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Abbreviated Title. Data Smoothing and Regularization 

Abstract. We investigate the practice of regularization (also termed damping) in inverse 

problems, meaning the use of prior information to supplement observations, in order to suppress 

instabilities in the solution caused by noisy and incomplete data.  Our focus is on forms of 

regularization that create smooth solutions, for smoothness is often considered a desirable – or at 

least acceptable – attribute of inverse theory solutions (and especially tomographic images).  We 

consider the general inverse problem, in its continuum limit. By deconstruction into the part 

controlled by the regularization and the part controlled by the data kernel, we show the general 

solution depends on a smoothed version of the back-projected data as well as a smoothed version 

of the generalized inverse. Crucially, the smoothing function that controls both is the solution to 

the simple data smoothing problem. We then consider how the choice of regularization shapes 

the smoothing function, in particular exploring the dichotomoy between expressing prior 

information either as a constraint equation (such as a spatial derivative of the solution being 

small) or as a covariance matrix (such as spatial correlation falls off at a specified rate).  By 

analyzing the data smoothing problem in its continuum limit, we derive analytic solutions for 

different choices of regularization. We consider four separate cases: 1) the first-derivative of the 

solution is close to zero; 2) the prior covariance is a two-sided declining exponential; 3) the 

second-derivative of the solution is close to zero; and 4) the solution is close to its localized 

average. First-derivative regularization is put forward as having several attractive properties and 

few, if any, drawbacks. 

 

Keywords: Inverse Theory; Tomography; Spatial Analysis; Damping; Smoothing; Regularization 
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Introduction 

The concept of regularization (also termed damping) is central to solving many classes of 

inverse problems, and especially those involving generalizations of the least squares principle 

(Levenberg, 1944). Instabilities caused by incomplete data coverage, which would otherwise 

arise during the inversion process, are damped through the addition of prior information, which 

quantifies expectations about the behavior of the solution. Given properly chosen prior 

information, a unique and well-behaved solution can be determined even with noisy and 

incomplete data.   

 

Prior information can be implemented in two interrelated, but conceptually distinct ways.  The 

first is as a constraint equation that looks just like a data equation, except that it is not based on 

any actual observations.  The second is as a covariance matrix, which quantifies how that we 

expect that different model parameters are correlated.  That these two ideas are related can be 

understood from the following example.  Suppose that    and    are two model parameters 

whose sum we expect to be zero.  Then the equation         implements this prior 

information. Furthermore, any fluctuation of    and    from their typical values must be 

strongly and negatively correlated, else the sum would not be zero.  This approach treats    and 

   as random variables with a negative covariance.  Thus, in some sense, a prior information 

equation implies a corresponding covariance matrix (and vice versa). 

 

Suppose that the prior information equation is linear and of the form     , where   is the 

vector of unknown model parameters and   and   are known. In many least-squares 

formulations, the prior information is imposed only approximately, with the strength of the 
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information quantified by a parameter  .  Alternately, the model parameters can also be viewed 

as random variables, fluctuating around some mean value       with covariance matrix   . 

Following the reasoning above, we expect that   and    to be related, and in fact this 

relationship is well known in least-squares theory (Tarantola and Valette, 1982a,b).  As we will 

review below, a detailed analysis of the least squares principle reveals that      
    

,    

           and       . Thus, one can translate between the two viewpoints by “simple” 

matrix operations. 

 

Regularization can be applied to the general linear inverse problem      (where   is data and 

  is the data kernel) to implement the qualitative notion of smoothness. An important question is 

whether the regularization works by smoothing the observations (making the data smoother) or 

by smoothing the data kernel (making the theory smoother).  Our analysis, presented later in this 

paper, shows that it does both.  Two important practical issues are how to choose a    or an    

to embody an intuitive form of smoothness, and how to assess the consequences of one choice 

over another.  We show that the simple data smoothing problem is a key to understanding these 

issues. 

 

By data smoothing, we mean finding a set of model parameters that are a smoothed version of 

the data.  This approach reduces the data kernel to a minimum (   ) and highlights the role of 

prior information in determining the solution.  Even with this simplification, the relationships 

between    and   , and their effect on the solution, are still very obtuse.  Surprisingly, an 

analysis of the continuum limit, where the number of model parameters becomes infinite and 

vectors become functions, provides considerable clarity.  We are able to derive simple analytic 
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formulae that relate    and   , as well as the smoothing kernels that relate the unsmoothed and 

smoothed data. The latter is of particular importance, because it allows assessment of whether or 

not the mathematical measure of smoothing corresponds to the intuitive one. 

