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Normal Distribution (or Gaussian, or ‘bell curve’) 
is a continuous probability distribution given by 
   

𝐹 𝑥, 𝜇, 𝜎 =
1

𝜎 2𝜋
𝑒

−
𝑥−𝜇 2

2𝜎2   

 
where the parameter μ is the mean of the distribution (and also its median 
and mode) and the parameter σ is the standard deviation.  
  

Source: introcs.cs.princeton.edu 
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Statistical extreme value theory is a field of statistics dealing with extreme 
values, i.e., large deviations from the median of probability distributions.  The 
theory assesses the type of probability distribution generated by processes.  
 
Extreme value distributions are the limiting distributions for the minimum 
or the maximum of large collections of independent random variables from 
the same arbitrary distribution. By definition extreme value theory focuses on 
limiting distributions (which are distinct from the normal distribution). 
 
Two approaches exist for practical extreme value applications. The first 
method relies on deriving block maxima (minima) series, the second method 
relies on extracting peak values above (below) a certain threshold from a 
continuous record.  
 
A third approach the so-called r-largest order statistics represents a 
compromise between the block maxima and peak over threshold approach.  
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Let’s look on some examples with real world data: 
(1) maximum daily 8-hour surface ozone from CastNet Site PSU106 
(2) daily maximum temperature from NYC Central Park Belvedere Tower 



Data Sets  
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For simplicity we focus on summer time (JJA) data only  
and we consider extreme values as: 
(1) mda8 O3 > 75 ppb (NAAQS) 
1988-2000 vs 2001-2013: shift in mean -7.8 ppb; change in variance -3.6 ppb 
 
(2)  Tmax ≥ 25 degree C (summer day) 
1876-1944 vs 1945-2013: shift in mean +0.86 C; change in variance -0.025 C 
 
 
We want to visualize how these changes in mean or variance or both affect 
the distributions and in particular the probabilistic frequency of extremes. 
 
 
 
  



Influence of shift in mean and/or change in variance  
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Influence of shift in mean and/or change in variance  
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Comparison of observed distributions with least-square fitted normal distributions 
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Compare observed distributions with Normal distributions 
 
 
  

Quantile Observed Gaussian 

0.10 38 ppb 36 ppb 

0.75 70 ppb 71 ppb 

0.9 82 ppb 81 ppb 

0.95 92 ppb 88 ppb 

0.99 106 ppb 100 ppb 

Quantile Observed Gaussian 

0.10 22.2 C 22.3 C 

0.75 30.0 C 30.1 C 

0.9 32.2 C 32.5 C 

0.95 33.9 C 34.0 C 

0.99 36.1 C 36.7 C 
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Testing for normality 
 
The Shapiro-Wilk test is a standard test to check whether a sample X1,...,Xk 
stems from a normally distributed population.  
 

The test statistic (𝑊) is  𝑊 =
( 𝑎𝑖𝑥(𝑖)

𝑘
𝑖=1 )2

 (𝑥𝑖−𝑥 )2𝑘
𝑖=1

 

 
where 𝑥𝑖  is the ith-smallest number in the sample, 𝑥 = (𝑥𝑖 + ⋯ + 𝑥𝑘)/𝑘 is 

the sample mean, and 𝑎𝑖 are constants 𝑎1, … , 𝑎𝑘 =
𝑚𝑇𝑉−1

(𝑚𝑇𝑉−1𝑉−1𝑚)1/2, where 

𝑚 = 𝑚1, … , 𝑚𝑘
𝑇 and 𝑚1, … , 𝑚𝑘  are the iid expected values of the order 

statistics from the normal distribution and V represents the covariance matrix 
of these order statistics. 
 
The null hypothesis, the population is normally distributed, is rejected when 
the p-value of the test is below a defined significance value (e.g., 0.05) 
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Extreme value theory (EVT) is concerned with the occurrence and sizes of 
rare events, be they larger or smaller than usual.  
 
Here we want to review briefly the most common EVT approaches and 
models and look into some applications.  
 
