The Annual Cycle of Precipitation over the Tropical Atlantic, South America, and Africa.
Mutual Influences of Land and Ocean.

Michela Biasutti

with David S. Battisti and Edward S. Sarachik

New York, October 3, 2003
OUTLINE

- Motivation
- Method
- Results
- Conclusions
- Implications
OUTLINE

- Motivation
- Method
- Results
- Conclusions
- Implications
OUTLINE

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)
- Method
- Results
- Conclusions
- Implications
OUTLINE

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)

- Method

- Results

- Conclusions

- Implications
OUTLINE

• Motivation
 • Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 • Similarity between TAV and Annual Cycle (AC)

• Method
 • Models
 • Experimental design

• Results

• Conclusions

• Implications
OUTLINE

• Motivation
 • Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 • Similarity between TAV and Annual Cycle (AC)

• Method
 • Models
 • Experimental design

• Results
 • Conclusions
 • Implications
OUTLINE

• Motivation
 • Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 • Similarity between TAV and Annual Cycle (AC)

• Method
 • Models
 • Experimental design

• Results
 • Local Control of Land Precipitation (uncoupled)
 • Local Control of Ocean Precipitation (uncoupled)
 • Remote Control of Land Precipitation (uncoupled)
 • Remote Control of Ocean Precipitation (uncoupled & coupled)

• Conclusions
• Implications
OUTLINE

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)

- Method
 - Models
 - Experimental design

- Results
 - Local Control of Land Precipitation (uncoupled)
 - Local Control of Ocean Precipitation (uncoupled)
 - Remote Control of Land Precipitation (uncoupled)
 - Remote Control of Ocean Precipitation (uncoupled & coupled)

- Conclusions

- Implications
OUTLINE

• Motivation
 • Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 • Similarity between TAV and Annual Cycle (AC)

• Method
 • Models
 • Experimental design

• Results
 • Local Control of Land Precipitation (uncoupled)
 • Local Control of Ocean Precipitation (uncoupled)
 • Remote Control of Land Precipitation (uncoupled)
 • Remote Control of Ocean Precipitation (uncoupled & coupled)

• Conclusions

• Implications
Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.

Working Hypothesis: Tropical Atlantic SST influences land precipitation.

Open Question: What are the mechanisms?

- Is the SST influence direct?
- Is it mediated through changes in oceanic precipitation?
- Is there a feedback: can land precip affect SST?
Motivation: SST & LAND PRECIPITATION

- **Fact:** Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- **Working Hypothesis:** Tropical Atlantic SST influences land precipitation.
- **Open Question:** What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?
Motivation: SST & LAND PRECIPITATION

- Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- Working Hypothesis: Tropical Atlantic SST influences land precipitation.
- Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?
Motivation: SST & LAND PRECIPITATION

Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.

Working Hypothesis: Tropical Atlantic SST influences land precipitation.

Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?
Motivation: SST & LAND PRECIPITATION

- **Fact:** Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- **Working Hypothesis:** Tropical Atlantic SST influences land precipitation.
- **Open Question:** What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?
Motivation: SST & LAND PRECIPITATION

- Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- Working Hypothesis: Tropical Atlantic SST influences land precipitation.
- Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?
Motivation: SST & LAND PRECIPITATION

• Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.

• Working Hypothesis: Tropical Atlantic SST influences land precipitation.

• Open Question: What are the mechanisms?
 • Is the SST influence direct?
 • Is it mediated through changes in oceanic precipitation?
 • Is there a feedback: can land precip affect SST?
Motivation: AC & TAV ANALOGUE

• Atmospheric processes bring the SST signal inland ⇒ the same fast atmospheric dynamics must be involved in both the AC and the TAV.

• The gross features of AC and TAV in the deep tropics look alike
Motivation: AC & TAV ANALOGUE

meridional mode

cross-equatorial SST gradient

cross-equatorial wind towards warm SST

meridional shift of ITCZ towards warm SST
Method: THE MODELS

- **Uncoupled** Community Climate Model Version 3 (CCM3) T42 resolution.
 - The precipitation over Africa and South America is overestimated.
 - Tropical land is too cold (especially the Sahara).

- **Coupled** CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - SST responds to radiative and turbulent heat fluxes.
 - No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.
Method: THE MODELS

- **Uncoupled** Community Climate Model Version 3 (CCM3) T42 resolution.

 ⇒ The precipitation over Africa and South America is overestimated.

 ⇒ Tropical land is too cold (especially the Sahara).

