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Abstract Elevated arsenic in Bengal Basin aquifers threatens human health. Most deep (>150 m)
groundwater in Pleistocene aquifers is low in arsenic; however higher concentrations have been reported
in the southwest border region. Here, we establish that this extensive arsenic contamination at depth is not
associated with well failure. A combination of geochemistry and flow modeling constrains the factors that
contribute to arsenic contamination at depth in this region. Deep groundwater in the affected area is
younger (2.0 ± 0.6 kyr) than deep, low‐arsenic groundwater elsewhere (12.0 ± 4.0 kyr) based on radiocarbon.
Stratigraphic data indicate pre‐Holocene deposition of the contaminated aquifers, but few low‐permeability
strata. Numerical modeling indicates that this stratigraphic anomaly permits a natural flow system that
transports shallow groundwater to depth. Thus, in areas lacking low‐permeability layers, arsenic
contamination can occur in pre‐Holocene aquifers and is probably not an early sign of future deep
contamination in regions with interbedded low‐permeability strata.

Plain Language Summary Exposure to arsenic in untreated groundwater pumped frommillions
of shallow wells across rural South Asia causes life‐threatening cardiovascular disease and cancers in adults
and reduces intellectual function in children. Deep (>150 m) groundwater low in arsenic is currently the
most effective mitigation option in Bangladesh. This study shows that high concentrations of arsenic
observed in deep aquifers in the border area between Bangladesh and India are likely confined to that region
due to the absence of clay layers vertically dividing the sandy aquifer. Flow modeling constrained by
groundwater dating shows that this contamination is therefore of natural origin and unlikely to expand to
wider areas in the near future.

1. Introduction

Naturally occurring arsenic (As) concentrations in groundwater exceeding the World Health Organization
drinking water guideline of 10 μg/l are found in aquifers on every continent (Coetsiers & Walraevens,
2006; Mandal & Suzuki, 2002; Ravenscroft et al., 2009; Smedley & Kinniburgh, 2002). In South and
Southeast Asia, the problem is particularly severe because As concentrations in shallow, fluvio‐deltaic aqui-
fers are often orders of magnitude higher than the WHO guideline (Fendorf et al., 2010; Ravenscroft et al.,
2005), and more than 100 million people in the Bengal, Mekong, and Red River deltas are at risk of adverse
health effects (Chen et al., 1985; Hamadani et al., 2011; Hawkesworth et al., 2013; Ng et al., 2003; Tsai et al.,
1999; WHO, 2011). In the Bengal Delta, elevated As concentrations occur primarily in Holocene sediments
deposited less than 12 kyr ago, whereas As concentrations in pre‐Holocene sediments are consistently <10
μg/l in most areas (BGS and DPHE, 2001; Burgess et al., 2010; McArthur et al., 2004; McArthur et al., 2008;
Ravenscroft et al., 2005).

Lowering exposure by targeting deep (>150 m), low‐As groundwater in pre‐Holocene aquifers for installa-
tion of new wells has become a key form of mitigation and is likely to remain so for the foreseeable future
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(Ahmed et al., 2006; DPHE & JICA, 2010a, 2010ab; Ravenscroft et al., 2013). Currently, several hundred
thousand deep (>150m) tube wells, hereafter referred to as DTWs, typically hand‐pumped, are used for miti-
gation (DPHE & JICA, 2010a, 2010ab; Ravenscroft et al., 2014). Groundwater flow and As transport model-
ing predict that pumping low‐As water from deep aquifers should be sustainable for hundreds of years or
longer if high rates of concentrated deep pumping for municipal and irrigation supply are avoided
(Michael & Voss, 2008; Shamsudduha et al., 2019).

Several studies have reported elevated As concentrations (often >50 μg/L) in deep groundwater on both
sides of the border between the Indian state of West Bengal and southwestern Bangladesh (McArthur
et al., 2016; Mukherjee et al., 2011; Ravenscroft et al., 2014; UNICEF, 2011). The cross‐border nature of
the contamination probably hid its full extent, as national‐level maps would only show a portion. This con-
tamination is cause for concern because deep groundwater is not a viable mitigation option in these areas
and, perhaps more importantly, it might be an early sign that continued reliance on deep, low‐As ground-
water is not a sustainable solution. Human development could be the cause of arsenic contamination if deep
mechanized pumping, which has been reported in the affected region of West Bengal (McArthur et al., 2016;
Mukherjee et al., 2011), has already induced downward flow of As contamination from shallower aquifers.
Understanding the origin of this deep, high‐As concentrations therefore has important implications for As
mitigation throughout the Bengal Basin and other As‐affected regions.

In principle, pre‐Holocene aquifers that are naturally low in As could become contaminated as a result of
direct transport or local release of As caused by dissolved organic carbon (DOC) present in the sediment
or transported from elsewhere. DOC triggers in situ reduction of Fe oxides and release of As to groundwater
(Mailloux et al., 2013; McArthur et al., 2004; McArthur et al., 2016). Arsenic contamination resulting from
transport has been attributed to municipal or irrigation pumping (Mukherjee et al., 2011; van Geen et al.,
2013; Winkel et al., 2011) but could potentially also occur in areas with natural flow systems that transport
Holocene‐age groundwater to older sedimentary strata (e.g., Hoque et al., 2017; Mukherjee et al., 2011).
Depressurization of deep mud layers by large‐scale pumping could also release DOC or As locally without
any inflow from a shallow contaminated aquifer (Chakraborti et al., 2009; Erban et al., 2014; Mukherjee
et al., 2011; Planer‐Friedrich et al., 2012; Winkel et al., 2011). The occasional contamination of a deep well
due to the improper installation of a shallow screen or to flow through a broken well casing has also been
documented, though the impact of such failures is likely to be limited (Choudhury et al., 2016; Lapworth
et al., 2018).