 
 
 
 
 
  

There has been rapid development over the last 
decades in both theory and applications. A 
comprehensive introduction to statistics of 
extremes is provided by Coles (2001).    
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Further Reading 
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Frequently discussion of extremes concerns high extremes, maxima. Also we 
will focus our initial discussion on maxima. Though it shall be noted that 
dealing with minima follows the same approaches and in applications all 
needed to be done is reverse the sings of the observations and apply 
procedures for maxima as  
 

min 𝑥𝑖 = −max⁡(−𝑥𝑖) 
 
  



Generalized Extreme Value Distribution 

15 

Block Maxima 
 
The Extremal Types Theorem (ETT) (e.g. Leadbetter et al., 1983) addresses 
the following question: Given a set of independent identically distributed 
random variables X1, ...,Xk, what are the possible limiting distributions of  
 

𝑀𝑘 = 𝑎𝑘 max 𝑋1, … , 𝑋𝑘 − 𝑏𝑘 ⁡𝑎𝑠⁡𝑘 → ∞⁡? 
 

𝐹𝑘
𝑥 − 𝑏𝑘

𝑎𝑘 𝑘→∞
𝐺(𝑥) 

The answer is that if a nondegenerate limiting cumulative distribution (cdf) 
exists for some sequences of constants ak and bk, it must fall into one of the 
three classes  
 
 
  



Generalized Extreme Value Distribution 
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The three types of distributions represent the Gumbel, Frechet and Weibull 
distributions. The ETT guarantees that if a limit exists for maxima, it must 
have one of these specified forms.  
 
 
 
  



Generalized Extreme Value Distribution 
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In a more modern approach these distributions are combined into the 
generalized extreme value distribution (GEV) with cdf   
 
 
 
define for values of 𝑦 for which 1+ 𝜉(𝑦⁡- 𝜇⁡)/𝜎 > 0. 

 
where 𝜇 is the location parameter, 𝜉 is the shape parameter, and 
𝜎 > 0 is the scale parameter.  
  
The shape parameter ξ governs the distribution type:  
type I with   ξ = 0 (Gumbel,light tailed) 
type II with   ξ  > 0 (Frechet, heavy tailed) 
type III with   ξ  < 0 (Weibull, bounded) 
 

𝐻 𝑦 = exp − 1 + 𝜉
𝑦 − 𝜇

𝜎

−1/𝜉

, −∞ < 𝜇, 𝜉 < ∞, 𝜎 > 0, 
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18 

GEV type I with    ξ = 0 (Gumbel, light tailed) 
Domain of attraction for many common distributions (e.g., normal, 
exponential, gamma), not frequently found to fit ‘real world data’ 
 
GEV type II with   ξ  > 0  (Frechet, heavy tailed) 
Fits found for precipitation, stream flow, economic damage 
 
 
GEV type III with  ξ  < 0  (Weibull, bounded) 
Fits found for temperature, wind speed, pollutants, sea level 
 
 
  



Block Maxima - Application 
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It is important to note that the location parameter 𝜇 is not the mean but 
does represent the ‘center’ of the distribution, and the scale parameter 𝜎⁡is 
not the standard deviation but does govern the size of the deviations about 
𝜇. 
 
A typical application would be to fit a GEV to the annual maximum of a 
variable. Note that the block size for maxima is freely variable though 
applications must be consistent with the maxima  of a given block.  
 
INSERT GRAPH of ANNUAL MAX Tmax Central Park 
 
  



Block Maxima - Application 

20 

Fit GEV distribution to annual  MAX of summertime (JJA) temperature 
 
 
 
𝜇 = 35.28 (± 0.16) 
𝜎⁡= 1.74 (± 0.12) 
𝜉⁡= -0.19 (± 0.06)  
 
GEV distribution type III with   ξ  < 0  (Weibull, bounded) 
 
 
  

𝐻 𝑦 = exp − 1 + 𝜉
𝑦 − 𝜇

𝜎

−1/𝜉

, −∞ < 𝜇, 𝜉 < ∞, 𝜎 > 0, 
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The fitted distribution than can be used to estimate the 𝒎-year return level, 
which represents the high quantile for which the probability that the annual 
maximum exceeds this quantile is 1/𝑚.  
Under the assumption of stationarity the return level is the same for all years, 
giving rise to the notion of the return period. The return period of a 
particular event is the inverse of the probability that the event will be 
exceeded in any given year, i.e. the 𝑚-year return level is associated with a 
return period of 𝑚 years.    
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GEV 𝑦 = exp − 1 + 𝜉
𝑦 − 𝜇