 

Finally, we show that the effect of regularization on the general inverse problem can be 

understood by decomposing it into the part equivalent to a simple data smoothing problem and 

the deviatoric part controlled by the non-trivial part of the data kernel. This decomposition 

allows us to investigate the respective effects of the smoothing constraints and the data 

constraints (via some theory, represented by the data kernel) on the solution. The former blurs (in 

the literal sense of the word) the data, but we show also that the data kernel is also blurred in 

exactly the same way. Regularization partly works by smoothing the theory. 

 

Background and Definitions 

Generalized least squares (Levenberg, 1944, Lawson and Hansen, 1974; Tarantola and Valette, 

1982a,b; see also Menke 1984, 2012; Menke and Menke, 2011) is built around a data equation, 

       , which describes the relationship between unknown model parameters,  , and 

observed data,     , and a prior information equation        , which quantifies prior 

expectations (or “constraints”) about the behavior of the model parameters.  The errors in the 

data equation and the prior information equation are assumed to be normally distributed with 

zero mean and covariance of    and   , respectively. 

The generalized least squares solution is obtained by minimizing the generalized error,     :  

               
 
  

                      
 
  

            (1) 
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The first term on the r.h.s represents the sum of squared errors in the observations, weighted by 

their certainty (that is, the reciprocal of their variance) and the second represents the sum of 

squared errors in the prior information, weighted by their certainty. 

Suppose now that   
  =  

    and   
  =  

   , for some matrices    and   . We can 

rearrange (1) into the form                
         by defining:  

 
   

   
   

               
   

   

   
   

             (2) 

This is the form of a simple least squares minimization of the error associated with the combined 

equation     .  The matrices    and    now have the interpretation of weighting matrices, 

with the top rows of      being weighted by    and the bottom rows by   . The least-

squares equation and its solution are:  

                   and                     (3a,b) 

An obvious choice of weighting matrices is       
    

 and       
    

, where   
    

 and 

  
    

 are symmetric square roots.  However, any matrices that satisfy   
      

   and 

  
      

   are acceptable, even non-symmetric ones. In fact, if    and    are arbitrary unary 

matrices satisfying   
     , and   

     , then         
    

 and         
    

 are 

acceptable choices, too. A non-symmetric matrix   , with singular value decomposition     , 

can be transformed into symmetric matrix   
     

    
 with the transformation        , since 

                  is symmetric and since    , as the product of two unary matrices, 

is itself unary. For reasons that will become apparent later in the paper, we give   
   its own 

name,   , so that      
   . 
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Two other important quantities in inverse theory are the covariance    and resolution    of the 

estimated model parameters     . The covariance expresses how errors in the data and prior 

information cause errors in the solution.  The resolution expresses the degree to which a given 

model parameter can be uniquely determined (Backus and Gilbert, 1968; 1970; Wiggins, 1972).  

These quantities are given by:  

 
         

                               (4) 

 

 
                  

    (5) 

The forgoing will have been familiar to those who have taken a linear algebraic approach to 

inverse theory. We will take the continuum limit, replacing      and      with the functions 

     and     , where   is an independent variable (e.g. position).  The matrix   becomes the 

linear operator  , its transpose    becomes the adjoint    of the corresponding operator and its 

inverse     becomes the inverse     of the corresponding operator. Depending upon context, 

we will interpret the identity matrix either as multiplication by   or convolution by the Dirac 

delta function,        

 

Formulation of the Simplified Data Smoothing Problem 

In order to understand the role of prior information in determining the solution, we consider a 

simplified problem with    ,      
  ,      

     and       . These choices define a data 

smoothing problem, when   is viewed as a discretized version of a continuous function     .  