We use inspection of well integrity, groundwater and sediment dating, and numerical groundwater flow
modeling to determine the origin of unexpectedly high As concentrations in deep aquifers of the southwes-
tern Bengal basin. We consider: (a) wells that are shallower than reported or broken; (b) rapid movement of
Holocene groundwater to Pleistocene aquifers over the past 50 years due to pumping through tritium (3H)
groundwater age dating; (c) naturally occurring deep arsenic due to deeper than typical Holocene sediment
using stratigraphic information and sediment radiocarbon (14C) dates; and (d) natural movement of
Holocene groundwater to Pleistocene aquifers over thousands of years using radiocarbon age of ground-
water dissolved inorganic carbon (DIC) and groundwater flow modeling.

2. Methods
2.1. Field Survey and Data Collection

The study area is in the Ganges Delta in the SW Bengal Basin (Figure 1). Sampling was concentrated along
two latitudinal transects across the India‐Bangladesh border in winter 2015 and fall 2016. Samples were
taken from village community supply wells claimed to be deep that are typically pumped at rates of approxi-
mately 1 m3 per day. Initially, As was measured with field kits in 323 wells selected at regular intervals along
the two transects (Arsenic Econo‐Quick™) after purging each well for 5 to 10 min.

A subset of 55 tested wells showing high As concentrations based on the kit was selected for further inves-
tigation (Figure 1). Most of these wells were concentrated along the 100‐km cross‐border transect centered
on the 23.2° N parallel, with an additional five wells located up to 30 km to the south (Figure 1). A downhole
camera (GeoVISION Nano) was used to determine screen depths and check for obvious leaks or discon-
nected pipe sections.
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After video verification of depth and screen length (Table S1), 33 wells with confirmed depth of 150 m were
identified and sampled for DIC and ICPMS analysis for As. Nineteen were sampled for 3H. Each well was
pumped to remove three well volumes before sampling. DIC samples were collected in 250 mL glass bottles
and poisoned with 1 mL of saturated HgCl2. Four fossil wood and grass samples were collected for AMS
radiocarbon dating from drill cores at two locations (Figure S4 and Table S2).

2.2. Groundwater Dating

The uncorrected and corrected radiocarbon ages were calculated considering the half‐life of 14C as 5,370
years and initial carbon activity of 100% and 90%, respectively. No other corrections were applied; further
details are provided in Supporting Text. Water samples were collected in 500mL glass bottles for 3H and ana-
lyzed by mass spectrometry using the 3He ingrowth method (Mihajlov et al., 2016) with a detection limit of
~0.01 TU.

2.3. Determination of Subsurface Lithological Variation

A total of 1,435 driller logs from a 200 × 180‐km area surrounding the sampling transects were used to infer
the regional (~100 km scale) hydrostratigraphy (Figure 3 and S3). Ten parallel lithologic panel diagrams
were constructed in the east‐west direction, each 20 km apart (Figure S3). The top and bottom boundaries
of the main aquifer units were interpreted based on lithologic continuity. An aquifer unit was identified if
the lithology was predominantly sand, and an aquitard unit was identified if the lithology was predomi-
nantly silt and clay. Areas with alternating sands and muds were left undifferentiated. Each line was digi-
tized and three‐dimensional maps of the top and bottom of the major hydrostratigraphic units were
prepared by interpolation.

Figure 1. Map of locations of groundwater samples in the Bengal Basin, the basin‐scale model area of Michael and Voss (2008), and the model area with refined
regional stratigraphy. (a) Spatial distribution of deep wells with As and DIC 14C age data, (b) depth distribution of the same wells. Groundwater As contamination
dataset shown in the inset map of (a), dominated by field kit tests of shallow tube wells, are from NAMIC (2006) and Chakraborti et al. (2009).
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2.4. Determination of the Depth to the Holocene Sediments

Four wood samples from sediments at two locations within the study area were dated using radiocarbon
method. Sediment ages determined by either radiocarbon or OSL methods at five other locations were
selected from literature (Biswas et al., 2014; McArthur et al., 2008; Stanley & Hait, 2000). These ages, com-
bined with the Last Glacial Maximum Palaeosol (LGMP) used as a stratigraphic marker where present
(Hoque et al., 2012; Hoque et al., 2014; McArthur et al., 2008) were used to constrain the depth of
Holocene sediments (<12 kyr) in the study area (Figure S4).