𝜎

−1/𝜉

 

 
 
Computing the return level 𝑟𝑚 such that  
 

GEV 𝑟𝑚 = 1 − 𝑚 
 

𝑟𝑚 = GEV−1(1 − 𝑚) 
 
Hence, 𝑟𝑚 = 𝜇 +

𝜎

𝜉
− ln 1 − 𝑚 −𝜉 − 1  
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𝑟𝑚 = 𝜇 +
𝜎

𝜉
− ln 1 − 𝑚 −𝜉 − 1  

 
Estimating the return level 𝑟𝑚 
 

𝑟𝑚 = 𝜇 +
𝜎 

𝜉 
− ln 1 − 𝑚 −𝜉 − 1  

 
 

Where GEV parameter estimates  𝜇 , 𝜎 , 𝜉 ,  are derived via  
 
-Maximum likelihood estimation (MLE) (inbuilt in gev packages in R, MatLab) 
-Methods of moments (PWM, GPWM) 
-Exhaustive tail-index approaches 
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In the stationary case there is a one to one relationship between the 𝒎-
year return level and the 𝒎-year return period (reciprocal of exceedance in 
any given year).  
 
A 10-year event might be more interpretable by lay audiences as a 0.1 
probability of occurrence in any given year. Though this leads to two possible 
interpretations of the ‘𝑚-year event’.  
 
(1) The expected number of events in 𝑚 years is 1. 
(2) The expected waiting time till the next exceedance is 𝑚 years.  
 
Under the assumption of stationarity both of this interpretations are  correct. 
  
We will discuss return level interpretations under non-stationarity a bit later 
in this class.  
 
 
  



Extending beyond block maxima 
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One argument against the application of a block-maximum approach is that 
use of maxima alone is wasteful of data: most of the information in the 
sample is ignored.   

 
To overcome this limitation several other approaches have been developed 
based on the point process characterization. 
 
Here we want to review 2 common applications: 
(1) the r-largest order model for extremes 
(2) peak over threshold modeling 
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r-largest order extremes 
The r-largest observations among Y1,...,Yk, will contain more information 
about the extremes than the maximum alone.   
 

Let 𝑦𝑡
(1) ≥⁡… 𝑦𝑡

(𝑟) be the r-largest observation in a block, or equivalently 
time period, 𝑡 ∈ 1,2, … 𝑇  and define the location 𝜇, shape 𝜎 and scale 
𝜉parameters as in the GEV then the likelihood 𝐿𝑡  for block 𝑡 based on the r-
largest order statistics model is  
 
 
 
 
 
 
This expression is related to the GEV distribution whose probability density 
function is obtained on setting 𝑟⁡=1.  



r-largest order statistics application 
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Block maximum   3-largest observations per summer 
𝜇 = 35.28 (± 0.16)   𝜇 = 34.69 (± 0.11) 
𝜎⁡= 1.74 (± 0.12)   𝜎⁡= 1.67 (± 0.08) 
𝜉⁡= -0.19 (± 0.06)   𝜉⁡= -0.28 (± 0.05)  
 
10yr return level: 38.5  10yr return level: 37.9 
25yr return level: 39.4  25yr return level: 38.8 
50yr return level: 40.0  50yr return level: 39.4 
100yr return level: 40.6  100yr return level: 39.8 
 
 



Peak over threshold  
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The peak over threshold approach is based on the idea of modelling data 
over a high enough threshold.  
 
The cdf of the amount by which an observation exceeds a high threshold 𝑢, 
given that it has done so, is  

𝑝𝑟 𝑋 > 𝑢 + 𝑦⁡|⁡𝑋 > 𝑢 = 𝐺 𝑦 = 1 − 1 + 𝜉
𝑦 − 𝑢

𝜎

−
1
𝜉

,⁡ 

𝜎 > 0, 𝑦 > 𝑢, 1 + 𝜉
𝑦 − 𝑢

𝜎
> 0;⁡ 

 
which is called the Generalized Pareto distribution.  
  
