior of their solutions probed analytically. The most 

important link that we have developed is between prior information expressed as a constraint 

equation of the form      and of that same prior information expressed as a covariance 

matrix   .  Furthermore, starting with a particular   or   , we have worked out the 

corresponding    or  , as well as the generalized inverse (or Green function, or smoothing 

kernel)    . 

An important result is that prior information, implemented as a prior covariance with the form of 

a two-sided declining exponential function, is exactly equivalent a pair of constraint equations, 

one of which suppresses the first derivative of the model parameters and the other that 

suppresses their size.   In this case, the generalized inverse (Green function, or smoothing kernel) 

is a two-sized declining exponential with an area less than or equal to unity; that is, it both 

smoothes and reduces the amplitude of the observations. 



Our results allow us to address the question of which form of damping best implements an 

intuitive notion of smoothing.  There is, of course, no authoritative answer to this question.  Any 

of the four cases we have considered, and many others besides, implements reasonable forms of 

smoothing; any one of them might arguably be best for a specific problem.  Yet simpler is often 

better. We put forward first-derivative damping as an extremely simple and effective choice, 

with few drawbacks.  The corresponding Green function has unit area and no side-lobes, two key 

attributes of a good smoothing kernel. The scale length of the smoothing depends on a single 

parameter,  . Its only drawback is that it possesses a cusp at the origin, which implies that it 

suppresses higher wavenumbers relatively slowly, as    .  Its autocorrelation, on the other hand, 

has a simple maximum (without a cusp) at the origin, indicating that it widens the auto-

covariance of the observations in a well-behaved fashion. Furthermore, first-derivative damping 

has a straightforward generalization to higher dimensions. One merely writes a separate first-

derivative equation for each independent variable (say,      ): 

     
 

  
                  

 

  
                  

 

  
    

(43) 

 

The least-squares minimization will suppress the sum of squared errors of these equations, which 

is to say, the Euclidian length of the gradient vector   . According to (11), the Green function 

satisfies the Screened Poisson equation: 

                        

(44) 

which has two- and three-dimensional solutions (Wikipedia, 2014): 



       
   

  
    

                      
   

   
                             

(45) 

Here,    is the modified Bessel function.  Both of these multidimensional Green functions, like 

the 1D version examined in Case 1, have unit area and no side-lobes, indicating that first-

derivative damping will be effective when applied to these higher-dimensional problems. 
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Figure Captions 

Fig. 1. Results for Case 1, for    . A) Hypothetical data      (circles) and smooth model 

     (solid curve). B) Numerical (grey) and analytic (black) versions of the Green function, 

   ) (which agree closely). 

Fig. 2. Results for Case 2, for       and      . A) Hypothetical data      (circles) and 

smooth model      (solid curve). B) Numerical (grey) and analytic (black) versions of the 

Green function,    ) (which agree closely). 

Fig. 3. Results for Case 3, for     . A) Hypothetical data      (circles) and smooth model 

     (solid curve). B) Numerical (grey) and analytic (black) versions of the Green function, 

   ) (which agree closely). 

Fig. 4. Results for Case 4, for     and      . A) Hypothetical data      (circles) and 

smooth model      (solid curve). B) Numerical (grey) and analytic (black) versions of the 

Green function,    ) (which agree closely). 

 



 

 



 

 