2.5. Groundwater Flow Modeling

TheMODFLOW (Harbaugh, 2005) model of Michael and Voss (2008, 2009a, 2009b) for the Bengal Basin was
used, with modification of aquifer properties within the study area for some runs (Figure S7). Slight modi-
fications were made to the original digital elevation model to correct for vegetation in the Sundarbans and
anomalous peaks in the eastern hills. Model sides are no‐flow boundaries along basement rocks in the west,
the Himalayas and the Shillong Plateau in the north, the Chittagong fold belt in the East, and >30 km off-
shore in the Bay of Bengal in the south (Figures 1 and S7). The top boundary was a specified head at land
surface elevation representing the average shallow water table throughout the year in most areas. More
details of boundaries, parameters, and calibration are given in Michael and Voss (2009a, 2009b). The flow
simulation in this work was steady‐state and did not include pumping, because the objective was to simulate
age of groundwater in deep wells, which likely recharged well before any anthropogenic influence.

In much of the Bengal Basin, the aquifer system consists of alternating high‐ and low‐hydraulic conductivity
(K) materials with little regional lateral continuity. Representation as an equivalent homogeneous anisotro-
pic medium is therefore appropriate for simulating the basin‐scale average flow system (Michael & Voss,
2008, 2009b). The values of horizontal and vertical K (Kh = 5 × 10−4 m/s, Kv = 5 × 10−8 m/s) of the
basin‐scale model were retained outside of the study area. Within the study area, the Kv for the main aquifer
unit delineated from stratigraphic analysis (Figures 3, S3, S7b), and both the Kh and Kv for the overlying sur-
ficial aquitard unit were varied (Figure S8). Pump test data (BWDB, 2013; Deshmukh et al., 1973; JICA,
2002) at 17 locations throughout the study area (Figure 3) give a Kh of ~5 × 10−5 − 5.05 × 10−3 m/s
(Table S3). A base‐case value of Kh = 5 × 10−4 m/s for the main aquifer unit was therefore used. Because
the SBA has a much lower proportion of mud and clay than other areas of the basin, Kv was assigned a value
of 1 × 10−6 m/s, 100× higher than in the rest of the basin. A hydraulic conductivity of 1 × 10−7 m/s, typical
for very fine sands and silts, was used as both the Kh and Kv of the surficial aquitard.

Sensitivity analyses were carried out that varied hydraulic conductivities and porosity to determine impacts
on groundwater ages in the deep aquifers. Ages were compared to radiocarbon dates from the wells.
Parameter values used in sensitivity analyses are given in Table S4 and results are presented in Figure S8.

The simulated travel time of groundwater recharge to depth was determined by advective particle tracking
using MODPATH (Pollock, 2012). Each model cell that corresponded to the field location with a measured
14C age was assigned 64 equally distributed particles tracked backward to recharge locations. The average of
the 64 travel times is the simulated groundwater age for each location. Similarly, a map of groundwater age
at a constant depth of 150 m throughout the study area was determined. An effective porosity value of 0.2
(Michael & Voss, 2008) was used.

3. Results
3.1. Well‐Depth Verification and As in Groundwater

The depths of the 55 wells with As >50 μg/L according to the kit were verified with a downhole camera
(Figure S1). The depths of 21 of these wells were misreported and 1 had a collapsed casing (Figure S1d).
This left 33 (18/37 in India and 15/18 in Bangladesh) wells deeper than 150 m with confirmed screens at
the bottom with an average length of 5.6 m and a maximum of 12.2 m (Table S1). The camera showed
no clear indication of shallow leaks through disconnected pipes or multiple screens for any of the tested
wells. Laboratory analysis confirmed the field results: 29 of the 33 wells had As concentrations above the
WHO guideline of 10 μg/L and 22 had As concentrations of 50–140 μg/L (Figures 1 and 2a, Table S1).
These results confirm that a broad swath of the Bengal Basin in the cross‐border region has elevated As
in deep groundwater.
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3.2. Constraints on Groundwater Ages

Uncorrected radiocarbon ages in deep wells from the northern transect, irrespective of As concentration,
were all <4.0 14C kyr, averaging 2.0 + 0.6 14C kyr (n = 29, Figure 2b). There was no systematic trend with
location or depth along the northern transect. In the two southern wells with high As, ages were also young,
2.0 14C kyr, but groundwater was much older in the other two low‐As wells at 15.0 and 30.0 14C kyr

Figure 2. Depth distribution below 150 m of (a) As, (b) uncorrected 14C groundwater DIC age, and (c) 3H in deep wells
from the Bengal Basin. Locations of all samples and legends are given in Figure 1.

Figure 3. Delineation of regional hydrostratigraphy based on driller logs. Borehole locations are shown on the map. The lithologic panels are examples
corresponding to line numbers shown on the map and display driller logs within 20 km swath of the line (see Figure S3 for all sections). The black lines on each
panel represent the inferred top and bottom boundaries of the Sonar Bangla Aquifer (SBA). The colors on the map indicate the depth of the bottom of the SBA
produced by digitizing and interpolating the lines drawn on the panels. The red rectangles outline the areas of sampled wells. The six coring locations of the Japan
International Cooperation Agency (JICA, 2002) are marked with a cyan circle.
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(Figure 2b). Corrections for the initial 14C content of groundwater would reduce uncorrected ages by about
1.0 14C kyr, but with considerable uncertainty (Figure S2; Supporting Text S1).