The model parameters      represent a smoothed version of the data     . We multiply equation 
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(2) by    so that the data equation is      and the prior information equation, which 

quantifies just in what sense the data are smooth, is       . The matrices    and   appear 

only as a product in equation (2), so we define        .  This behavior implies that we can 

understand the prior information equation      either as an equation of the form      

with non-trivial     but trivial weighting      or as the equation        with the trivial 

     but with non-trivial weighting     .  The effect is the same, but the interpretation is 

very different. Subsequently, when we refer to    (or   or   ) it will be with the presumption 

that we are adopting the     viewpoint. The combined equation is then:  

                 
 
      

   

 
  (6) 

with solution      obeying:  

 
                   (7) 

In the continuum limit, this equation becomes:  

 
                            (8) 

Here      is an abbreviation for         . Finally, we mention that when two prior 

information equations are available, say       and      , (7) becomes: 

 
 
 
  

  

    
    

 
 

  (9) 

and the discrete and continuum solutions satisfy the equations: 

 
   

      
                  

          and                      
      

                   

(10a,b) 

 

Data Smoothing in the Continuum Limit 
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Equation (8) has a solution in terms of its Green function integral:  

 
                                       (11) 

Here we have introduced the inner product symbol       for notational simplicity. The quantity 

       has the interpretation of a smoothing operator and the function         is the smoothing 

kernel.  In problems with translational invariance, equation (11) is equivalent to convolution by 

the function     .  These functions satisfy the differential equation:  

 
                  (12) 

Smoothing kernels are localized functions that typically have a maximum at the central point    

and decline in both directions away from it. One example, which we will discuss in more detail 

later in this paper, is the two-sided declining exponential function                     

    , which smoothes the data over a scale length  . The covariance of the estimated solution and 

the resolution are now functions of        and are given by:  

 
           

        and                (13) 

Similarly, the continuous analogs of    and    are       
   and       

  :  

        
        

           (14) 

These two functions satisfy the equations:  

 
  

               
                 

                                        
                       

(15a,b) 

These equations follow from    being the inverse of   
        and    being the inverse of 

  
   . Therefore,        

               
                  

                   , 

so   
             and       

           
               , so   

        .  
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We will derive smoothing kernels for particular choices of prior information,  , later in this 

paper. However, we first apply these ideas to the general inverse problem. 

 

Smoothing within the general problem 

We examine the effect of regularization on an inverse problem with an arbitrary data kernel 

   . With the simplifications that the data are uncorrelated and of uniform variance (   

  
   ) and that the prior model is zero (      ), equation (3a) becomes: 

 
                                   

    
  (16) 

We have introduced the abbreviation        to emphasize that the model   does not depend 

directly upon the data  , but rather on their back-projection      In the continuum limit, this 

equation becomes): 

 
                    (17) 

with   the linear operator corresponding the data kernel  . As before,        is the back-

projected data. Now consider the special case where     is close to the identity operator  , so 

that we can write): 

 
                                              (18) 

where          ,            and where, by hypothesis,   is a small parameter. The 

parameter   will be small either when   is close to the identity operator, or when it is close to 

being unary. These restrictions can be understood by considering the special case where   
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corresponds to convolution with a function     .  The first restriction implies          ; that 

is,      is spiky.  The second restriction implies that               ; that is, that      is 

sufficiently broadband that its auto-correlation is spiky.  The later condition is less restrictive 

than the former. 

We now assume that the smoothing operator     is known (e.g. by solving equation 8) and 

construct the inverse of      using perturbation theory (see Menke and Abbott, 1989, their 

Problem 2.1). We first propose that the solution can be written as a power series in  : 

                

(where    are yet to be determined). Inserting this form of   into the inverse problem yields: 

                          (19) 

By equating terms of equal powers in  , we find that         ,              , etc.  

The solution is then: 

 

                
 

   

        (20) 

and it follows from equation (18) that:  

 
              

                                                    

(21) 

Since     represents a smoothing operator, that is convolution by a smoothing kernel, say     ,  

the solution can be rewritten:  
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(22) 

Here we have introduced the abbreviation     to emphasize that the solution contains a quantity 

that can be considered a generalized inverse. The number of terms in the expansion that are 

required to approximate the true     is clearly a function of the size of       , such that if 

              is small, the higher terms in the approximation rapidly become insignificant. 