The shape parameter 𝜉⁡has the same meaning as in the GEV type with  
type I with   ξ = 0 (light tailed, exponential type) 
type II with   ξ  > 0 (heavy tailed, Pareto type) 
type III with   ξ  < 0 (bounded, beta type) 
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It shall be noted that in the GPD setting the scale parameter 𝝈⁡is dependent 
on the threshold.  
 
Meaning if the distribution of the excess Yi has an exact GP distribution 
(rather than only approximate) then increasing the threshold from 𝑢 to 𝑢∗ 
would result in another GP distribution with the same shape parameter ξ, but 
an adjusted scale parameter given by  
 

𝜎 𝑢∗ = 𝜎 𝑢 + 𝜉 𝑢∗ − 𝑢 , 𝑢∗ > 𝑢 
 
Note that the scale parameter would increase if ξ > 0 and decrease if ξ < 0. 
Consistent with the exponential distribution, there would be no change in the 
scale parameter if ξ = 0.  
 

 
 
  



Peak over threshold  
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Selection of a threshold involves a delicate trade-off between bias and 
variance.  
 
Too high a threshold will reduce the number of exceedances and thus 
increase the estimation variance and the reliability of the parameter 
estimates, whereas too low a threshold will induce a bias because the GPD 
will fit the exceedances poorly.  
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Parameter Model 1 Model 2 

𝜇 70 77 

𝜎 22.77 (±2.48) 17.36 (±2.26) 

𝜉 -0.37 (± 0.06) -0.29 (± 0.08) 

AIC 791.871 616.086 
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Parameter Model 1 Model 2 

𝜇 70 77 

𝜎 22.77 (±2.48) 17.36 (±2.26) 

𝜉 -0.37 (± 0.06) -0.29 (± 0.08) 

AIC 791.871 616.086 

AIC = 2𝑘 − 2ln 𝐿  
𝑘 … number of parameters 
𝐿⁡ … maximized value of likelihood function 
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Dependence among observation 
 
The EVT concepts introduced build on the assumption of independent 
identically distributed variables. Though we know that in practice most 
extreme values arise from a series of dependent observations.  
 
Fortunately for sets of observations without long-range dependence the 
same limiting results apply for maxima of dependent time series as for 
independent time series (see Leadbetter et al., 1983 and Leadbetter and 
Rotzen 1988, for details).    
 
In practice if a series of observations X1,...,Xk, with no long-range dependence 
of extremes has short-range dependence, which leads to extremes occurring 
in clusters with mean size 1/𝜃, where 0 ≤ 𝜃 ≤ 1; ⁡𝜃 is called the extremal 
index of the process.  
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Dependence and Declustering 
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So if we consider a series of independent variables⁡𝑋
∗
1, … , 𝑋

∗
𝑘with the same 

marginal distribution as 𝑋𝑗 , then 𝑀𝑘 = 𝑎𝑘 max 𝑋1, … , 𝑋𝑘 − 𝑏𝑘  has a 
nondegenerate limiting distribution 𝐻(𝑦)⁡ if and only if 
𝑀

∗
𝑘= 𝑎𝑘 max 𝑋

∗
1, … , 𝑋

∗
𝑘 − 𝑏𝑘  has a nondegenerate distribution 𝐻∗(𝑦), 

and 𝐻 𝑦 = 𝐻∗(𝑦)  
𝜃

.  
 
Thus the limiting distribution is unaffected by short term dependence as 
although the location and scale parameters differ, 𝐻(𝑦) and 𝐻∗(𝑦) have the 
same shape parameter . 
 
Thus in practice the solution to clustering is to  (i) identify clusters, and (ii) fit 
the point process model to cluster maxima. 
 
RECAP GEV: As the GEV is automatically fitted to block maxima, parameters 
are automatically adjusted for any temporal clustering. 
 
 
  



Stationarity vs. Non-stationarity 
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Stationarity vs. non-stationarity 
In statistics, a stationary process is a stochastic process whose joint 
probability distribution does not change when shifted in time. 
 
