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Introduction

The probability of occurrence of values of a climate or weather variable
can be described by a probability density function (PDF) that for some
variables (e.q., temperature) is shaped similar to a Gaussian curve. A
PDF is a function that indicates the relative chances of occurrence of
different outcomes of a variable. Simple statistical reasoning indicates
that substantial changes in the frequency of extreme events (e.g., the
maximum possible 24-hour rainfall at a specific location) can result
from a relatively small shift in the distribution of a weather or climate
variable. Figure 1.8a shows a schematic of such a PDF and illustrates
the effect of a small shift in the mean of a variable on the frequency of
extremes at either end of the distribution. An increase in the frequency
of one extreme (e.g., the number of hot days) can be accompanied by
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Introduction

The probability of occurrence of values of a climate or weather variable
can be described by a probability density function (PDF) that for some
variables (e.g., temperature) is shaped similar to a Gaussian curve. A
PDF is a function that indicates the relative chances of occurrence of
different outcomes of a variable. Simple statistical reasoning indicates
that substantial changes in the frequency of extreme events (e.g., the
maximum possible 24-hour rainfall at a specific location) can result
from a relatively small shift in the distribution of a weather or climate
variable. Figure 1.8a shows a schematic of such a PDF and illustrates
the effect of a small shift in the mean of a variable on the frequency of
extremes at either end of the distribution. An increase in the frequency

of one extreme (e.q.. the number of hot davs) can be accompanied by
a decline in the opposite extreme (in this case the number of cold days

such as frost days). Changes in the variability, skewness or the shape
of the distribution can complicate this simple picture (Figure 1.8b, ¢
and d).
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Introduction

Normal Distribution (or Gaussianpr W6 S t1zNJJ S Q 0
IS a continuousprobability distribution givenby

S C )
o~ Q
where the parameter> is the mean of the distribution (and alsoits median
andmode) andthe parameter isthe standarddeviation

Sourceintrocs.cs.princeton.edu
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Introduction

Statistical extreme value theory is a field of statisticsdealingwith extreme
values,.e., largedeviationsfrom the medianof probability distributions The
theory assessethe type of probabilitydistribution generatedby processes

Extremevalue distributions are the limiting distributions for the minimum
or the maximumof large collectionsof independentrandom variablesfrom
the samearbitrary distribution. By definition extremevaluetheory focuseson
limiting distributions(whichare distinctfrom the normaldistribution).

Two approachesexist for practical extreme value applications The first
method relieson derivingblock maxima(minima)series,the secondmethod
relies on extracting peak values above (below) a certain threshold from a
continuousrecord

A third approach the so-called r-largest order statistics represents a
compromisebetweenthe blockmaximaand peakoverthresholdapproach




Data Sets

[ S ib&k&n someexampleswith realworld data:
(1) maximumdaily 8-hour surfaceozonefrom CastNetSitePSU1.06
(2) dailymaximumtemperaturefrom NYQCentralParkBelvederelTower

CASTNet Site PSU106 (1988-2013)

Central Park Belvedere Tower (1876-2013)
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Data Sets

Forsimplicitywe focuson summertime (JJApataonly

andwe considerextremevaluesas

(1) mda8 O3 >75ppb (NAAQS)

19882000vs2001-2013 shift in mean-7.8 ppb; changen variance-3.6 ppb

(2) Tmaxxk25degreeC(summerday)
18761944vs19452013 shift in mean+0.86 C changen variance-0.025C

We want to visualizehow these changesn meanor varianceor both affect
the distributions andin particular the probabilisticfrequencyof extremes
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Influence of shift in mean and/or change in variance
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Comparison of observed distributions with leasguare fitted normal distributions

Compareobserveddistributionswith Normaldistributions

DObservations&Gaussian Fitted Distribution -6;0 -2‘5 —Io (I) clr 2I0' slc 4Ics Quantile Observed Gaussian

density

7 0.10 38ppb 36 ppb
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Testingfor normality

The ShapireWilk test is a standardtest to checkwhether a sampleX,....X
stemsfrom a normallydistributed population

B

Thetest statistic(w ) is w

where® is theith-smallest number in theampleg & E @ TQs

the samplemean, andi are constantg M8 ho ) —, where

d (& Bhy ) andd M8 hy are theiid expected values of the order
statistics from the normal distribution and V represents the covariance m
of these order statistics.