We may consider an example with       (but   far from  ) by examining a problem where   

corresponds to convolution by a random telegraph signal     , meaning a function that is 

piecewise-constant in small intervals of length   , with a randomly assigned amplitude in each 

interval. This is an extreme case of a non-localized and complicated relationship between model 

and data. We adjust the amplitude of      so that its auto-correlation has unit area; that is, 

              . The operator    corresponds to convolution by                 

    .  Except near the origin,       randomly oscillates around zero, so the smoothed version 

     has significantly reduced amplitude. A numerical test with 100 intervals of    =1 

indicates that the decrease is about a factor of two:                ; that is, the ratio is 

significantly less than unity. The test also shows that the exact and approximate solutions match 

closely, even when only the first two terms of the series are included in the approximation 

(Figure 1).  This is a case where the      smoothing inside the generalized inverse 

substantially simplifies that quantity. 

We also consider an example with    , by examining the problem of determining the density 

     of a linear arrangement of masses (e.g. seamount chain) from the vertical component       

of the gravitational field measured a distance   above them. This is an extreme case of a 
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localized and simple relationship between model and data. According to Newton’s Law, the field 

due to a unit point mass at the origin is:  

 
                    (23) 

where   is the gravitational constant. The scaled data                 then satisfies the 

equation:  

 
             

                           

(24) 

where the scaling was chosen so that the gravitational response function      has unit area, thus 

satisfying           for small  . The function      is everywhere positive and decreases 

only slowly as      , so           is everywhere positive and slowly decreasing, as well. 

Consequently, we do not expect that the      smoothing inside the generalized inverse will 

have much effect. A numerical test, with    , indicates that                   ; that is, 

it is not significantly less than unity.    Consequently, a relatively large number of terms (about 

20) of the series are needed to achieve an acceptable match between the approximate and exact 

solutions (Figure 2). 

Irrespective of the form of  , regularization has the effect of smoothing the back-projected data 

  , which leads to a smoother solution  .  Further smoothing occurs for some data kernels (those 

with oscillatory              ), since the regularization also leads to a smoother 

generalized inverse. Smoothing of   , which can be viewed as an approximate form of the 

solution, is arguably the intent of regularization. Smoothing of  , which represents the theory, is 

arguably an undesirable side effect.  This second kind of smoothing is of particular concern when 



14  

 

the averaging kernel      has side lobes, since spurious structure can be introduced into the 

theory, or when      has less than unit area, since structure can be suppressed.  In the Case 

Studies, below, we derive analytic formulas for      for four common choices of prior 

information and analyze their properties to address these concerns. As we will put forward in 

more detail in the Discussion and Conclusions section, our overall opinion is that prior 

information that leads to an averaging kernel with unit area and without side lobes is the 

preferred choice, unless some compelling reason, specific to the particular inverse problem under 

consideration, indicates otherwise. 

Four Case Studies 

We discuss four possible ways of the quantifying the intuitive notion of a function being smooth.  

In all cases, we assume that the smoothing is uniform over  , which corresponds to the case 

where   has translational invariance, so smoothing is by convolution with a kernel      and the 

prior information is uncorrelated and with uniform variance   
 .  In Case 1, a smooth function is 

taken to be one with a small first-derivative, a choice motivated by the notion that a function that 

changes only slowly with position is likely to be smooth.  In Case 2, a smooth function is taken 

as one with large positive correlations that decay with distance for points separated by less than 

some specified scale length.  This choice is motivated by the notion that the function must be 

approximately constant, which is to say smooth, over that scale length.  In Case 3, a smooth 

function is taken to be one with small second-derivative, a choice motivated by the notion that 

this derivative is large at peaks and troughs, so that a function with only small peaks and troughs 

is likely to be smooth.  Finally, in Case 4, a smooth function is taken to be one that is similar to 

its localized average.  This choice is motivated by the notion that averaging smoothes a function, 

so that any function that is approximately equal to its own localized average is likely to be 
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smooth. All four of these cases are plausible ways of quantifying smoothness.  As we will show 

below, they all do lead to smooth solutions, but solutions that are significantly different from one 

another.  Furthermore, several of these cases have unanticipated side effects. We summarize the 

smoothing kernels for each of these choices in Table 1. 

