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ABSTRACT: Iron oxides control the mobility of a host of contaminants in
aquifer systems, and the microbial reduction of iron oxides in the subsurface is
linked to high levels of arsenic in groundwater that affects greater than 150
million people globally. Paired observations of groundwater and solid-phase
aquifer composition are critical to understand spatial and temporal trends in
contamination and effectively manage changing water resources, yet field-
representative mineralogical data are sparse across redox gradients relevant to
arsenic contamination. We characterize iron mineralogy using X-ray absorption
spectroscopy across a natural gradient of groundwater arsenic contamination in
Vietnam. Hierarchical cluster analysis classifies sediments into meaningful groups
delineating weathering and redox changes, diagnostic of depositional history, in
this first direct characterization of redox transformations in the field. Notably,
these groupings reveal a signature of iron minerals undergoing active reduction
before the onset of arsenic contamination in groundwater. Pleistocene sediments undergoing postdepositional reduction may be
more extensive than previously recognized due to previous misclassification. By upscaling to similar environments in South and
Southeast Asia via multinomial logistic regression modeling, we show that active iron reduction, and therefore susceptibility to future
arsenic contamination, is more widely distributed in presumably pristine aquifers than anticipated.

■ INTRODUCTION

Groundwater contaminated by arsenic exposes more than 150
million people globally to toxic levels above the World Health
Organization (WHO) limit of 10 μg/L.1,2 Arsenic is a systemic
toxin that leads to major adverse health outcomes.3,4 To
reduce exposure to high arsenic, people across South and
Southeast Asia increasingly rely on older Pleistocene aquifers
as a safer alternative to younger Holocene aquifers that
commonly have high concentrations of arsenic in ground-
water.5 Alarmingly, recent evidence shows that the typically
pristine Pleistocene aquifers are susceptible to reduction and
arsenic contamination.6−10 Arsenic release into groundwater is
commonly attributed to microbially mediated reductive
dissolution of arsenic-bearing iron (Fe) (oxyhydr)oxide
minerals in the subsurface.11,12 Measurements of aqueous
groundwater arsenic are extensive, but comparably few studies
examine iron minerals or their postdeposition stability and
transformations in arsenic-impacted environmental settings.
Although solid phases have been previously characterized,
most have been part of laboratory-based experiments or are
sampled too sparsely to identify relevant chemical gradients in
detail.13−16 Consequently, we do not fully understand the
extent of geochemical transformations that occur as sediments
undergo reduction and impact groundwater arsenic concen-

trations in the field, particularly where Pleistocene aquifers
could be the locus of future contamination.
The limited observations available to distinguish iron

mineralogy or sediment age are based on proxies using
sediment color or chemical compositions that differ between
sediment lithology or ages.6,17 One of the few measurements,
especially of redox state, is color of aquifer sands from field
observations and spectral reflectance measurements.18 Color is
often used as an indicator of safer wells because Pleistocene-
aged sediments often appear orange-colored and contain
presumably more oxidized Fe minerals, while Holocene
sediments appear gray and contain presumably more reduced
Fe minerals, leading to their differences in dissolved arsenic
concentrations.1,6,19 However, color itself does not uniquely
identify depositional history or transformations due to active
redox processes (e.g., Pleistocene sediment that has been
reduced and turned gray) or presence of other minerals or
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organic matter. X-ray absorption spectroscopy (XAS) is
uniquely suited to analyze redox state and mineralogy in
sediments across geologic transitions.20 Recent developments
in XAS have greatly increased sample throughput to enable
collection of relatively large data sets of sediment mineralogy
across environmental gradients.21 Using this approach, we
classify sediments into groups of similar depositional history
and redox state based on their iron speciation and mineralogy
to provide a comprehensive view of Fe reduction processes.
Here, we analyze XAS spectra of 134 core samples from 24