The approaches and examples discussed so far have all assumed stationarity 
in the underlying time series. Non-stationarity can be introduced in EVT 
models by expressing one or multiple parameters as a function of a covariate 
(e.g. time) .  
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Non-stationary Block maxima 
As candidate model for the non-stationary GEV we can assume a model 
where linear trends in the location and log-transformed scale parameter [to 
constrain 𝜎 𝑡 > 0 ] are considered while no trend is considered in the shape 
parameter.   

 
𝜇 𝑡 = 𝜇0 + 𝜇1𝑡, ln 𝜎 𝑡 = 𝜎0 + 𝜎1𝑡, 𝜉 𝑡 = 𝜉  
 
The parameter 𝜇1 can be interpreted as slope of a linear trend in the center 
of the distribution, and the transformed parameter exp ( 𝜎1 ) as the 
appropriate rate of change in the scale (or size of the distribution).  



Non-Stationary Block Maxima 

40 

Such trend can be readily interpreted in terms of the corresponding time 
varying quantile (or ‘effective’ return level) which would reduce to a 
conventional return level (with return period 1/𝑚) if it would not vary with 
time.  
 
If the location and/or scale parameter have linear time trends, then the 
effective return level would also change linearly.  
 
So we can fit three different forms of GEV distributions to our data.  
(1) A stationary GEV in which none of the parameters depends on time 
(2) A nonstationary GEV in which either 𝜇 or ln(𝜎) depend on time 
(3) A nonstationary GEV in which both 𝜇 and ln(𝜎) depend on time 
 
Model comparison and model selection involves the minimized negative log 
likelihood for the candidate models via AIC.  
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Lets look on an example for our Central Park Tmax data. 
 
We compare two models: 
(1) A stationary GEV in which none of the parameters depends on time 
(2) A nonstationary GEV in which 𝜇 depends on time 
 
 
 
 
  

+0.08 C /decade 
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Lets look on an example for our Central Park Tmax data. 
 
We compare two models: 
(1) A stationary GEV in which none of the parameters depends on time 
(2) A nonstationary GEV in which 𝜇 depends on time 
 
 
 
 
  

Parameter Model 1 Model 2 

𝜇 35.28 (±0.17) 35.31 (±0.16) 
+ μ(t) 

𝜎 1.75 (±0.12) 1.75 (±0.12) 

𝜉 -0.19 (± 0.06) -0.21 (± 0.05) 

AIC 565.73 564.63 

5-year RL 37.5 37.5 

100-year RL 40.6 40.4 

+0.08 C /decade 
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Non-Stationary r-largest order extremes 
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Nonstationarity in r-largest order extremes 
 
Introducing time dependency in parameter estimates works for r-largest 
order models as for block maxima.  Thus as for block maxima we can consider  
fits of three different forms of GEV distributions to our data. 
  
(1) A stationary GEV in which none of the parameters depends on time 
(2) A nonstationary GEV in which either 𝜇 or ln(𝜎) depend on time 
(3) A nonstationary GEV in which both 𝜇 and ln(𝜎) depend on time 

 
Let’s consider this in an example for the 3 warmest summer days from the 
Central Park record. 
 
 
  



Non-Stationary r-largest order extremes 
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As for the block maxima approach we want to compare two models: 
(1) A stationary  r-largest order model where none of the GEV parameters 

depends on time 

 𝜇 𝑡 = 𝜇, ln 𝜎 𝑡 = 𝜎, 𝜉 𝑡 = 𝜉 
 
(2) A nonstationary r-largest order model where 𝜇 depends on time 

𝜇 𝑡 = 𝜇0 + 𝜇1𝑡, ln 𝜎 𝑡 = 𝜎⁡⁡⁡𝜉 𝑡 = 𝜉 
 
 
 +0.08 C /decade 
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  Parameter Model 1 Model 2 

𝜇 38.84 (±0.09) 38.86 (±0.16) + μ(t) 

𝜎 1.69 (±0.06) 1.69 (±0.06) 

𝜉 -0.21 (± 0.03) -0.22 (± 0.03) 

AIC 1653.7 1644.1 

5-year RL 37.0 (37.5) 37.0 (37.5) 

100-year RL 39.8 (40.6) 39.7 (40.4) 

+0.08 C /decade 
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Non-Stationary peak over threshold 
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Non-stationarity in Peak over Threshold models 
Frequently we are interested in extremes defined as exceedances of a certain 
threshold and we know that the POT model is the suitable EVT model for 
such type of analysis. Non-stationarity can be addressed in POT models 
though a bit caution is needed as: 
 
(1) Normally the threshold we are interested in is a fixed quantity, 

nevertheless a time-varying threshold can be introduced in POT models. 
(2) The scale parameter is dependent on u thus care must be given in the 

interpretation of σ when using a time varying threshold. 
(3) If we are only interested in the change in return levels due to changes in 

the evolution of the data (e.g., a trend) we can assess  changes by fitting 
the GPD to different time periods an compare the RL estimates. 