- **Coupled** CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).

 ⇒ SST responds to radiative and turbulent heat fluxes.

 ⇒ No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).

 ⇒ Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.
Method: THE MODELS

• **Uncoupled** Community Climate Model Version 3 (CCM3) T42 resolution.

 ⇒ The precipitation over Africa and South America is overestimated.

 ⇒ Tropical land is too cold (especially the Sahara).

• **Coupled** CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).

 ⇒ SST responds to radiative and turbulent heat fluxes.

 ⇒ No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).

 ⇒ Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.
Method: THE MODELS

- **Uncoupled** Community Climate Model Version 3 (CCM3) T42 resolution.

 ⇒ The precipitation over Africa and South America is overestimated.

 ⇒ Tropical land is too cold (especially the Sahara).

- **Coupled** CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).

 ⇒ SST responds to radiative and turbulent heat fluxes.

 ⇒ No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).

 ⇒ Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.
Method: THE MODELS

- **Uncoupled** Community Climate Model Version 3 (CCM3) T42 resolution.
 - The precipitation over Africa and South America is overestimated.
 - Tropical land is too cold (especially the Sahara).

- **Coupled** CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - SST responds to radiative and turbulent heat fluxes.
 - No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.
Method: THE MODELS

- **Uncoupled** Community Climate Model Version 3 (CCM3) T42 resolution.
 - The precipitation over Africa and South America is overestimated.
 - Tropical land is too cold (especially the Sahara).

- **Coupled** CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - SST responds to radiative and turbulent heat fluxes.
 - No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.
Method: THE MODELS

- **Uncoupled** Community Climate Model Version 3 (CCM3) T42 resolution.

 ⇒ The precipitation over Africa and South America is overestimated.

 ⇒ Tropical land is too cold (especially the Sahara).

- **Coupled** CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).

 ⇒ SST responds to radiative and turbulent heat fluxes.

 ⇒ No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).

 ⇒ Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.
Method:
THE IDEA BEHIND THE EXPERIMENTS

We want to identify:

- what features of the AC over land and ocean are locally forced?
- what features of the AC over land and ocean are remotely forced?
- the mechanisms of mutual influences between land and ocean regions

IDEA: we suppress the AC of forcings over land and ocean regions separately ⇒ we can separate out local and remote responses.
Method: THE FORCINGS

- Insolation over land.
- Insolation over ocean.
- Q-flux.
- Elevated Condensational Heating (Q_{cond}) in selected areas
Method: EXPERIMENTAL DESIGN

- Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)

- Fixed Ocean Forcings, AC of insolation over land
Method: EXPERIMENTAL DESIGN

- Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)

- Fixed Ocean Forcings, AC of insolation over land
Method: EXPERIMENTAL DESIGN

- Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)

 \[\downarrow \]

 AC over LAND is a REMOTE response to AC over ocean
 AC over OCEAN is a LOCAL response

- Fixed Ocean Forcings, AC of insolation over land
Method: EXPERIMENTAL DESIGN

- Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)
 \[\downarrow\]
 AC over LAND is a REMOTE response to AC over ocean
 AC over OCEAN is a LOCAL response

- Fixed Ocean Forcings, AC of insolation over land
Method: EXPERIMENTAL DESIGN

• Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)
 \[\Downarrow\]
 AC over LAND is a REMOTE response to AC over ocean
 AC over OCEAN is a LOCAL response

• Fixed Ocean Forcings, AC of insolation over land
 \[\Downarrow\]
 AC over LAND is a LOCAL response
 AC over OCEAN is a REMOTE response to AC over land
RESULTS

A. LOCAL LAND

- AC of insolation;
 March SST
 ⇒ AC of land precip

B. LOCAL OCEAN

- AC of SST;
 March Insolation
 ⇒ AC of ocean precip

C. REMOTE LAND

- AC of SST;
 March Insolation
 ⇒ AC of land precip

D. REMOTE OCEAN

- AC of land insolation;
 March SST
 ⇒ AC of ocean precip
Results: **LOCAL LAND**

CTL:
North-South displacement over land and ocean
Extrema: February/August

Local Land:
North-South displacement over land
Extrema: December/June
Gulf of Guinea is way off!
Results: LOCAL LAND

CTL:
North-South displacement over land and ocean
Extrema: February/August

Local Land:
North-South displacement over land
Extrema: December/June
Gulf of Guinea is way off!
RESULTS