 

Case 1. We take flatness (small first-derivative) as a measure of smoothness. The prior 

information equation is          , where        , so that         . The parameter   

quantifies the strength by which the flatness constraint is imposed. The smoothing kernel for this 

operator is (see Appendix): 

 

     
   

 
             (25) 

The solution (Figure 3) is well-behaved, in the sense that the data are smoothed over a scale 

length   without any change in their mean value (since      has unit area). Furthermore, the 

smoothing kernel monotonically decreases towards zero, without any side-lobes, so that the 

smoothing creates no extraneous features. The covariance and resolution of the estimated 

solution are  

 
        

          and               (26) 

 Note that the variance and resolution trade off, in the sense that the size of the variance is 

proportional to    , whereas the width of the resolution is proportional to  ; as the strength of 

the flatness constraint is increased, the size of the variance decreases and the width of the 

resolution increases. 
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The autocorrelation of the data,                , where   signifies cross-correlation, 

quantifies the scale lengths present in the observations. In general, the autocorrelation of the 

model parameters,                , will be different, because of the smoothing.  The two 

are related by convolution with the autocorrelation of the smoothing kernel): 

 
                                          (27) 

where                   (see Menke and Menke 2011, their Equation 9.24).  The reader 

may easily verify (by direct integration) that the autocorrelation of equation (25) is: 

 

      
   

 
                     (28) 

This is a monotonically declining function of     with a maximum (without a cusp) at the origin.  

The smoothing broadens the autocorrelation (or auto-covariance) of the data in a well-behaved 

way.  

The covariance function   associated with this choice of smoothing is (see equation A6): 

 

        
  

   

 
                             (29) 

Note that the product   
      equals the prior variance   

 . 

 

Case 2: In Case 1, we worked out the consequences of imposing a specific prior information 

equation     0, among which was the equivalent covariance   . Now we take the opposite 

approach, imposing    and solving for, among other quantities, the equivalent prior information 

equation     0. We use a two-sided declining exponential function: 
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              (30) 

This form of prior covariance was introduced by Abers et al. (1994).  Here     is a scale factor 

that controls decreases of covariance with separation distance       .  The smoothing kernel is 

given by: 

 

        
  

 
            (31) 

Where   and   are functions of the smoothing weight   and scale length     (see equation A11) 

and             
 

  
. This smoothing kernel (Figure 3) has the form of a two-sided, decaying 

exponential and so is identical in form to the one encountered in Case 1. As the variance of prior 

information is made very large,       and      , implying that the area under the 

smoothing kernel approaches unity – a desirable behavior for a smoothing function. However, as 

variance is decreased,       and      , implying that the smoothing kernel is tending 

toward zero area – an undesirable behavior, because it reduces the amplitude of the smoothed 

function, as shown in Figure 3. 

The behavior of the smoothing kernel at small variance can be understood by viewing the prior 

information as consisting of two equations, a flatness constraint of the form     

           (the same condition as in Case 1) and an additional smallness constraint of the 

form         , with         by construction.  When combined via equation (10b), 

the two equations lead to the same differential operator as in Case 1 (see equation A10) : 

 

   
      

                       
  

   
                (32) 
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Note that the strength of the smallness constraint is proportional to      
 

 
 

 

 
, which depends 

on both   and  . The smallness constraint leads to a smoothing kernel with less than unit area, 

since it causes the solution      to approach zero as     and     . No combination of   

and   can eliminate the smallness constraint while still preserving the two-sided declining 

exponential form of the smoothing kernel. 

 

Case 3: We quantify the smoothness of      by the smallness of its second-derivative. The 

prior information equation is            , implying           .  Since the second 

derivative is self-adjoint, we have: 

 

      
  

   
 (33) 

This differential equation yields the smoothing kernel: 

                                            (34) 

See equation A15 for the definition of the constants   and  . The covariance function    is given 

by (see equation A17): 

 

           
   

   

  
                              (35) 

This smoothing kernel arises in civil engineering, where it is represents the deflection      of a 

elastic beam of flexural rigidity    floating on a fluid foundation, due to a point load at the origin 

(Hetenyi 1979).  In our example, the model      is analogous to the deflection of the beam and 

the data to the load; that is, the model is a smoothed version of the data just as a beam’s 

deflection is a smoothed version of its applied load. Furthermore, variance is analogous to the 
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reciprocal of flexural rigidity. The beam will take on a shape that exactly mimics the load only in 

the case when it has no rigidity; that is, infinite variance. For any finite rigidity, the beam will 

take on a shape that is a smoothed version of the load, where the amount of smoothing increases 

with   .  

