The Annual Cycle of Precipitation over the Tropical Atlantic, South America, and Africa. Mutual Influences of Land and Ocean.

Michela Biasutti

with David S. Battisti and Edward S. Sarachik

New York, October 3, 2003

- Motivation
- Method
- Results
- Conclusions
- Implications

- Motivation
- Method
- Results
- Conclusions
- Implications

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)
- Method
- Results
- Conclusions
- Implications

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)
- Method
- Results
- Conclusions
- Implications

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)
- Method
 - Models
 - Experimental design
- Results
- Conclusions
- Implications

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)
- Method
 - Models
 - Experimental design
- Results
- Conclusions
- Implications

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)
- Method
 - Models
 - Experimental design
- Results
 - Local Control of Land Precipitation (uncoupled)
 - Local Control of Ocean Precipitation (uncoupled)
 - Remote Control of Land Precipitation (uncoupled)
 - Remote Control of Ocean Precipitation (uncoupled & coupled)
- Conclusions
- Implications

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)
- Method
 - Models
 - Experimental design
- Results
 - Local Control of Land Precipitation (uncoupled)
 - Local Control of Ocean Precipitation (uncoupled)
 - Remote Control of Land Precipitation (uncoupled)
 - Remote Control of Ocean Precipitation (uncoupled & coupled)
- Conclusions
- Implications

- Motivation
 - Ocean-Land relationship in Tropical Atlantic Variability (TAV)
 - Similarity between TAV and Annual Cycle (AC)
- Method
 - Models
 - Experimental design
- Results
 - Local Control of Land Precipitation (uncoupled)
 - Local Control of Ocean Precipitation (uncoupled)
 - Remote Control of Land Precipitation (uncoupled)
 - Remote Control of Ocean Precipitation (uncoupled & coupled)
- Conclusions
- Implications

- Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- Working Hypothesis: Tropical Atlantic SST influences land precipitation.
- Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?

- Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- Working Hypothesis: Tropical Atlantic SST influences land precipitation.
- Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?

- Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- Working Hypothesis: Tropical Atlantic SST influences land precipitation.
- Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?

- Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- Working Hypothesis: Tropical Atlantic SST influences land precipitation.
- Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?

- Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- Working Hypothesis: Tropical Atlantic SST influences land precipitation.
- Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?

- Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- Working Hypothesis: Tropical Atlantic SST influences land precipitation.
- Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?

- Fact: Global SST is correlated with precipitation in Sahel and Northeast Brazil.
- Working Hypothesis: Tropical Atlantic SST influences land precipitation.
- Open Question: What are the mechanisms?
 - Is the SST influence direct?
 - Is it mediated through changes in oceanic precipitation?
 - Is there a feedback: can land precip affect SST?

Motivation: AC & TAV ANALOGUE

- Atmospheric processes bring the SST signal inland \Rightarrow the same fast atmospheric dynamics must be involved in both the AC and the TAV.
- The gross features of AC and TAV in the deep tropics look alike

Motivation: AC & TAV ANALOGUE

meridional mode cross-equatorial SST gradient cross-equatorial wind towards warm SST meridional shift of ITCZ towards warm SST

- Uncoupled Community Climate Model Version 3 (CCM3) T42 resolution.
 - \Rightarrow The precipitation over Africa and South America is overestimated.

- Coupled CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - \Rightarrow SST responds to radiative and turbulent heat fluxes.
 - \Rightarrow No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - \Rightarrow Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.

- Uncoupled Community Climate Model Version 3 (CCM3) T42 resolution.
 - \Rightarrow The precipitation over Africa and South America is overestimated.

- Coupled CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - \Rightarrow SST responds to radiative and turbulent heat fluxes.
 - \Rightarrow No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - \Rightarrow Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.

- Uncoupled Community Climate Model Version 3 (CCM3) T42 resolution.
 - \Rightarrow The precipitation over Africa and South America is overestimated.

- Coupled CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - \Rightarrow SST responds to radiative and turbulent heat fluxes.
 - \Rightarrow No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - \Rightarrow Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.

- Uncoupled Community Climate Model Version 3 (CCM3) T42 resolution.
 - \Rightarrow The precipitation over Africa and South America is overestimated.