Thenull hypothesis,the population is normally distributed, is rejectedwhen
the p-valueof the test is belowa definedsignificancevalue(e.g., 0.05)
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Statistical Extreme Value Theory

Extremevalue theory (EVT)is concernedwith the occurrenceand sizesof
rare events,be they largeror smallerthan usual

Here we want to review briefly the most common EVTapproachesand
modelsandlookinto someapplications

m There has been rapid developmentover the last

S decades in both theory and applications A
comprehensive introduction to statistics of
extremesis providedby Coleg2001).
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Statistical Extreme Value Theory

Further Reading

Water Science and Technology Library

» R.-D. Reiss
8 M.Thomas

Amir AghaKouchak - David Easterling
Kuolin Hsu - Siegfried Schubert
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Extreme Value Statistical Analysis of Extremesina
Theory Extreme Value: Changing Climate -
A | | . s Detection, Analysis and Uncertainty
QW &) Springer
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Statistical Extreme Value Theory

Frequentlydiscussiorof extremesconcernshigh extremes,maxima Alsowe
will focus our initial discussionon maxima Thoughit shall be noted that
dealing with minima follows the same approachesand in applicationsall
needed to be done is reverse the sings of the observationsand apply
proceduredor maximaas

| E) | AGw
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Generalized Extreme Value Distribution

BlockMaxima

TheExtremalTypes Theorem (ETT{9.g.Leadbetteret al., 1983 addresses
the following question: Given a set of independent identically distributed
random variables, ..., X, what are the possible limiting distributions of

U O A@BR) O]OdIP He

d) (I) ™ \
O - > OW
w O

The answeris that if a nondegeneratelimiting cumulativedistribution (cdf)
existsfor somesequence®f constantsa, and b, it must fall into one of the

three classes

I: F(x) = exp[—e™"], —00 <x < 00,

0, x <0,
exp(—x %), x>0, >0,

II: F(x) = 1

rexp[—(—x}“*]. x <0, >0,

HI: F(x) = A« 1. x> 0.
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Generalized Extreme Value Distribution

—x

I F(x) = exp[—e™ "], —00<x < 00,

0, x <0,
_exp(—x‘“), x>0 a=>0,

II: F(x) = 1

exp[—(—x)¥], x <0,x >0,

HI: F(x) = 1 1 % > 0.

Thethree types of distributionsrepresentthe Gumbe) Frechetand Weibull
distributions The ETTguaranteesthat if a limit existsfor maxima, it must
haveone of these specifiedforms.
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Generalized Extreme Value Distribution

In @ more modern approach these distributions are combined into the
generalizedextreme valuedistribution (GEVwith cdf

W

‘ 7 . . . .
A A@{D [p | (—)] }h ‘R HR T
definefor valuesof wfor which1+, (w-* )/, >0.

where’ isthe locationparameter,, isthe shapeparameter,and
,  Tuisthe scaleparameter

Theshapeparameters-governsthe distributiontype:
type | with 3=0 (Gumbellight tailejl "7
type Il with 3> 0 (Frechet, heavy tailec,.,|

type Il with 3 <0 (Weibull, boundegl o3}
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Generalized Extreme Value Distribution

GEV typd with 3=0 (Gumbel lighttailed)
Domainof attraction formany commordistributions(e.g., norma)l
exponentialA YYI 0 y20 FTNBIljdzSyiuteée T2dzy

GEV type Il with 3- > 0 (Frechet, heavy tailejl
Fits found for precipitation, stream flow, economic damage

GEV type Il witha- <0 (Weibull, bounded
Fitsfound for temperature,wind speed pollutants,sealevel
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Block Maxima Application

It iIs important to note that the location parameter‘ is not the mean but
doesrepresentthe WO S yofitiseNisIribution, and the scaleparameter,, is
not the standarddeviation but doesgovernthe sizeof the deviationsabout

A typical applicationwould be to fit a GEVto the annual maximum of a
variable Note that the block size for maxima is freely variable though
applicationanustbe consistentwith the maxima of a givenblock

INSERGRAPHf ANNUALMAX TmaxCentralPark
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