The area under this smoothing kernel can be determined by computing its Fourier transform, 

since area is equal to the zero-wavenumber value. Transforming position   to wavenumber   in 

(32) gives               , which imples         ; that is, the smoothing kernel has 

unit area. This is a desirable property.  However, the smoothing kernel (Figure 3) also has small 

undesirable side-lobes.  

Case 4: The prior information equation is that      is close to its localized average      

    , where      is a localized averaging kernel. We use the same two-sided declining 

exponential as in Case 1 (equation 25) to perform the averaging: 

 
     

 

 
           (36) 

The prior information equation is then: 

 
                        (37) 

Both      and the Dirac delta function are symmetric, so the operator   is self-adjoint. The 

smoothing kernel for this case is:  

 
                                                                  (38) 

See equation A22 for the definition of constants  ,  ,  ,  ,  , and  . The smoothing kernel 

(Figure 3) consists of the sum of a Dirac delta function and a spatially-distributed function 

reminiscent to the elastic plate solution in Case 3.  Thus, the function      is a weighted sum of 
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the data      and a smoothed version of that same data.  Whether this solution represents a 

useful type of smoothing is debatable; it serves to illustrate that peculiar behaviors can arise out 

of seemingly innocuous forms of prior information. The area under this smoothing kernel (see 

equation A23) is unity, a desirable property.  However, like Case 3, the solution also has small 

undesirable side-lobes.  

 

Discussion and Conclusions 

The main result of this paper is to show that the consequences of particular choices of 

regularization in inverse problems can be understood in considerable detail by analyzing the data 

smoothing problem in its continuum limit. This limit converts the usual matrix equations of 

generalized least squares into differential equations.  Even though matrix equations are easy to 

solve using a computer, they usually defy simple analysis. Differential equations, on the other 

hand, often can be solved exactly, allowing the behavior of their solutions to be probed 

analytically.  

A key result is that the solution to the general inverse problem depends on a smoothed version of 

the back-projected data    and a smoothed version of the theory, as quantified by    (equation 

22). The leading order term reproduces the behavior of the simple     data smoothing 

problem (considered in the case studies); that is,    is just a smoothed version of   .  However, 

in the general     case, regularization (damping) also adds smoothing inside the generalized 

inverse    , making it in some sense “simpler”.  Furthermore, the higher order terms, which are 

important when     is dissimilar from 1, are preferentially smoothed.  In all cases, the 

smoothing is through convolution with     , the solution to the simple              
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problem.  Thus, the solution to the simple problem controls the way smoothing occurs in the 

more general one. 

We have also developed the link between prior information expressed as a constraint equation of 

the form      and of that same prior information expressed as a covariance matrix   .  

Starting with a particular   or   , we have worked out the corresponding    or  , as well as the  

smoothing kernel. This smoothing kernel is precisely equivalent to the Green function, or 

generalized inverse familiar from the classic, linear algebraic approach. 

An interesting result is that prior information implemented as a prior covariance with the form of 

a two-sided declining exponential function, is exactly equivalent to a pair of constraint equations, 

one of which suppresses the first derivative of the model parameters and the other that 

suppresses their size.   In this case, the smoothing kernel is a two-sized declining exponential 

with an area less than or equal to unity; that is, it both smoothes and reduces the amplitude of the 

observations. 

Our results allow us to address the question of which form of regularization best implements an 

intuitive notion of smoothing.  There is, of course, no authoritative answer to this question.  Any 

of the four cases we have considered, and many others besides, implements reasonable forms of 

smoothing; any one of them might arguably be best for a specific problem.  Yet simpler is often 

better. We put forward first-derivative regularization as an extremely simple and effective 

choice, with few drawbacks.  The corresponding smoothing kernel has the key attributes of unit 

area and no side-lobes. The scale length of the smoothing depends on a single parameter,  . Its 

only drawback is that it possesses a cusp at the origin, which implies that it suppresses higher 

wavenumbers relatively slowly, as    .  Its autocorrelation, on the other hand, has a simple 
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maximum (without a cusp) at the origin, indicating that it widens the auto-covariance of the 

observations in a well-behaved fashion.  