- Coupled CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - \Rightarrow SST responds to radiative and turbulent heat fluxes.
 - \Rightarrow No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - \Rightarrow Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.

- Uncoupled Community Climate Model Version 3 (CCM3) T42 resolution.
 - \Rightarrow The precipitation over Africa and South America is overestimated.

- Coupled CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - \Rightarrow SST responds to radiative and turbulent heat fluxes.
 - \Rightarrow No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - \Rightarrow Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.

- Uncoupled Community Climate Model Version 3 (CCM3) T42 resolution.
 - \Rightarrow The precipitation over Africa and South America is overestimated.

- Coupled CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - \Rightarrow SST responds to radiative and turbulent heat fluxes.
 - \Rightarrow No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - \Rightarrow Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.

- Uncoupled Community Climate Model Version 3 (CCM3) T42 resolution.
 - \Rightarrow The precipitation over Africa and South America is overestimated.

- Coupled CCM3 coupled to a Slab Ocean Model (SOM) in the tropical Atlantic only (prescribed SST elsewhere).
 - \Rightarrow SST responds to radiative and turbulent heat fluxes.
 - \Rightarrow No ocean dynamics (Ocean Heat Transport Convergence is parameterized with a flux adjustment, the Q-flux).
 - \Rightarrow Climatology of CCM3+SOM is (by construction) nearly identical to the climatology of CCM3.

Method: THE IDEA BEHIND THE EXPERIMENTS

We want to identify:

- what features of the AC over land and ocean are locally forced?
- what features of the AC over land and ocean are remotely forced?
- the mechanisms of mutual influences between land and ocean regions

IDEA: we suppress the AC of forcings over land and ocean regions separately \Rightarrow we can separate out local and remote responses.

Method: THE FORCINGS

- Insolation over land.
- Insolation over ocean.
- Q-flux.
- Elevated Condensational Heating (Q_{cond}) in selected areas

• Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)

• Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)

• Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)

 $\downarrow \\ AC \text{ over LAND is a REMOTE response to AC over ocean} \\ AC \text{ over OCEAN is a LOCAL response} \\ \\ \end{tabular}$

• Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)

AC over LAND is a REMOTE response to AC over ocean AC over OCEAN is a LOCAL response

• Fixed insolation over land, AC of Ocean Forcings (Qflux+Insolation or SST)

AC over LAND is a REMOTE response to AC over ocean AC over OCEAN is a LOCAL response

RESULTS

A. LOCAL LAND

AC of insolation;
March SST
⇒ AC of land precip

C. REMOTE LAND

• AC of SST; March Insolation \Rightarrow AC of land precip

B. LOCAL OCEAN

- AC of SST; March Insolation \Rightarrow AC of ocean precip
- **D.** REMOTE OCEAN
 - AC of land insolation; March SST \Rightarrow AC of ocean

Results: LOCAL LAND

Results: LOCAL LAND

RESULTS

A. LOCAL LAND

• AC of insolation; March SST \Rightarrow AC of land precip

C. REMOTE LAND

AC of SST;
 March Insolation
 ⇒ AC of land precip

B. LOCAL OCEAN

• AC of SST; March Insolation \Rightarrow AC of ocean precip **D.** REMOTE OCEAN

• AC of land insolation; March SST \Rightarrow AC of ocean

Results: LOCAL OCEAN

CTL:

North-South displacement over land and ocean Extrema: February/August

Local Ocean:

North-South displacement over ocean Extrema: March/August Local control of ITCZ position Non-local control of ITCZ intensity

What's the role of elevated condensational heating (Q_{cond}) in generating surface winds and convergence?

Results: LOCAL OCEAN

CTL:

North-South displacement over land and ocean Extrema: February/August

Local Ocean:

North-South displacement over ocean Extrema: March/August Local control of ITCZ position Non-local control of ITCZ intensity

What's the role of elevated condensational heating (Q_{cond}) in generating surface winds and convergence?

Results: LOCAL OCEAN

CTL:

North-South displacement over land and ocean Extrema: February/August

Local Ocean:

North-South displacement over ocean Extrema: March/August Local control of ITCZ position Non-local control of ITCZ intensity

What's the role of elevated condensational heating (Q_{cond}) in generating surface winds and convergence?