A. LOCAL LAND
 • AC of insolation;
 March SST
 ⇒ AC of land precip

B. LOCAL OCEAN
 • AC of SST;
 March Insolation
 ⇒ AC of ocean precip

C. REMOTE LAND
 • AC of SST;
 March Insolation
 ⇒ AC of land precip

D. REMOTE OCEAN
 • AC of land insolation;
 March SST
 ⇒ AC of ocean precip
Results: LOCAL OCEAN

CTL:
North-South displacement over land and ocean
Extrema: February/August

Local Ocean:
North-South displacement over ocean
Extrema: March/August
Local control of ITCZ position
Non-local control of ITCZ intensity

What’s the role of elevated condensational heating (Q_{cond}) in generating surface winds and convergence?
Results: LOCAL OCEAN

CTL:
North-South displacement over land and ocean
Extrema: February/August

Local Ocean:
North-South displacement over ocean
Extrema: March/August
Local control of ITCZ position
Non-local control of ITCZ intensity

What’s the role of elevated condensational heating \(Q_{cond} \) in generating surface winds and convergence?
Results: LOCAL OCEAN

CTL:
North-South displacement over land and ocean
Extrema: February/August

Local Ocean:
North-South displacement over ocean
Extrema: March/August
Local control of ITCZ position
Non-local control of ITCZ intensity

What’s the role of elevated condensational heating (Q_{cond}) in generating surface winds and convergence?
Results: **LOCAL OCEAN**: the role of Q_{cond}.

Moisture Convergence (P-E) & Surface Wind Response to SST changes.
Results: **LOCAL OCEAN**: the role of Q_{cond}.

Moisture Convergence (P-E) & Surface Wind Response to SST changes.

Moisture Convergence (P-E) & Surface Wind Response to Q_{cond} changes in the ITCZ. The ITCZ Q_{cond} drives a circulation that sustains the original SST-induced displacement of the ITCZ.
RESULTS

A. LOCAL LAND
 - AC of insolation;
 March SST
 ⇒ AC of land precip

B. LOCAL OCEAN
 - AC of SST;
 March Insolation
 ⇒ AC of ocean precip

C. REMOTE LAND
 - AC of SST;
 March Insolation
 ⇒ AC of land precip

D. REMOTE OCEAN
 - AC of land insolation;
 March SST
 ⇒ AC of ocean
Results: **REMOTE LAND.**

Precipitation response to SST changes.

- Northeast Brazil /Guiana
- Equatorial Africa & Guinea /Sahel
Results: **REMOTE LAND**: the role of Q_{cond}.

Precipitation response to SST changes.
- Northeast Brazil / Guiana
- Equatorial Africa & Guinea / Sahel

Precipitation response to Q_{cond} changes in the ITCZ.
- YES: South America
- NO: Africa
Results: **REMOTE LAND**: the role of T_{sf_c}

![Graphs showing SST, Land T_{sf_c}, θ_e and SLP, and P_{max} position.]

SST

\[\downarrow\]

Land T_{sf_c}

\[\downarrow\]

θ_e and SLP

\[\downarrow\]

P_{max} position.

19
Results: **REMOTE LAND**: Inland Advection of SST.

- SST \Rightarrow ITCZ
- ITCZ \Rightarrow wind in Africa + wind and SAT in Near East
- mean westerlies \Rightarrow Arabian SAT
- mean easterlies + wind anomalies \Rightarrow Sahara SAT
- African SLP \Rightarrow southerly wind
 \Rightarrow moisture convergence into the Sahel
Results: **REMOTE LAND**: Inland Advection of SST.

- SST \Rightarrow ITCZ
- ITCZ \Rightarrow wind in Africa + wind and SAT in Near East
- mean westerlies \Rightarrow Arabian SAT
- mean easterlies + wind anomalies \Rightarrow Sahara SAT

- African SLP \Rightarrow southerly wind
- \Rightarrow moisture convergence into the Sahel
Results: **REMOTE LAND**: Inland Advection of SST.

- SST \Rightarrow ITCZ
- ITCZ \Rightarrow wind in Africa + wind and SAT in Near East
- mean westerlies \Rightarrow Arabian SAT
- mean easterlies + wind anomalies \Rightarrow Sahara SAT

- African SLP \Rightarrow southerly wind
- \Rightarrow moisture convergence into the Sahel
Results: REMOTE LAND: Inland Advection of SST.