Furthermore, first-derivative regularization has a straightforward generalization to higher 

dimensions. One merely writes a separate first-derivative equation for each independent variable 

(say,      ): 

 

     
 

  
                  

 

  
                  

 

  
    (39) 

The least-squares minimization will suppress the sum of squared errors of these equations, which 

is to say, the Euclidian length of the gradient vector   . According to (equation 12), the 

smoothing kernel satisfies the Screened Poisson equation: 

                         (40) 

which has two- and three-dimensional solutions (Wikipedia, 2014) : 

 

       
   

  
    

                      
   

   
                             (41) 

Here,    is the modified Bessel function.  Both of these multidimensional smoothing kernels, 

like the 1D version examined in Case 1, have unit area and no side-lobes, indicating that first-

derivative regularization will be effective when applied to these higher-dimensional problems. 
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Appendix: Derivations of Smoothing Kernels and Covariances for Case Studies 

Case 1: First derivative minimization 

The operator          has translational invariance, so we expect that the smoothing kernel 

                depends only upon the separation distance        (as also will   ,   ,    

and  ). Without loss of generality, we can set     , so that equation (13) becomes: 

 

    
  

   
               (A1) 
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Here, we utilize the relationship that              . The solution to this well-known 1D 

Screened Poisson equation is: 

 

     
   

 
             (A2) 

This solution can be verified by substituting it into the differential equation: 

 
  

  
  

   

 
                              

   

   
 

   

 
                        

so          

 
                             

   

 
                  

(A3) 

Here, we have relied on the fact that                  and                    . Note 

that      is a two-sided declining exponential with unit area and decay rate    . Because of the 

translational invariance, the integral in equation (11) has the interpretation of a convolution. The 

solution is the observed data      convolved with this smoothing kernel: 

 
               (A4) 

The variance    of the prior information satisfies (equation 15a): 

 

    
     

  

   
            (A5) 

This is a 1D Poisson equation, with solution: 

 

        
  

   

 
                             (A6) 

This solution can be verified by substituting it into the differential equation: 

 
   

  
     

  
   

 
                  

    

   
      

           (A7) 
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thus          
       

               
         

                    

The covariance          implies that the errors associated with neighboring points of the prior 

information equation        are highly and positively correlated, and that the degree of 

correlation declines with separation distance, becoming negative at large separation. 

 

Finally, we note that the operator          is not self-adjoint, so that it is not the continuous 

analog of the symmetric matrix   
    

.  As described earlier, we can construct a symmetric 

operator by introducing a unary transformation.    is antisymmetric in  , but we seek a 

symmetric operator, so the correct transformation it is the Hilbert transform,  ; that is, the linear 

operator that phase-shifts a function by    .  It obeys the rules      ,       and 

               .  The modified operator             is self-adjoint and satisfies 

   
        . 

 

Case 2: Exponentially decaying covariance 

For a covariance described by a two-sided declining exponential function: 

 

                           
    

 
 
 

 
              (A8) 

 

By comparing equtions (A1) and (A2), we find that this prior covariance is the inverse of the 

operator: 

 

    
   

 
     

  

   
    (A9) 
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The smoothing kernel solves the equation: 

 

          
  

   
                

                         
   

 
  

(A10) 

By analogy to equations (A1) and (A2), the smoothing kernel is: 

 

        
  

 
            (A11) 

An operator   that reproduces the form of     given in equation (A9) is: 

 

       
 

  
                         (A12) 

The function    solves equation (15b),           , which for the operator in (30) has the 

form of a one-sided exponential: 

                        (A13) 

Here,      is the Heaviside step function.  Because of the translational invariance, the inner 

product in equation (14) relating    to    is a convolution.  That, together with the rule that the 

adjoint of a convolution is the convolution backwards in time, implies that      =        

                 , where   signifies cross-correlation. The reader may easily verify that the 

autocorrelation of equation (31) reproduces the formula for    given in (25).  Unfortunately, its 

Hilbert transform cannot be written as a closed-form expression, so no simple formula for the 

symmetrized form of   , analogous to   
   

, can be given. 

 

Case 3: Second derivative minimization 
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The smoothing kernel      satisfies the differential equation: 

 
   

  

   
             (A14) 

This well-known differential equation has solution (Hetenyi 1979; see also Menke and Abbott 

1989; Smith and Wessel 1990; Menke, 2014): 

                                            

                    
  

   
  

(A15) 

The variance    of the prior information satisfies equation (15a): 

 

  
     

  

   
            (A16) 

And by analogy to (A6) has solution: 

 

           
 
   

  
                              (A17) 

 

 

 

This solution can be verified by substituting it into the differential equation: 

 
    

   
    

 
   

 
                  

    

   
    

           

thus       
       

              
       

                    

(A18) 
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This function implies a steep drop off in covariance between neighboring points and increasingly 

great anticorrelation with distance. 