sediment cores drilled in transitional environments in the Red
River Delta near Hanoi, Vietnam in the villages of Van Phuc,
Van Duc, and Yen My (Figure S1). In Van Phuc, a sharp
gradient laterally separates a Pleistocene aquifer, with ground-
water arsenic concentrations lower than the WHO limit, from
a Holocene aquifer with arsenic concentrations 10 to 30 times
the WHO limit.6 At this boundary, the Pleistocene aquifer is
becoming contaminated and creating a transition zone of
arsenic release.6,22,23 This large XAS data set differentiates the
mineralogy of oxidized orange Pleistocene and gray reduced
Holocene settings from environments undergoing postdeposi-
tional reductive change. We investigate evidence of active
weathering and redox processes determined by Fe mineralogy
to relate mineralogical changes to changes in aqueous
composition and arsenic across a redox gradient. Then, we
leverage this relationship to predict the distribution of
transitional sediments (i.e., undergoing active reduction) that

could be at risk of contamination in similar deltaic settings
across South and Southeast Asia.

■ MATERIALS AND METHODS

Study Area and Sampling. The study area is located
south of Hanoi, Vietnam, in the Red River Delta. Sediment
cores were drilled in Van Phuc, Van Duc, and Yen My6,7,23

(Figure S1) by either push or piston coring (details in SI).
From the core sections, subsamples of approximately every
meter were collected, mixed 1:1 with glycerol immediately in
the field, and stored in microcentrifuge tubes at −20 °C until
analysis to best preserve the redox state as previously
reported.24,25 No indication of oxidation occurred (SI).
Aqueous chemistry and sediment field characterizations were
previously reported and characterized for these sites;6,23,26

radiocarbon dating of select cores was performed at the
National Ocean Sciences Accelerator Mass Spectrometry
facility, as previously reported10 (SI).

X-ray Absorption Spectroscopy. Glycerol-preserved
sediment samples were analyzed via XAS at Stanford
Synchrotron Radiation Lightsource on beamlines 4-1 and 11-
2 and Argonne National Laboratory Advanced Photon Source
on beamline 10-BM. Fe extended X-ray absorption fine
structure (EXAFS) spectra of prepped samples were collected
under beamline conditions as previously reported25,27,28 (SI).

Statistical Analysis. Normalization of Fe EXAFS spectra
was done in SIXPACK.29 Principal components analysis was
performed with SIXPACK on all Fe EXAFS samples and 10 Fe

Figure 1. (A) Dendrogram shows clusters identified by hierarchical cluster analysis match with and expand on field classification of sediment redox
state and depositional history. The clusters that naturally arise from the branching of the dendrogram are labeled by highlighted color (cluster 1 in
green, cluster 2 in red, cluster 3 in blue, cluster 4 in black); the cluster number is also denoted on each branch of the dendrogram. Each sample
name on the dendrogram includes the well name and sediment depth and is colored by field-identified classifications, where an orange sample name
represents orange Pleistocene sediment, a gray sample name represents orange Pleistocene sediment that is turning gray (known as part of the
“orange to gray” transition zone), and a black sample name represents gray Holocene sediment per field classification. (B) Heat map shows higher
fraction of oxidized Fe(III) minerals in more oxidized clusters and higher fraction of reduced Fe(II) minerals in clusters undergoing reduction.
From top to bottom on the y-axis, Fe minerals are listed from more oxidized Fe(III) minerals (ferrihydrite, goethite, hematite) to mixed Fe(III)/
Fe(II) minerals (green rust, magnetite, mixed Fe(III)/Fe(II) silicates) to more reduced Fe(II) minerals (siderite, a secondary Fe(II) carbonate;
biotite, a primary Fe(II) silicate; pyrite; mackinawite). From left to right, the clusters are listed from more oxidized (orange Pleistocene) to more
reduced (gray Holocene). The gradient from yellow (lower fraction) to purple (higher fraction) indicates the mean fraction of Fe mineral of each
cluster from linear combination fitting.
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standards. Linear combination fitting was performed using k3-
weighted chi functions with a k range from 1 to 12 (with
package “penalized” in R) and restricted to non-negative fits.
The principal component (PC) loadings were exported from
SIXPACK for hierarchical cluster analysis performed in the
statistical program R. Hierarchical clustering analysis was
performed on PC1 to PC4 based on Euclidean distance using
Ward’s minimum variance method from which a dendrogram
shows the splitting of different clusters (see details in SI).
A supervised multinomial logistic regression model was

developed to predict the defined sediment classifications based
on the concentrations of aqueous arsenic, manganese, and iron
that distinguish between redox zones in Van Phuc. The model
was trained with a 70%/30% split training/test set; cross-
validation was performed in R (SI). To upscale to South and
Southeast Asia, the model was run on a data set of aqueous
concentrations that we compiled from previously published
studies (USGS Powell Center Database, Table S1, n = 10675).
The compiled data set of aqueous iron, manganese, and arsenic
were used to predict the sediment mineralogy for each
available sample.

