Seasonal Change of Antarctic Sea Ice Cover

Abstract. The winter expansion of the sea ice surrounding Antarctica and the subsequent retreat of the ice in summer may be linked with the wind stress acting on the Southern Ocean in conjunction with the heat exchange in open water regions within the ice fields.

The Antarctic sea ice undergoes immense seasonal fluctuations in areal extent (Fig. 1). The maximum area, $22 \times 10^8 \text{ km}^2$, occurs in September and the minimum, $4 \times 10^8 \text{ km}^2$, in March (1). Although other estimates differ slightly (2, 3), all indicate seasonal variations of approximately $18 \times 10^8 \text{ km}^2$, an area larger than that of Antarctica and its ice shelves.

Sea ice acts as an insulator, effectively reducing radiative and nonradiative heat flux between ocean and atmosphere (4). In summer, when incoming solar radiation is large, the ice reflects 40 to 70 percent of this radiation to drastically reduce heating of the ocean; if the ocean were ice-free it would reflect only 10 percent (4). In winter the ice cuts down substantially on the sensible and latent heat flux from ocean to atmosphere, because of its low heat conductivity and low vapor pressure (4).

Sea ice, with a salinity of 3 to 5 per mil (5), is an important factor in the ocean’s salt balance, ejecting some 3 g of salt per square centimeter of surface as a cold brine into the ocean for each meter of ice formed. This process reduces the stability of the ocean surface layer and convection can ensue. The convection may penetrate the relatively warm-saline upper layers of circumpolar deep water (400 to 600 m deep), which would result in a significant upward heat flux into the surface layers and eventually into the atmosphere (6, 7). During ice melting the release of relatively fresh water increases the stability of the surface layer, retarding convection.

Hence, the seasonal variation of the ice has important effects on the thermohaline structure of the ocean and on the characteristics of the atmosphere. The reason for the large seasonal change has not been investigated; presumably new ice is added in winter to the outer fringes of the sea ice field and removed the following summer. We present the hypothesis that much of the ice growth and retreat is due to processes related to the wind stress within the sea ice fields.

The curl of the wind stress (8), which induces a general Ekman divergence of surface water and sea ice cover, continuously generates open water regions with freezing point temperatures within the ice fields. In winter the open water fills with new ice and the ice field expands accordingly, extending northward as a function of the total divergence within the existing ice field. The northern extent of the ice may be determined by an inability of the local heat balance (in both atmosphere and ocean) to continually freeze over the open water generated by the Ekman divergence. The resulting partial ice cover may then be destroyed by ocean waves which penetrate into the ice field. After the spring equinox, open water regions within the ice field increase heat absorption by the ocean, and rapid ice melting follows.

The hypothesis can be evaluated by comparing the observed winter growth rate of the ice with the rate calculated from the Ekman divergence. Figure 1 indicates an observed growth rate (mid-March to mid-August) of $3.3 \times 10^6 \text{ km}^2 \text{ per month}.

The rate of divergence of the ice can only be estimated, since understanding of the behavior of ice on a boundary layer is incomplete, although one would anticipate less interference of ice with the ocean-atmosphere coupling in a divergent Ekman field (9). In view of these uncertainties we cannot firmly establish the validity of our hypothesis. However, we can test to see if it is reasonable.

The total Ekman transport is directed at a right angle to the surface wind direction and is proportional to the ratio of wind stress to Coriolis parameter (10). However, the full magnitude of the drift is accounted for in the upper half of the Ekman layer, and is directed 78° to the left of the wind direction in the Southern Hemisphere. Below this segment of the Ekman layer the contribution to the total drift vector is a further 12° rotation to the left of the wind direction. Therefore, the total divergence is calculated by assuming uniform horizontal flow in the upper half of the Ekman layer. The Ekman is taken to be equivalent to the thickness of the mixed layer (11), which in the ice field is about 40 m (7). The data in
Fig. 2 indicate an average annual vertical velocity (for the points at and to the south of the maximum upwelling) of 10×10^{-5} cm/sec for the western section, and 17×10^{-5} cm/sec for the eastern section. The April values (introduced since this represents the waxing period) are a bit larger: 12×10^{-5} and 18×10^{-5} cm/sec, respectively. Using a characteristic value of 14×10^{-5} cm/sec, we calculate the monthly ice growth as equal to the area determined by the surface divergence. The ice covers an increasing area and therefore grows at an increasing rate (Fig. 1).

The calculated rates are less than the observed rates, but a number of factors must be considered.

1) The model presented is not strictly valid in March and April, when the ice field is essentially nonexistent. In these months the ice field is most likely initiated as thin sheets close to Antarctica. Once this initial ice field forms, the model presented above becomes an increasingly important factor in the further northward expansion of the ice.