Non-Stationary peak over threshold 
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Let’s look on mda8 O3 return periods for two different time periods 
(1) 1988-2000 
(2) 2001-2013 
 
 
  



Return level estimates under non-stationarity 
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Communicating risk in a non-stationary setting – notes on return level 
estimates under non-stationarity 
 
Let 𝐹 𝑦  be the distribution function of 𝑀(𝑦). In any particular year there is 
still a one to one relationship between a probability of exceedance and a high 
quantile.  
 
So for a given level of interest 𝑟, it is straightforward to express the yearly risk 
in terms of probability.    
 

 𝑝 𝑦 = 𝑃 𝑀𝑦 > 𝑟 = 1 − 𝐹𝑦 𝑟 .  

 
Once 𝐹𝑦 is estimated it is straightforward to provide yearly estimates of the 

probability of an exceedance 𝑝 𝑦 . 
 
 
  



Return level estimates under non-stationarity 
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Risk calculations however proceed in the opposite direction. Normally one 
starts with a return period in the stationary case and finds the corresponding 
level.  
 
Inverting the previous procedure arriving at a probability of exceedance 𝑝, 
one starts with the probability of exceedance 𝑝 and solves  
 

𝐹𝑦 𝑟𝑝(𝑦) = 1 − 𝑝 . 

 
The exceedance level  𝑟𝑝(𝑦) changes with every year thus communicates 

clearly the changing nature of risk.  
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If we define the return level 𝑟𝑚⁡as the expected waiting time until an 
exceedance occurs in 𝑚 years,  then 𝑟𝑚⁡is the solution to equation 
 

𝑚 = 1 +   𝐹(𝑦)(𝑟𝑚)

𝑖

𝑦=1

∞

𝑖=1

 

 
It shall be noted that as it cannot be written as geometric series, solving for 
𝑟𝑚 is not straightforward. For the case 𝐹𝑦(𝑟) is monotonically decreasing as 

𝑦 → ∞ (extremes are getting more extreme) it is possible to bound the right 
hand side  of the equation above (see Cooley 2013 for more details). 
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The other interpretation of an 𝑚-year return period under the stationary case 
was that the expected number of exceedances in 𝑚  years is one.  
 
To extend this for the non-stationary case we aim to find the level 𝑟𝑚 for 
which the expected number of exceedances in 𝑚 years is one. 
 
So if we let 𝑁 be the number of exceedances that occur in the 𝑚  years  
beginning with year 𝑦 = 1 and ending at year 𝑦 = 𝑚. Then as the probability 
of an exceedance is no longer constant from year to year and we define the 
𝑚-year return level 𝑟𝑚⁡to be the solution to the equation 
 

1 =  1 − 𝐹𝑦 𝑟𝑚 .

𝑚

𝑦=1
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Block Maximum Models: 
Warmest daily Tmax (TXx), Warmest daily Tmin (TNx) 
Coldest daily Tmax (TXn), Coldest daily Tmin (TNn) 
Wettest day (RX1day) 
Wettest consecutive 5 days (RX5day)  
 
R-largest order models: 
Cold days (TX10p), Cold Nights (TN10p) 
Warm days (TX90p), Warm Nights (TN90p) 
 
Peak-Over-Threshold Models:  
Frost days (FD), Tropical Nights (TR) 
Cold days (TX10p), Cold Nights (TN10p) 
Warm days (TX90p), Warm Nights (TN90p) 
 



Kodra & Ganguly, Nature Scientific Reports, 2014 
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For those who are using R 
 
Packages for extreme value analysis  
 
evd 
ismev 
POT 
extRemes 
 
 
 