■ RESULTS AND DISCUSSION
Spectroscopic Differentiation of Redox Gradient.

Direct characterizations of iron mineralogy across geochemical
gradients are necessary to accurately identify specific
mineralogical changes associated with increasing groundwater
arsenic. The principal component loadings of Fe EXAFS
spectra correlate to sediment color, redox state, and weathering
(Text S2, Figure S3, Data S1). Sediment groupings classified
by hierarchical cluster analysis of principal components
effectively differentiates gray Holocene sediments from the
orange Pleistocene and transition zone sediments (Figure 1A).
The first branching point in the dendrogram separates gray
Holocene sediments from others, which are presumed
Pleistocene,6 but span a wide range of presumed redox states
based on color. Cluster 4 is tentatively assigned to represent
these gray Holocene sediments. The second and third
branching point differentiates the other sediments into three
groups. The second branch defines cluster 1, which represents
orange, oxidized Pleistocene sediments based on field
classification. A tertiary node separates clusters 2 and 3.
Cluster 2 is similar to other orange Pleistocene sediments;
cluster 3 contains the field-identified transition zone sediments.
Previous observations of this redox transition in Van Phuc

have focused on the color and position of cored sediments
across the sharp transition between the orange Pleistocene and
gray Holocene aquifers.6 Many of our XAS measurements are
adjacent to this transition zone to better characterize subtle Fe
reduction more widely. Cluster 3 contains sediments that were
seemingly misclassified based on color in field observations as
orange Pleistocene sediment or gray Holocene sediments
(Figure 1). The mineralogical similarity in these misclassified
sediments suggest that they are transitional. In cluster 3, the
initially field-identified orange sediments were actually in the
process of conversion to gray or toward the boundary close to
orange−gray transition. Moreover, in cluster 3, the initially
field-identified gray sediments (and thus presumed Holocene)
are actually converted Pleistocene sediments that appeared
gray and reduced, suggesting that the transition zone is more
extensive than previously expected (Figure S4). It is important
to note that our classification is based on mineralogical
transformations resulting from redox changes and weathering

and not strictly age; however, this work suggests Pleistocene
sediments may be misclassified by more traditional approaches
as gray Holocene sediments, once they have undergone
extensive reduction.6,18 The extent of the transition zone as
either permanently or transitionally reduced affects our
understanding of arsenic release mechanisms and water quality.
Finally, while cluster 2 visually appears orange based on field

classification and reflectance measurements, its mineralogy
clusters closely to that of transition zone sediments (cluster 3)
(Figure 1A). This suggests that sediments in cluster 2 also are
transitional but that the transition has not been sufficient to
change their appearance. The successively decreasing iron
oxidation state and the extent of reduction in each cluster is
observed in the Fe K-edge positions of their X-ray absorption
near-edge structure spectra (Figure S5). Hierarchical cluster
analysis identifies four groups that are particularly useful to
understand active redox transformations of iron oxides in field
environments and their effect on dissolved arsenic levels:
Cluster 1 represents orange Pleistocene, and clusters 2 and 3
are more oxidized (orange transition) and more reduced (gray
transition) transitional Pleistocene environments, respectively,
while cluster 4 is separately gray Holocene. Radiocarbon dating
confirms these classifications using redox processes as an
indirect proxy for depositional and postdepositional history
(Table S2). These classifications are equally applicable when
we expand our classifications to nearby villages (SI).
Classifying sediments into groups greatly improves con-