 

Case 4: Damping towards localized average 

From equation (37), we find that the smoothing kernel      satisfies:  

 
                                              (A19) 

We now make use of the fact that the operator                is the inverse to 

convolution by        Applying    twice to (37) yields the differential equation:  

 

         
   

   
     

   

   
                                 (A20) 

We solve this equation by finding its Green function (that is, solving (39) with          ) and 

then by convolving this Green function by the actual     .  This Green function can be found 

using Fourier transforms, with the relevant integral given by equation 3.728.1 of Gradshteyn and 

Ryzhik (1980) (which needs to be corrected by dividing their stated result by a factor of 2). The 

result is:  

 
                                                                  (A21) 

where:  
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or              
  

    
  

 

   
  

    
 

 
 
 

          

  
    

    
          

           

  
 

                      
   

 
 
   

         
   

 
 
   

 

(A22) 

We determine the area under the smoothing kernel by taking the Fourier transform of (A20):  

 
                                            (A23) 

and evaluating it at zero wavenumber. Thus,         ; that is, the area is unity.  
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Figure captions 

Figure 1.  Telegraph signal inverse problem.  (A) The true model,          is a spike.  (B) The 

observed data         are the true data               plus random noise. (C) An undamped 

inversion yields an estimated model        . (D) A damped inversion with          and 

      yields a smoother estimated model. (E) The first 2 terms of the series approximation for 

the generalized inverse yield a solution substantially similar to the one in (D). 

Figure 2.  Gravity inverse problem.  (A) The true model,          represents density.  (B) The 

observed data         is the true data predicted by Newton’s Law, plus random noise. (C) An 

undamped inversion yields an estimated model         that is very noisy. (D) A damped 

inversion with          and       suppresses the noise, yielding an improved estimated 

model. (E) The first 20 terms of the series approximation for the generalized inverse yield a 

solution substantially similar to the one in (D). 

Figure 3. The data smoothing problem implemented using each of the four cases.     and 

     .  A) The true model                     (black line) has noise added with standard 

deviation 0.2 to produce the hypothetical data         (black circles), to which the different 

smoothing solutions are applied to produce estimated models (colored lines). For cases 1-4, the 

smoothed solutions have posterior r.m.s. errors of 0.10, 0.44, 0.07, and 0.19, respectively.  B-E) 

Numerical (grey) and analytic (colored) versions of the smoothing kernels,    ) for each of the 

four smoothing schemes considered. The two versions agree closely. 

Table 1. Comparison of smoothing kernels for the different choices of smoothing scheme for the 

four cases considered. The plotted smoothing kernels were calculated with the choices     and 

      and are plotted at the same scale, in the x-range of ± 40 units.   
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Figure 1. 
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Figure 2. 
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Figure 3. 

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

s
m

o
o

th
e

d
 d

a
ta

X

 

 

mtrue d−obs m−est(1) m−est(2) m−est(3) m−est(4)

−100 −80 −60 −40 −20 0 20 40 60 80 100

0

0.1

0.2

a
(x

) 
c
a

s
e
 1

−100 −80 −60 −40 −20 0 20 40 60 80 100

0

0.1

0.2

a
(x

) 
c
a

s
e

 2

−100 −80 −60 −40 −20 0 20 40 60 80 100

0

0.1

0.2

a
(x

) 
c
a

s
e

 3

−100 −80 −60 −40 −20 0 20 40 60 80 100

0

0.1

0.2

a
(x

) 
c
a

s
e
 4

X − X‘



35  

 

Table 1. 

Case 1 2 3 4 

Constraint 1
st
 derivative damping 

Exponentially declining 

spatial covariance 

2
nd

 derivative damping 

Damping towards localized 

average      

Constraint 

equation 
 

 

  
   

        
               

         
     

     
 

 
  

   
   

                 

      

    

Comments 

No side lobes 

Unit area 

No side lobes 

Area = 
 

        

Side lobes 

Unit area 

Side lobes 

Unit area 

 

 