2) The wind stress was calculated according to the bulk aerodynamic equations (8) with the average geostrophic wind velocity, which was then squared. This yields a smaller value than would be obtained if the average of the square of the geostrophic wind speed were used. To compensate, Roden (12) doubled the drag coefficient to 2.6×10^{-8}. The higher value would have the effect of doubling the divergence and ice growth. The growth rate based on data for April and the drag coefficient of 2.6×10^{-8} coincides well with the observed increase to mid-July. However, the mean geostrophic wind velocity is greater than the real wind velocity (13) and at least partially alleviates the need for increasing the drag coefficient. Statistical wind data (14) show that the mean geostrophic wind velocities (13) are sufficiently greater than the observed wind velocities to warrant use of 1.3×10^{-8} for the drag coefficient.

3) In the western Weddell Sea ice is advected northward, eastward along 60°S (1). This special case is not included in the model. The area of ice carried northward in the Weddell Sea in this way may be 3×10^9 to 5×10^9 km2, based on the residual tongue of ice along 60°S in the western Atlantic observed in the early summer months (1). This area must be subtracted from the total to better evaluate the model. If 4×10^6 km2 of ice can be accounted for by advection, and if it occurs uniformly from mid-March to mid-August, the observed growth rate would be 2.5×10^6 rather than 3.3×10^6 km2 per month, which compares well with the calculated growth rates based on April and May data and the lower drag coefficient.

In view of the limitations discussed above, we can only state that the calculations suggest a probability that the curl of the wind stress and the associated Ekman divergence, in conjunction with the heat balance, may account for the immense expansion of the Antarctic sea ice in winter. The rapid decay of the ice in summer would also be related to these factors, when the generation of open water acts as a heat source for the ocean.

The curl of the wind stress is associated with cyclones, and these are most frequent over the maximum upwelling belt (15), which coincides with the maximum limit of the sea ice. Yearly variability in the frequency and path of cyclones would affect the generation of open water and hence the seasonal fluctuations of the ice. A more northern position for the cyclone belt would allow greater northern expansion of the ice and decrease upwelling to the south, which would limit the extent of summer melting and therefore reduce the seasonal fluctuations of the ice.

ARNO LD L. GORDON
H OYT W. TAYLOR
Lamont-Doherty Geological
Observatory and Department of
Geological Sciences of Columbia
University, Palisades, New York 10964

References and Notes
2. A. F. Treshnikov, Proceedings of the Sym-
posium on Pacific-Antarctic Sciences, Y. Nagata, Ed. (Tokyo National Science Muse-
Bioklimatol. Ser. A, Meteorol., Geophys., 22,
4. J. O. Fletcher, Rand Corp. Memo RM-5793-
5. G. Neumann and W. J. Pierson, Jr., Prin-
ciples of Physical Oceanography (Prentice-
6. A. F. Treshnikov, A. O. Shaikher, B. V.
Gindysh, Probl. Arkhik. Antarctiki No. 27
(1967), pp. 35-47; a translation appears in
(4, pp. 85-99).
7. A. L. Gordon, H. W. Taylor, D. T. Georgi,
paper presented at the SCOR-SCAR (Sci-
entific Committee on Oceanographic Research-
Scientific Committee on Antarctic Research)
Polar Oceans Conference, McGill University,
Montreal, Canada, 5 to 11 May 1974.
8. The curl of the wind stress is $\partial X / \partial y -
\partial Y / \partial x$, where X and Y are the com-
ponents of wind stress acting on the ocean
surface in the eastern and northern directions,
respectively. The wind stress is given by the aerodynamic equations
$\tau_x = \rho_{air} \overline{C_W}(W_x + W_y)/\rho$
$\tau_y = \rho_{air} \overline{C_W}(W_x + W_y)/\rho$
in which ρ_{air} is the density of the air, C_D is the drag coefficient, and W_x and W_y are the wind velocity components in the eastern and northern directions, respectively.
10. V. W. Ekman, Ark. Mat. Astron. Fys. 2
(No. 11) (1905).
Thompson, Geophys. Fluid Dyn. 3, 381
(1973).
J. Tailjaard, Climate of the Upper Air:
Southern Hemisphere (NCAR/TN/STR-58,
National Center for Atmospheric Research,
Boulder, Colo., 1971), vol. 3.
(Naweps 50-IC-50, Government Printing
15. J. J. Tailjaard, Meteorol. Monogr. 13, 139
(1972).
16. We acknowledge NSF/IDOE grant GX-41955.
Lamont-Doherty Geological Observatory Con-
tribution No. 2182.
17. August 1974; revised 15 October 1974