textualization of underlying mineralogies quantified for each
sample via conventional linear combination fitting (Figure S2).
When the linear combination fits of samples are considered
cohesively in clusters as opposed to individually, as is typically
done, sediment groups show clear differences in the relative
abundance of primary and secondary Fe minerals indicative of
their weathering history and redox status (Figure 1B, Figure
S6). Orange Pleistocene sediments are mostly composed of
reactive Fe(III) oxyhydroxides such as ferrihydrite (and
nanogoethite) and oxidized Fe(III) minerals, like goethite
and hematite, but low mean fraction of reduced Fe minerals
other than primary silicates25 (Figure 1B, Figure S6).
Comparatively, the gray Holocene cluster is composed of a
lower mean fraction of reactive ferrihydrite but a high fraction
of secondary mineral and reactive Fe(II) carbonate, siderite.
Siderite is significantly (p < 0.05) higher in the gray Holocene
cluster than in the other Pleistocene clusters. This agrees well
with the assumption that gray Holocene sediments are
generally more reduced and form siderite from dissolved
Fe(II).30,31 The mean fraction of biotite, a primary Fe(II)
silicate mineral, is also higher for the gray Holocene sediments
than the mean fraction of biotite in all other Pleistocene
clusters. Differences in the abundance fraction of primary
minerals between Holocene and Pleistocene sediments may
reflect variations in the source or type of sediment transported
and deposited in the Holocene and Pleistocene due to
geological and climatic changes affecting river sediment.
More likely, Holocene sediments contain more biotite because
they are younger and subjected to less extensive chemical
weathering,32 consistent with findings of detrital biotite
associated with Holocene sediments.33

The transitions observed as sediments undergo reduction
from the orange Pleistocene to the orange transition to the
gray transition cluster provide the first direct characterization
of the redox transformations in a field environment affected by
arsenic. Reduction is evident from the decrease in the mean
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fraction of ferrihydrite and in the tail of the goethite histogram
(where poorly crystalline goethite is reduced), leading to
release of arsenic (Figure S6).30 Mineral transformations also
produce higher mixed Fe(III)/Fe(II) silicate abundance in
both clusters of gray sediments (clusters 3 and 4) that are
arsenic-contaminated zones. Here, mixed Fe(III)/(II) silicates
are representative of a wide variety of secondary clays and the
primary mineral hornblende, which share a similar Fe
octahedral coordination structure.34 Secondary clays may
create the visually gray sediment appearance identified in the
field from the reduction of more oxidized Fe minerals.

Moreover, green rust found in the transition zone is produced
in soils but is seldom quantified as it is reactive and usually is
either oxidized or converted to more stable Fe(II) minerals
such as magnetite or siderite.35,36 Green rust can form as the
secondary Fe mineral product following ferrihydrite dissolution
(at higher arsenic concentrations) as well as during the
conversion from ferrihydrite to magnetite.37,38 Importantly,
green rust can exclude arsenic37 and could contribute to
increased arsenic release into groundwater in the transition
zone. Notably, we are able to quantify the extent of supposed
redox transformations in the field environment that are not as

Figure 2. Aqueous (A) arsenic, (B) iron, and (C) manganese from the field site are used to train a supervised classification model to classify
sediment redox and depositional age by clusters (D). Boxplot of measured and interpolated aqueous (A) arsenic, (B) iron, and (C) manganese
concentrations as grouped by sediment clusters in Van Phuc. (D) Map of classified sediment distribution results in Red River Delta, Vietnam, and
Bangladesh by cluster as colored by aqueous arsenic concentrations. Note that clusters 1 and 2 are grouped together as orange sediments in the
classification model, and clusters 1, 2, and 3 represent Pleistocene sediments. Base map is from Google Maps imagery.47
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readily apparent from sediment Fe concentrations alone
(Figure S7).
Linking Sediment Classification and Aqueous Com-