Tritium measurements were used to identify water recharged in the past ~50 years. Concentrations of 3H in
most of the 19 tested wells >150 m clustered around 0.03 to 0.05 TU, except 6 with 0.05–0.13 TU (Figure 2c).
The presence of measurable tritium indicates that at least some deep groundwater is young in age. We sug-
gest that this result is most consistent with old groundwater mixing with a very small fraction of young
groundwater containing bomb‐tritium from testing of nuclear weapons in the 1950s (Craig & Lal, 1961;
Kaufman & Libby, 1954; Lal & Peters, 1962; Munnich et al., 1966). Such a small contribution of young
groundwater, perhaps caused by small leaks through the well annulus due to pumping (Lapworth et al.,
2018), would not have significantly impacted radiocarbon in a larger pool of DIC (Mihajlov et al., 2016).

3.3. Stratigraphy and Age of Aquifer Sediments

Overall, the Bengal Basin aquifer system is highly heterogeneous, with a spatially variable distribution of
fine‐grained silt and clay units within a more sandy stratigraphy (Transect 6 in Figure 3 is typical for the
Basin). However, the extensive set of driller logs reveals the presence of a sand and gravelly sand aquifer unit
of variable thickness with little or no interbedded silts and clays within the study area at 20–300 m depth
(Figure 3). This unit is termed the Sonar Bangla Aquifer (SBA) in Mukherjee et al. (2007). This aquifer is
overlain by a 20 to 70‐m thick surficial low permeability unit composed mostly of silts and very fine sands
(the surficial aquitard). The depth to the bottom of the aquifer is more than 200m near the northern transect,
and it thins towards the south except along an NE‐SW trending narrow channel‐shaped area along which it
is more than 100 m deep (map in Figure 3). Both the aquifer and the overlying aquitard gradually transition
laterally into an alternating sand andmud sequence with little lateral continuity in individual sand and mud
layers (Figures 3 and S3). Data indicate that the SBA sediments deeper than 20 to 70 m in the study area are
likely to be >12 kyr old (Figure S4).

3.4. Simulated Age of Deep Groundwater

The homogeneous and anisotropic groundwater model (Michael & Voss, 2008) was calibrated with ground-
water ages based on radiocarbon and head data available at the time of its development in 2008. Simulated
ages with this model were greater than measured 14C DIC ages for all samples in the northern transect and
two of four in the southern transect (Figures 4a, 4c; Figure S5). This is the only region in the western part of
the basin where the model systematically over‐predicts travel time relative to radiocarbon ages (see Figure
S5 for exceptions in other areas).

Updating the model by incorporating the regional hydrostratigraphy (Figures 3, S3, S7) virtually eliminated
the mismatch between simulated and measured 14C age in the study area (Figures 4b, 4c, 4e; Figure S5b).
Similar improvement of model‐simulated ages through incorporation of hydrostratigraphy was achieved
by Shamsudduha et al., (2018) in the southeastern part of the basin. Sensitivity analysis indicates that this
relationship remains true for a range of hydraulic conductivity values of the aquifer (Figure S8 and
Supporting Text S1). In simulations with regional stratigraphy, recharge areas shifted 10's to 100's of km
(Figure S6) and resulted in simulated travel times very close to the uncorrected 14C ages for all but a few sam-
ples (Figures 4b, 4c, and 4 e). The oldest samples that show the greatest deviation from simulated ages
(Figure 4b) are located in isolated sand lenses surrounded by clays (transect 7 in Figure 3). These secondary
hydrostratigraphic features were not incorporated in the model.

4. Discussion and Conclusion
4.1. Origin of High‐As Deep Groundwater

The origin of anomalous, relatively young, high As, deep groundwater in the southwestern Bengal Basin has
significant implications for predicting current and future conditions in this and similar As‐affected basins.
We examine here the possible sources, argue for a natural, anomalous, deep groundwater flow system in
the affected area, and discuss the implications of this finding.

Both physical and geochemical evidence indicate the elevated concentrations of As in deep groundwater of
the study area are due to a natural deep flow system resulting from sand‐dominated regional stratigraphy.
Numerical modeling results provide a physical basis to show that groundwater in this geologically distinct
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area can have residence times shorter than those at similar depths in surrounding areas. The simulated
residence times are consistent with deep groundwater radiocarbon ages that are all less than 4.0 14C kyr,
indicating downward flow of Holocene‐age, high‐As groundwater to older strata deposited more than 12
kyr ago. This points to the anomalously high sand content of the study area sediments as a natural reason
for high As at depth, given the contrast to other parts of the Bengal Basin where groundwater is both
much older and low in As. The correspondence between simulated travel times and groundwater ages
indicates a long‐timescale process rather than recent fast transport from human perturbations. We note
that the available data cannot distinguish direct input of As and input of DOC from above followed by
local release of As at depth. The transport of both As and DOC is also retarded relative to groundwater
flow by adsorption on aquifer sediments (Mailloux et al., 2013; Radloff et al., 2011), which further
suggests that contamination of the deep aquifer predates human perturbation of the flow system
(McArthur et al., 2016).