- SST \Rightarrow ITCZ
- ITCZ \Rightarrow wind in Africa + wind and SAT in Near East
- mean westerlies \Rightarrow Arabian SAT
- mean easterlies + wind anomalies \Rightarrow Sahara SAT

- African SLP \Rightarrow southerly wind
- \Rightarrow moisture convergence into the Sahel

\[\text{20} \]
RESULTS

A. LOCAL LAND
 • AC of insolation;
 March SST
 ⇒ AC of land precip

B. LOCAL OCEAN
 • AC of SST;
 March Insolation
 ⇒ AC of ocean precip

C. REMOTE LAND
 • AC of SST;
 March Insolation
 ⇒ AC of land precip

D. REMOTE OCEAN
 • AC of land insolation;
 March SST
 ⇒ AC of ocean precip
Uncoupled response: Land climate forces rainfall intensity anomalies in the Atlantic ITCZ.

- Does the ITCZ respond to changes in land surface temperature?
- Does it respond to changes in land precipitation (Q_{cond})?
Results: **REMOTE OCEAN**: ITCZ Intensity Change

Uncoupled response: Land climate forces rainfall intensity anomalies in the Atlantic ITCZ.

- Does the ITCZ respond to changes in land surface temperature?
- Does it respond to changes in land precipitation (Q_{cond})?
Results: REMOTE OCEAN: ITCZ Intensity Change

Uncoupled response: Land climate forces rainfall intensity anomalies in the Atlantic ITCZ.

- Does the ITCZ respond to changes in land surface temperature?
- Does it respond to changes in land precipitation (Q_{cond})?
Results: **REMOTE OCEAN**: Response to Land Q_{cond}

The response to imposed steady forcing in elevated condensational heating over Africa and South America.

Uncoupled response

- ITCZ intensity responds to remote Q_{cond} anomalies.
- Anomalies are co-located with the mean ITCZ.
- Surface wind anomalies over ocean.
Results: **REMOTE OCEAN: Response to Land Q_{cond}**

The response to imposed steady forcing in elevated condensational heating (Q_{cond}) over Africa and South America.

Uncoupled response
- ITCZ intensity responds to remote Q_{cond} anomalies.
- Anomalies are co-located with the mean ITCZ.
- Surface wind anomalies over ocean.

Coupled response
- wind anomalies \Rightarrow evaporation anomalies
- latent heat flux anomalies \Rightarrow SST anomalies
- anomalous SST gradient \Rightarrow the ITCZ shift
- wind/evaporation/SST/ITCZ feedback.
COUPLED RESULTS

D. REMOTE OCEAN (coupled!)

CTL
- AC of Insolation over Land.
- AC of Insolation over Ocean.
- AC of Q-flux.

Fixed Insolation over Land
- March Insolation over Land.
- AC of Insolation over Ocean.
- AC of Q-flux.

⇓

Effect of AC of Insolation over Land
Results: **REMOTE OCEAN**: Central Atlantic response to AC of Insolation over Land

suppressed AC over land ⇒ suppressed meridional annual march of ITCZ.
Concomitant changes in SST.

What forces the SST & ITCZ anomalies?
- Land surface temperature?
- Land precipitation?
Results: **REMOTE OCEAN**: Central Atlantic response to AC of Insolation over Land

suppressed AC over land ⇒ suppressed meridional annual march of ITCZ.

Concomitant changes in SST.

What forces the SST & ITCZ anomalies?
- Land surface temperature?
- Land precipitation?
Results: **REMOTE OCEAN**: Central Atlantic response to AC of Insolation over Land

suppressed AC over land \Rightarrow suppressed meridional annual march of ITCZ.

Concomitant changes in SST.

What forces the SST & ITCZ anomalies?
- Land surface temperature?
- Land precipitation?
Results: **REMOTE OCEAN**: Central Atlantic response to AC of Insolation over Land

suppressed AC over land \Rightarrow suppressed meridional annual march of ITCZ.

Concomitant changes in SST.

What forces the SST & ITCZ anomalies?
- Land surface temperature?
- Land precipitation?
Results: **REMOTE OCEAN**: Effect of Land Temperature and Precipitation

Compare the control simulation to the simulation with fixed insolation over land and the simulation with fixed elevated condensational heating over Africa and South America (Q_{cond})

Land Q_{cond} and land T_{sfc} have large and opposite effects.

Land T_{sfc} dominant.
How?
Results: **REMOTE OCEAN**: Development of ITCZ Anomalies in Response to Land Forcing.