Results: LOCAL OCEAN: the role of Q_{cond} .

Moisture Convergence (P-E) & Surface Wind Response to SST changes.

Results: LOCAL OCEAN: the role of Q_{cond} .

Moisture Convergence (P-E) & Surface Wind Response to SST changes.

Moisture Convergence (P-E) & Surface Wind Response to Q_{cond} changes in the ITCZ. The ITCZ Q_{cond} drives a circulation that sustains the original SST-induced displacement of the ITCZ.

RESULTS

A. LOCAL LAND

• AC of insolation; March SST \Rightarrow AC of land precip

C. REMOTE LAND

• AC of SST; March Insolation \Rightarrow AC of land precip

B. LOCAL OCEAN

- AC of SST; March Insolation \Rightarrow AC of ocean precip
- **D.** REMOTE OCEAN
 - AC of land insolation; March SST \Rightarrow AC of ocean

Results: **REMOTE LAND**.

Precipitation response to SST changes.

- Northeast Brazil /Guiana
- Equatorial Africa & Guinea /Sahel

Results: **REMOTE LAND**: the role of Q_{cond} .

45N 30N 15N EQ. 15S 30S 45S 120W 90W 60W 30W 0 30E 60E Precipitation response to SST changes.

- Northeast Brazil /Guiana
- Equatorial Africa & Guinea /Sahel

Precipitation response to Q_{cond} changes in the ITCZ.

- YES: South America
- NO: Africa

Results: **REMOTE LAND**: the role of T_{sfc}

• ITCZ \Rightarrow wind in Africa + wind and SAT in Near East

- mean westerlies \Rightarrow Arabian SAT
- mean easterlies + wind anomalies

 \Rightarrow Sahara SAT

• \Rightarrow moisture convergence into the

Sahel

20

 ITCZ ⇒ wind in Africa + wind and SAT in Near East

- mean westerlies \Rightarrow Arabian SAT
- mean easterlies + wind anomalies

 \Rightarrow Sahara SAT

• \Rightarrow moisture convergence into the

Sahel

20

 ITCZ ⇒ wind in Africa + wind and SAT in Near East

- mean westerlies \Rightarrow Arabian SAT
- mean easterlies + wind anomalies

 \Rightarrow Sahara SAT

• \Rightarrow moisture convergence into the

20

Sahel

 ITCZ ⇒ wind in Africa + wind and SAT in Near East

- mean westerlies \Rightarrow Arabian SAT
- mean easterlies + wind anomalies

 \Rightarrow Sahara SAT

• \Rightarrow moisture convergence into the

20

Sahel

RESULTS

A. LOCAL LAND AC of insolation; March SST

 \Rightarrow AC of land precip

C. REMOTE LAND

• AC of SST; March Insolation \Rightarrow AC of land precip

B. LOCAL OCEAN

- AC of SST; March Insolation \Rightarrow AC of ocean precip
- **D.** REMOTE OCEAN
 - AC of land insolation; March SST \Rightarrow AC of ocean

Results: **REMOTE OCEAN**: ITCZ Intensity Change

Uncoupled response: Land climate forces rainfall intensity anomalies in the Atlantic ITCZ.

- Does the ITCZ respond to changes in land surface temperature?
- Does it respond to changes in land precipitation (Q_{cond}) ?

Results: **REMOTE OCEAN**: ITCZ Intensity Change

Uncoupled response: Land climate forces rainfall intensity anomalies in the Atlantic ITCZ.

- Does the ITCZ respond to changes in land surface temperature?
- Does it respond to changes in land precipitation (Q_{cond}) ?

Results: **REMOTE OCEAN**: ITCZ Intensity Change

Uncoupled response: Land climate forces rainfall intensity anomalies in the Atlantic ITCZ.

- Does the ITCZ respond to changes in land surface temperature?
- Does it respond to changes in land precipitation (Q_{cond}) ?

Results: **REMOTE OCEAN**: Response to Land Q_{cond}

The response to imposed steady forcing in elevated condensational heating over Africa and South America.

Uncoupled response

- ITCZ intensity responds to remote Q_{cond} anomalies.
- Anomalies are co-located with the mean ITCZ.
- Surface wind anomalies over ocean.