Despite this evidence, we consider whether pumping of deep groundwater, especially in areas where there
are few clay layers above the pumping depth, could potentially have drawn Holocene‐age high‐As or
high‐DOC groundwater downward. Although large quantities of irrigation water are drawn from deep wells
in many areas of West Bengal (McArthur et al., 2016; Mukherjee et al., 2011), this is not the case in
Bangladesh where most irrigation wells extract shallow groundwater (<100 m). Irrigation pumping there-
fore cannot explain comparable levels of contamination on both sides of the border. Deep pumping for
themunicipal water supplies of Kolkata and Dhaka, with very large populations of 14 and 19million, respec-
tively, has caused a dramatic decline of 40–80 m in local groundwater heads that impacts deep aquifers over
distances of up to 20–30 km (Khan et al., 2016; Knappett et al., 2016; Sahu et al., 2013). However, the study
area is 80–180 km from these urban centers outside the area of influence. Deep pumping for smaller cities

Figure 4. Comparison of measured 14C age and simulated travel times. Scatter plots between uncorrected 14C age and simulated travel time for all data west of
the Meghna River (Figure 1) for (a) homogeneous‐anisotropic model of Michael and Voss (2008) and (b) model incorporating regional hydrostratigraphy.
Symbols as in Figures 1 and 2. (c) Measured and simulated groundwater ages for samples from the northern transect only. Boxes extend from the 25th to 75th
percentile, red line is median, whiskers are range, outliers (data point beyond 1.5 times of interquartile range) are ‘+’. Simulated travel times to eachmodel cell, 150
m below land surface for (d) Homogeneous‐anisotropic model, and (e) model with regional hydrostratigraphy. Measured 14C ages shown in symbols on same color
scale and outlined in white. In white areas, the basement is shallower than 150 m, so travel time was not simulated.
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within the study area on either side of the border (Figure 1) including Santipur (pop. 0.29 million) and
Jessore (pop. 0.25 million) is unlikely to be sufficient to affect the regional deep groundwater flow system,
although contamination due to deep pumping on a very local scale is possible (Lapworth et al., 2018;
Mukherjee et al., 2011). Most notable, however, is that none of the municipal pumping in these areas is dee-
per than 150 m. Therefore, deep penetration of high As concentrations in this part of the Bengal Basin is
unlikely to have been caused by groundwater pumping (McArthur et al., 2016).

4.2. Implications for Deep Groundwater Vulnerability for As Transport

The results of this analysis show that transport of As into deeper, pre‐Holocene strata can occur, with the
potential to cause widespread contamination. While the timeframe over which this occurred in our study
area is not well‐constrained, modeling suggests that it required thousands of years. Contamination in our
study area is therefore probably not a predictor of imminent widespread contamination of deep groundwater
in other areas in the Bengal Basin where groundwater is significantly older. The stratigraphic anomaly that
promotes naturally deep groundwater flow and contamination of deep groundwater with As is localized in
the southwest of the Bengal Basin.

In heterogeneous depositional environments such as this fluvio‐deltaic system, stratigraphic understanding
provides clues to arsenic distributions. While small‐scale heterogeneities have been shown to explain some
of the As variability within Holocene aquifers (Aziz et al., 2008; Stute et al., 2007), larger‐scale geologic
features control groundwater flow, residence time, and associated As distributions, at increasingly deep,
more regional scales. Thus, hydrostratigraphy may be used to target deep groundwater for testing prior to
widespread investment for As mitigation in areas where water quality data is not available. Similarly, where
lithologic data are sparse, consideration of depositional setting (e.g., Hoque et al., 2012) may help identify
areas at risk for deep, high As concentrations. In the southwestern Bengal Basin, the sand‐dominated
lithology is attributable to a low subsidence rate leading to repeated lateral channel migration and the
preservation of coarse over fine‐grained channel sediments (Goodbred et al., 2003). Other areas where
fine‐grained sediments tend not to be preserved, for example beneath structurally constrained reaches of
major rivers, may be similarly vulnerable.