December cold “anomalies” in the Sahara \Rightarrow thermal high
\Downarrow
stronger NTA Trades \Rightarrow stronger evaporation
\Downarrow
colder NTA
$+$
feedbacks @ equator
\Downarrow
equatorial SST gradient
\Downarrow
ITCZ shift
Results: **REMOTE OCEAN**: Development of ITCZ Anomalies in Response to Land Forcing.

December cold “anomalies” in the Sahara ⇒ thermal high

⇒

stronger NTA Trades ⇒ stronger evaporation

⇒

colder NTA

+

feedbacks @ equator

⇒

equatorial SST gradient

⇒

ITCZ shift
Results: **REMOTE OCEAN**: Development of ITCZ Anomalies in Response to Land Forcing.

December cold “anomalies” in the Sahara ⇒ thermal high

↓

stronger NTA Trades ⇒ stronger evaporation

↓

colder NTA

+

feedbacks @ equator

↓

equatorial SST gradient

↓

ITCZ shift
Results: **REMOTE OCEAN**: Development of ITCZ Anomalies in Response to Land Forcing.

December cold “anomalies” in the Sahara ⇒ thermal high
↓
stronger NTA Trades ⇒ stronger evaporation
↓
colder NTA
+
feedbacks @ equator
↓
equatorial SST gradient
↓
ITCZ shift
Results: **REMOTE OCEAN**: Development of ITCZ Anomalies in Response to Land Forcing.

December cold “anomalies” in the Sahara \Rightarrow thermal high
\Downarrow
stronger NTA Trades \Rightarrow stronger evaporation
\Downarrow
colder NTA
\perp
feedbacks @ equator
\Downarrow
equatorial SST gradient
\Downarrow
ITCZ shift
Results: REMOTE OCEAN: Development of ITCZ Anomalies in Response to Land Forcing.

December cold “anomalies” in the Sahara ⇒ thermal high
⇒
stronger NTA Trades ⇒ stronger evaporation
⇒
colder NTA
+
feedbacks @ equator
⇒
equatorial SST gradient
⇒
ITCZ shift
Equatorial Feedbacks

- SST gradient \implies cross-equatorial flow
 \iff?

Feedback on SST gradient
- Cld-rad: -ve
- Winds: +ve
- OHT: -ve?

John Chiang
CONCLUSIONS:
Mutual Influences of Land and Ocean
Conclusions: **REMOTE INFLUENCE OF SST ON LAND**

The AC of SST influences the AC of land precipitation

in coastal areas: SST \Rightarrow ITCZ \Rightarrow Northeast Brazil and Guiana precipitation.

in the Sahel: SST \Rightarrow Sahara $T_{sfc} \Rightarrow$ SLP gradient \Rightarrow Sahel precipitation.
Conclusions: **REMOTE INFLUENCE OF SST ON LAND**

The AC of SST influences the AC of land precipitation

in coastal areas: SST \Rightarrow ITCZ \Rightarrow Northeast Brazil and Guiana precipitation.

in the Sahel: SST \Rightarrow Sahara $T_{sfc} \Rightarrow$ SLP gradient \Rightarrow Sahel precipitation.
Conclusions: **REMOTE INFLUENCE OF SST ON LAND**

The AC of SST influences the AC of land precipitation

in coastal areas: SST \Rightarrow ITCZ \Rightarrow Northeast Brazil and Guiana precipitation.

in the Sahel: SST \Rightarrow Sahara T_{sfc} \Rightarrow SLP gradient \Rightarrow Sahel precipitation.
Conclusions: **REMOTE INFLUENCE OF LAND ON OCEAN**

Land climate influences the ITCZ intensity and position.

intensity: Land $Q_{cond} \Rightarrow$ free tropospheric temperature \Rightarrow stability over the ocean \Rightarrow ITCZ intensity.

position: directly and indirectly forced wind \Rightarrow latent heat loss \Rightarrow SST \Rightarrow ITCZ position.

- Sahara T_{sfc} \Rightarrow north tropical Atlantic Trades.
- Land Q_{cond} \Rightarrow equatorial wind.
- Land Q_{cond} \Rightarrow ITCZ intensity \Rightarrow surface wind at the edge of the ITCZ.

Changes in surface wind trigger coupled feedbacks among wind, SST, and ITCZ.
Conclusions: **REMOTE INFLUENCE OF LAND ON OCEAN**

Land climate influences the ITCZ intensity and position.

intensity: Land $Q_{\text{cond}} \Rightarrow$ free tropospheric temperature \Rightarrow stability over the ocean \Rightarrow ITCZ intensity.

position: directly and indirectly forced wind \Rightarrow latent heat loss \Rightarrow SST \Rightarrow ITCZ position.