positions. Solution composition and groundwater arsenic
levels can change rapidly in response to modest changes in
sediment mineralogy and redox state.39 We probe this
relationship by linking paired sediment cluster groupings and
aqueous composition directly related to arsenic release. As
generally expected in oxidized environments with abundant
Fe(III) oxides, the orange Pleistocene group (cluster 1) has
generally low aqueous arsenic and Fe concentrations (Figure
2A,B). Interestingly, although there is evidence of reduction in
the Fe mineralogy, aqueous arsenic remains low in the orange
transition zone (cluster 2); this suggests that dissolved arsenic
concentration does not increase until there is extensive iron
reduction, at least for Pleistocene sediments (Figure 2A). The
more reduced gray transition zone sediments (cluster 3) have
variable but often much higher aqueous arsenic and Fe
concentrations than the orange transition zone sediments
(cluster 2). Wells within these zones (clusters 1−3) contain
varied evidence of Fe reduction forming metastable Fe(II)
minerals but consistently high aqueous Mn (Figure 2C). The
orange transition zone (cluster 2) has the highest aqueous Mn
concentrations but low sediment Mn concentrations, suggest-
ing reduction of Mn oxides can act as a buffer before more
extensive Fe reduction40 (Figure S7). The aqueous arsenic and
Fe concentrations in the gray transition zone (cluster 3) are
comparable to those of gray Holocene sediments (cluster 4),
where reduction is prevalent. The conversion and correspond-
ing increase in groundwater arsenic can be quite rapid in
perturbed systems. In Van Phuc, this conversion has occurred
over 50−60 years due to the reversal in groundwater flow from
pumping in Hanoi.6 The cross section of the transect (Figure
S4) suggests a clear evolution of mineralogy during sediment
reduction that influences aqueous composition. Because this
reduction occurs due to groundwater flow,6 orange transitional
environments are likely also indicators of groundwater plumes
and preferential flow along the redox boundary.41 These
orange transition zones form at the front of a migrating
groundwater plume and serve as lenses for more extensive
sediment reduction and future increases in groundwater
arsenic.
The mineralogical analysis shows a clear relationship

between sediment redox transformations revealed by detailed
Fe mineralogy and groundwater composition. In particular, the
potential contamination of pristine aquifers as distinguished by
the mineralogical signature is critical to identify before
evidence of arsenic contamination is found in the aqueous
data. Given that the aqueous composition of different sediment
groups is distinct, the local observation is directly scalable to
similar deltaic aquifers in South and Southeast Asia based on
measurements of groundwater composition that are more
widely available.
The multinomial logistic regression model of iron

mineralogy successfully differentiates sediments into their
mineralogical clusters in Van Phuc (Table S3), based on the
aqueous predictors of iron, arsenic, and manganese. The model
is readily translated to predict Fe redox processes within the
similar sediments of deltaic environments across South and
Southeast Asia, where extensive mineralogical data may not yet
exist but where extensive aqueous concentrations have been
measured (Data S3). In the Red River Delta, there is a
patchwork of Pleistocene and Holocene sediments, and many

Pleistocene sediments appear to be undergoing redox trans-
formations,8 similar to in Cambodia with suggested Mn
reduction buffering Fe reduction.40 In the Ganges−Brahmapu-
tra−Meghna Delta in Bangladesh, this method faithfully
predicts major geological features of Pleistocene terraces and
Holocene paleo-alluvial valleys17,42−45 (Figure S9). Other
aqueous species that vary sharply across redox transition zones
but were not used as predictors, including phosphate,
ammonium, and sulfate, clearly corroborate redox trans-
formations and weathering delineated by mineralogical
classifications (Figure S10). This exercise suggests that
approximately 49% of aquifers recorded in the compiled
database are transitional aquifers in South and Southeast Asia,
which could be susceptible to future arsenic contamination
(Data S3).
This overall method provides a general framework for

relating mineralogy to aqueous composition that can be readily
extended to understand biogeochemical processes occurring in
other environments; it is directly applicable to understanding
arsenic in glacial aquifers, where extended synchrotron data has
been reported.46 Our results suggest that previously identified
high-arsenic deltaic aquifers widely believed to be gray
Holocene are actually Pleistocene aquifers that have undergone
extensive reduction; this implies aquifers currently supplying
low arsenic groundwater may not necessarily continue to do so
in the future. The distribution of transitional versus
permanently reduced environments also questions our
fundamental understanding of whether associated reduction
has increased over time due to more recent hydrological
changes such as extensive anthropogenic pumping or has
always continuously existed in a state of transition.
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