This study highlights the importance of considering multiple factors—stratigraphy, hydrology, biogeochem-
istry, and human activities—that contribute to the spatial and temporal distribution of groundwater arsenic
in large basins. These factors vary widely both regionally and locally. Thus, while large‐scale models and
geochemical analyses provide insights intomanagement of the deep groundwater resource for sustainability,
measurement of As concentrations after well installation and continued monitoring are essential to ensure
the quality of drinking water in the Bengal Basin.
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Text S1. Supporting Methods  30 
14C Age correction: Converting radiocarbon ages to calendar ages is notoriously difficult for DIC in 31 
groundwater because several poorly constrained corrections can subtract hundreds to a few thousand 32 
years [Geyh, 2000]. One method is to infer an initial radiocarbon age from the youngest sample in a 33 
data set that does not contain any detectable bomb-produced 3H and therefore no bomb-produced 34 
14C either [Hoque et al., 2012, Mihajlov et al., 2016]. Using existing dataset, this would amount to a 35 
decrease in the uncorrected ages by about 1.0 14C kyr (Supporting Figure S2). Additional corrections 36 
reflecting the release of carbon along the flow path have been proposed [Hoque et al., 2012, Mihajlov 37 
et al., 2016] considered on the basis of the stable isotopic composition (13C/12C) of DIC but they are 38 
highly uncertain. The average δ13C of -4.5‰ (σ = 2.2‰, n= 33) in deep groundwater DIC within the 39 
study area shows considerably less depletion than deep groundwater in other parts of the basin, with 40 
an average δ13C of -16‰, (σ = 6‰, n= 39) (Figure 2c). We do not have sufficient data for the detailed 41 
geochemical modeling required for correction in such a case [Aravena et al., 1995] and no further 42 
corrections were attempted. 43 
 44 
Sensitivity Analysis. The uncertainty in simulated ages was explored with sensitivity analysis. 45 
Groundwater age is highly sensitive to the vertical K (Kv) of both the SBA and the surficial aquitard unit 46 
as well as the horizontal K (Kh) of the SBA (Figure S3). Pump test data [Deshmukh et al., 1973; JICA, 2002; 47 
BWDB, 2013] at 17 locations throughout the study area (inset map Figure S3) indicate that the 48 
hydraulic conductivity of the SBA ranges between approximately 5.22x10-5 and 5.05x10-3 m/s (Table 49 
S3), one order of magnitude variation from the base case value. Age is insensitive to the Kh of the 50 
surficial aquitard. Both the median and range of groundwater age in the northern transect increase 51 
with decreasing Kv, and both the median and range decrease with increasing Kv (Figure S8). However, 52 
the magnitude of the changes is larger for a decrease in Kv than an increase. An order of magnitude 53 
increase in Kv of the surficial aquitard compared to the base case reduces the median and standard 54 
deviation of simulated groundwater age by 70% and 16% of the base case values, respectively. In 55 
contrast, lowering the Kv of this unit by the same order of magnitude increases the median and 56 
standard deviation by 360% and 83%, respectively. Increasing the Kv of the SBA from the base case 57 
does not affect the median and standard deviation of simulated travel time (<2% change). However, a 58 
two order of magnitude decrease results in a 220% and 100% increase in the simulated median and 59 
standard deviation, respectively. Changes in Kh by an order of magnitude has a negligible effect on the 60 
simulated median age; however, the range of the simulated age changes proportionately. 61 
  62 



 

 

Supporting Figures 63 

 64 

 65 
Figure S1. a) Field setup of downhole camera used in this study, camera is shown in the inset. 66 
Photos of b) typical well screen, c) joints in well casing, and d) broken well casing. 67 
 68 
  69 

 70 
Figure S2. a. Empirical relationship between groundwater 3H and 14C in DIC plotted for all 71 
available samples from this study and other studies in the Bengal Basin. b. depth distribution of  72 
DIC δ13C. c. comparison of corrected and uncorrected 14C ages of DIC in groundwater from the 73 
northern transect. Symbols in b are the same as in Figure 1. 74 
 75 
   76 
 77 
 78 
 79 



 

 

 80 
Figure S3. Delineation of regional hydrostratigraphy based on driller logs. Borehole locations 81 
are shown on the map. Each of the lithologic panels shown corresponds to lines # shown on the 82 
map and displays all driller logs within a 20 km swath centering on the line. The black lines on 83 
each panel represent the inferred top and bottom boundaries of the Sonar Bangla Aquifer (SBA). 84 
The colors on the map indicate the depth of the bottom of the SBA produced by digitizing and 85 
interpolating the lines drawn on the panels. The red rectangles outline the areas of sampled wells. 86 
The 6 coring locations of the Japan International Cooperation Agency [JICA, 2002] are marked 87 
with a cyan circle. 88 
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 99 
Figure S5. Comparison of measured 14C ages and simulated particle travel times for all available 100 
data in the Bengal Basin (Figure 1). Scattered plots showing the correlation between the 101 
uncorrected 14C age and simulated travel time for (a) homogeneous-anisotropic model of 102 
Michael and Voss [2008] and (b) model incorporating regional hydrostratigraphy. For symbols in 103 
both (a) and (b) see legend in Figure 1 or 2. The black polygons in both panel (a) and (b) outline 104 
the samples from east of the Meghna River (Figure 1). Simulated ages for locations east of the 105 
Meghna River are lower than measurements, likely due to regional stratigraphy (i.e., the eastern 106 
fold belt resulting in higher anisotropy than in the greater basin model); this does not 107 
substantially affect the simulated flowpaths in the study area. Indeed Shamsudduha et al., [2019] 108 
found a good match between model simulation mand measured 14C age in the SE part of the 109 
basin by incorporating hydrostratigraphy in their model. Three 14C ages near Barisal shown in 110 
Figure 1 (two from Aggarwal et al. [2000] and one from Majumder et al. [2011]) are not shown 111 
in this plot. Wells are 290 to 335 m deep, with uncorrected ages from 20,777 to 21,303 years. 112 
Simulated ages are much greater, ranging from 61,860 to 112,192 years. The reason for this 113 
could be the evolution of hydrogeologic conditions in the basin over this time, hydrostratigraphic 114 
variation, or errors associated with sampling, such as misreported depths.  115 
 116 



 

 

 117 
Figure S6. Simulated pathlines and travel times for two sets of aquifer properties. Panels a, b, & 118 
c are pathlines for all samples in the northern transect, simulated groundwater ages at a depth of 119 
150 m below land surface, and zoomed in version of the pathlines shown in a, respectively for 120 
homogeneous and anisotropic aquifer properties. Simulated age is essentially the time a particle 121 
takes to travel from the land surface (recharge locations) to 150 m depth. The circles in panel b 122 
represent the measured 14C ages. Within the white areas the basement is shallower than 150 m. 123 
Panels d, e & f are equivalent of panels a, b, & c, respectively but for the model scenario that 124 
incorporates the regional hydrostratigraphy.  125 