- Sahara $T_{\text{sfc}} \Rightarrow$ north tropical Atlantic Trades.
- Land $Q_{\text{cond}} \Rightarrow$ equatorial wind.
- Land $Q_{\text{cond}} \Rightarrow$ ITCZ intensity \Rightarrow surface wind at the edge of the ITCZ.

Changes in surface wind trigger coupled feedbacks among wind, SST, and ITCZ.
Conclusions: REMOTE INFLUENCE OF LAND ON OCEAN

Land climate influences the ITCZ intensity and position.

intensity: Land $Q_{\text{cond}} \Rightarrow$ free tropospheric temperature \Rightarrow stability over the ocean \Rightarrow ITCZ intensity.

position: directly and indirectly forced wind \Rightarrow latent heat loss \Rightarrow SST \Rightarrow ITCZ position.

- Sahara $T_{\text{sf}} \Rightarrow$ north tropical Atlantic Trades.
- Land $Q_{\text{cond}} \Rightarrow$ equatorial wind.
- Land $Q_{\text{cond}} \Rightarrow$ ITCZ intensity \Rightarrow surface wind at the edge of the ITCZ.

Changes in surface wind trigger coupled feedbacks among wind, SST, and ITCZ.
Conclusions: **REMOTE INFLUENCE OF LAND ON OCEAN**

Land climate influences the ITCZ intensity and position.

intensity: Land Q_{cond} ⇒ free tropospheric temperature ⇒ stability over the ocean ⇒ ITCZ intensity.

position: directly and indirectly forced wind ⇒ latent heat loss ⇒ SST ⇒ ITCZ position.

- Sahara T_{sfc} ⇒ north tropical Atlantic Trades.
- Land Q_{cond} ⇒ equatorial wind.
- Land Q_{cond} ⇒ ITCZ intensity ⇒ surface wind at the edge of the ITCZ.

Changes in surface wind trigger coupled feedbacks among wind, SST, and ITCZ.
Conclusions: **REMOTE INFLUENCE OF LAND ON OCEAN**

Land climate influences the ITCZ intensity and position.

intensity: Land $Q_{cond} \Rightarrow$ free tropospheric temperature \Rightarrow stability over the ocean \Rightarrow ITCZ intensity.

position: directly and indirectly forced wind \Rightarrow latent heat loss \Rightarrow SST \Rightarrow ITCZ position.

- Sahara T_{sfc} \Rightarrow north tropical Atlantic Trades.
- Land $Q_{cond} \Rightarrow$ equatorial wind.
- Land $Q_{cond} \Rightarrow$ ITCZ intensity \Rightarrow surface wind at the edge of the ITCZ.

Changes in surface wind trigger coupled feedbacks among wind, SST, and ITCZ.
IMPLICATIONS: for models, TAV, and paleo
Implications: MODELING THE ANNUAL CYCLE

- CCM3 biases: reduce the overestimate of precipitation over land (by changing albedo?) \Rightarrow solve the underestimation of precipitation in the ITCZ.

- CGCM biases: correct precipitation over equatorial coastal areas and Sahel \Leftrightarrow correct SST.

- CGCM biases: correct march of Atlantic ITCZ \Leftrightarrow correct AC of temperature in the Sahara and of precipitation in Africa and South America.
Implications: TROPICAL ATLANTIC VARIABILITY & CLIMATE CHANGE

- SST influences land precipitation at the annual timescale in the same way it does at the interannual timescale ⇒ the AC is indeed a useful analogue for TAV.

- AC of land influences AC of ocean ⇒ continental variability influences maritime variability.

- Change in African climate (e.g. due to deforestation) ⇒ Northeast Brazil (via ITCZ).

Remaining question: How does the response time of the ocean modify the response to continental forcing at the interannual timescale?
Implications: PALEO CLIMATE STUDIES
e.g. the Green Sahara

- Simulation of precipitation at edge of Sahara ⇔ correct basinwide Atlantic SST boundary conditions

- Simulation of precipitation in Sahara ⇔ correct simulation of soil albedo (soil moisture and vegetation).

- The greening of the Sahara should be visible in paleo records of the ITCZ position (e.g. from the Cariaco basin). Is it?

 Caveat: what’s the role of ocean dynamics?