 

 

 126 
Figure S7. The Bengal Basin Model of Michael and Voss [2008, 2009a, 2009b]. (a) Model grid 127 
and boundary conditions. (b) The extent of the SBA and overlying aquitard represented in the 128 
model. 129 
 130 
 131 
 132 
 133 



 

 

 134 
Figure S8. Sensitivity of simulated groundwater age to horizontal and vertical hydraulic 135 
conductivity and porosity. Each box extends from the 25th to 75th percentile, red line represents 136 
the median, whiskers show the range, and the outliers are shown by a ‘+’ sign. Corrected 14C 137 
ages were corrected only for initial 14C activity. 138 
 139 
 140 
 141 
 142 
 143 
 144 
 145 
 146 
 147 
 148 
 149 
 150 
 151 



 

 

Supporting Tables 152 
 153 
Table S1. Groundwater arsenic, 14C and δ13C in DIC, and 3H data of deep wells in the study 154 
area.  155 
 156 

Northern Transect 

Well ID Lat Long Depth 
[m] 

Screen 
Length 

[m] 

As 
[ppb] 

DIC 
[mmol/kg] 

FM 
14C 

±σ 
[FM] δ13C Uncorr. 

14C age 

Corr. 
14C 
age 

3H 
[TU] 

±σ 
[3H] 

SAN40413 23.258 88.431 175   0.52 9.35 0.7443 0.0017 -6.84 2441 1570 0.0311 0.0143 

SAN40411 23.241 88.439 187   1.75 9.35 0.6629 0.0016 -5.92 3399 2528 0.0418 0.0134 

BAS41011 23.126 88.898 156 5.5 6.62 9.3 0.6978 0.0021 -6.08 2975 2104     

JOY40082 23.264 89.343 189 4.0 18.2 5.16 0.7466 0.0018 -6.34 2416 1545 0.0478 0.0138 

LEB40003 23.279 89.233 170 4.0 33.5 9.68 0.7727 0.0019 -5.91 2132 1261 0.0407 0.0119 

IND40033 23.236 89.343 163 4.0 34.9 7.6 0.7461 0.002 -3.53 2421 1550     

BEG40026 23.234 89.021 224 6.1 35.3 11.09 0.8273 0.0021 -5.74 1567 696 0.0167 0.0131 

AZM40078 23.268 89.292 167 4.0 49 7.39 0.8469 0.002 -5.13 1374 503 0.1090 0.0180 

BEA41003 23.188 88.793 162 7.3 49.9 10.1 0.8076 0.0018 -6.13 1766 896     

BAG40506 23.187 88.936 177   52.8 9.61 0.816 0.0023 -4.53 1681 810     

BAG40471 23.216 88.828 169   54.3 8.83 0.7791 0.0018 -8.82 2063 1193 0.0423 0.0107 

BAG40459 23.217 88.872 179 5.5 55.4 7.67 0.7855 0.0016 -6.88 1996 1125     

SUN41007 23.179 88.876 162 6.1 56.3 9.22 0.808 0.0018 -5.6 1762 891     

BAG40029 23.223 89.347 197 7.9 58.9 7.81 0.6225 0.0022 -5.52 3918 3048 0.0530 0.0110 

BAG40504 23.195 88.947 179 5.5 61.3 10.18 0.8341 0.0017 -4.08 1500 629     

GAD41001 23.159 88.711 155   70 7.71 0.7655 0.0014 -4.99 2209 1338     
KUJ41002 23.172 88.731 165 5.5 70.3 7.71 0.781 0.0014 -5.24 2043 1172     

BAG40502 23.181 88.933 180   78 8.68 0.8096 0.0017 -5.2 1746 875     

KUL41006 23.175 88.883 153 5.5 80.3 9.75 0.8096 0.0019 -4.75 1746 875     

RAN40538 23.173 88.593 165   85.2 9.63 0.7833 0.0018 -4.09 2019 1148     

MAR40024 23.274 89.076 250 9.1 87.4 7 0.8347 0.0019 -1.36 1494 623     

MAN40069 23.252 89.166 157 6.1 90.7 5.16 0.8519 0.002 -0.72 1325 454 0.04913 0.012 

HAP40074 23.265 89.202 162 4.0 91.4 7.19 0.854 0.0021 -3.39 1305 434 0.08029 0.017 

CHP40018 23.266 89.021 177 4.0 93.9 7.02 0.8732 0.0024 -1.89 1121 250     

MET41010 23.142 88.652 167   118 9.74 0.8019 0.0016 -3.82 1825 954     

NIA40025 23.295 89.022 177 4.0 129 5.17 0.8867 0.0021 -3.53 994 123 0.13269 0.014 

ASH40567 23.202 88.523 157 5.5 133 9.22 0.7987 0.0018 -5.55 1858 987     

TIR40067 23.261 89.138 163 4.0 134 7.09 0.8187 0.002 -2.56 1654 783     

UTL40071 23.262 89.176 172 4.0 136 4.94 0.8576 0.0025 1.97 1270 399 0.02954 0.013 

Southern Transect 

SWA40557 22.86 88.94 249 12.2 4.56 5.83 0.0277 0.0003 -7.07 29647 28776     

KHU40053 22.86 89.12 162 6.1 21.2 5.62 0.1606 0.0009 -3.48 15118 14247 0.03254 0.011 

TEN40046 22.99 88.97 193 4.0 55.8 7.02 0.7846 0.0019 -0.72 2005 1134 0.05296 0.013 

HAB40488 22.84 88.66 168   75.1 9.14 0.776 0.0017 -5.76 2096 1225     

 157 



 

 

Table S2. Sediment age data in and around the study area from literature 158 

 159 
 160 
 161 
 162 
  163 

Area Latitude Longitude Material Depth [m] Method Age [ka] AgeErr [ka] Reference Map ID

Barasat 22.742 88.488 Organic rich clay 7.6 14C 2 0.1 [McArthur et al.,  2008] MA

Barasat 22.742 88.488 Wood 7.6 14C 1.9 0 " "

Barasat 22.742 88.488 Organic rich clay 29.2-29.9 14C 7.2 0 " "

Barasat 22.742 88.488 Organic rich clay 49.5-50.4 14C 27.2 0.4 " "

Salt Lake (Kolkata) 22.567 88.467 Peat 4.25 14C 4 0.1 [Stanley and Hait,  2000] SH

Salt Lake (Kolkata) 22.567 88.467 Organic rich clay 13.2 14C 24.2 0.6 " "

Chakdaha 23.078 88.546 Peat 15.2 14C 7.2 0 [Biswas et al,  2014} BS

Chakdaha 23.078 88.546 Peat 25.8 14C 9.5 0 " "

Chakdaha 23.078 88.546 Quartz 37.3 14C 72 7 " "

Chakdaha 23.078 88.546 Quartz 43.6 14C 66 7 " "

Jessore 23.054 88.948 Wood 46 14C 7 0.4 [This Study ] TS

Jessore 23.054 88.948 Wood 76 14C 31.3 0.1 " "

Narail 23.163 89.471 Wood 20 14C 4.5 0.04 " "

Narail 23.163 89.471 Wood 29 14C 7.4 0.08 " "



 

 

Table S3. Pump test data from the study area 164 

165 
  166 
 167 
  168 

Well ID Latitude Longitude District Locality Reference K [m/s]

WBBH08 23.85830 88.24170 Murshidabad Takipur 1.10E-03

WBBH09 23.90000 88.45000 Murshidabad Nawada 1.71E-03

WBBH11 23.38330 88.50000 Nadia Bhatjangla 1.48E-03

WBBH12 23.68330 88.50310 Nadia Debagram 1.02E-03

WBBH13 23.60000 88.38330 Nadia Jugput 2.04E-03

WBBH14 23.11670 88.58330 Nadia Neulia 1.43E-03

WBBH15 22.75000 88.50000 24—Parganas Algaria 9.73E-04

WBBH16 22.68330 88.66670 24—Parganas Berachampa 2.21E-03

WBBH17 23.05000 88.76670 24—Parganas Khamarkulla 8.92E-04

WBBH18 22.83330 88.78330 24—Parganas Dakshinchatra 1.12E-03

JICA-BH#1 23.63500 88.83420 Chuadanga Chuadanga 5.05E-03

JICA-BH#2 23.54920 88.80860 Chuadanga Bara Dudpatila 1.75E-03

JICA-BH#3 23.52910 89.18190 Jhenaidaha Jhenaidaha 1.41E-03

JICA-BH#4 23.38570 88.90460 Jhenaidaha Krishna Chandrapur 1.19E-04

JICA-BH#5 23.15610 89.19860 Jessore Jessore 8.10E-04

JICA-BH#6 22.91190 89.25670 Jessore Rajnagar Bankabarsi 5.22E-05

JEKPOW2 22.91180 89.24540 Jessore Keshabpur 3.24E-04

NRNRPW 23.12000 89.56000 Narail Narail 5.21E-04

Minimum 5.22E-05

Maximum 5.05E-03

[Deshmukh et al. , 
1973]

[Japan 
International 
Cooperation 
Agency , 2002]

[BWDB , 2013]



 

 

Table S4. Hydraulic conductivity (K) values within the study area for each of the 169 
delineated hydrostratigraphic units for simulation scenarios. All K values are in ms-1. 170 
Changes in parameter values in reference to the base case are highlighted.  171 

Scenarios 
Surficial 
Aquitard 

Sonar Bangla 
Aquifer 

Kh Kv Kh Kv 
 Base case 1x10-7 1x10-7 5x10-4 5x10-6 

Sonar 
Bangla 
Aquifer 

10x higher Kh 1x10-7 1x10-7 5x10-3 5x10-6 
10x lower Kh 1x10-7 1x10-7 5x10-5 5x10-6 
100x higher Kv 1x10-7 1x10-7 5x10-4 5x10-4 
100x lower Kv 1x10-7 1x10-7 5x10-4 5x10-8 

Surficial 
Aquitard  

10x lower Kh 1x10-6 1x10-7 5x10-4 5x10-6 
10x higher Kv 1x10-8 1x10-7 5x10-4 5x10-6 
10x lower Kv 1x10-7 1x10-6 5x10-4 5x10-6 
10x lower Kh 1x10-7 1x10-8 5x10-4 5x10-6 

 Michael and Voss (2008) 5x10-4 5x10-8 5x10-4 5x10-8 
 172 
 173 
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