Results: **REMOTE OCEAN**: Response to Land Q_{cond}

The response to imposed steady forcing in elevated condensational heating (Q_{cond}) over Africa and South America.

Uncoupled response

- ITCZ intensity responds to remote Q_{cond} anomalies.
- Anomalies are co-located with the mean ITCZ.
- Surface wind anomalies over ocean.

Coupled response

- wind anomalies \Rightarrow evaporation anomalies
- latent heat flux anomalies \Rightarrow SST anomalies
- anomalous SST gradient \Rightarrow the ITCZ shift
- wind/evaporation/SST/ITCZ feedback.

COUPLED RESULTS

D. REMOTE OCEAN (coupled!)

\mathbf{CTL}

- AC of Insolation over Ocean. AC of Insolation over Ocean.
- AC of Q-flux.

Fixed Insolation over Land

- AC of Insolation over Land. March Insolation over Land.

 - AC of Q-flux.

suppressed AC over land \Rightarrow suppressed meridional annual march of ITCZ.

Concomitant changes in SST.

- Land surface temperature?
- Land precipitation?

JMMJSNJMMJSN

15S

SST & V

suppressed AC over land \Rightarrow suppressed meridional annual march of ITCZ.

Concomitant changes in SST.

- Land surface temperature?
- Land precipitation?

PRECIPITATION

suppressed AC over land \Rightarrow suppressed

meridional annual march of ITCZ.

Concomitant changes in SST.

- Land surface temperature?
- Land precipitation?

JMMJSNJMMJSN

JMMJSNJMMJSN

suppressed AC over land \Rightarrow suppressed meridional annual march of ITCZ.

Concomitant changes in SST.

- Land surface temperature?
- Land precipitation?

Results: **REMOTE OCEAN**: Effect of Land Temperature and Precipitation

Compare the control simulation to the simulation with fixed insolation over land and the simulation with fixed elevated condensational heating over Africa and South America (Q_{cond})

and

have

How?

Results: **REMOTE OCEAN**: Development of ITCZ Anomalies in Response to Land Forcing.

December cold "anomalies" in the Sahara \Rightarrow thermal high stronger NTA Trades \Rightarrow stronger evaporation colder NTA feedbacks @ equator \downarrow equatorial SST gradient ITCZ shift

Results: **REMOTE OCEAN**: Development of ITCZ Anomalies in Response to Land Forcing. Effect of Insolation over Land T_{SAHARA} 0 December cold "anomalies" in the -5 Sahara \Rightarrow thermal high -10 -15 JMMJSNJMMJSN stronger NTA Trades \Rightarrow stronger U_{NTA} evaporation JMMJSNJMMJSN -0.3 SST_{NTA} colder NTA -0.6 -0.9 feedbacks @ equator JMMJSNJMMJSN 0.5 \downarrow ∇ SST equatorial SST gradient -0.5 JMMJSNJMMJSN ITCZ shift ITCZ -3 -6

JMMJSNJMMJSN

Equatorial Feedbacks

John Chiang

CONCLUSIONS: Mutual Influences of Land and Ocean

Conclusions: **REMOTE** INFLUENCE OF SST ON **LAND** The AC of SST influences the AC of land precipitation

in coastal areas: SST \Rightarrow ITCZ \Rightarrow Northeast Brazil and Guiana precipitation.

in the Sahel: SST \Rightarrow Sahara $T_{sfc} \Rightarrow$ SLP gradient \Rightarrow Sahel precipitation.
Conclusions: **REMOTE** INFLUENCE OF SST ON **LAND** The AC of SST influences the AC of land precipitation

in coastal areas: SST \Rightarrow ITCZ \Rightarrow Northeast Brazil and Guiana precipitation.

in the Sahel: SST \Rightarrow Sahara $T_{sfc} \Rightarrow$ SLP gradient \Rightarrow Sahel precipitation.

Conclusions: **REMOTE** INFLUENCE OF SST ON **LAND** The AC of SST influences the AC of land precipitation

in coastal areas: SST \Rightarrow ITCZ \Rightarrow Northeast Brazil and Guiana precipitation.

in the Sahel: SST \Rightarrow Sahara $T_{sfc} \Rightarrow$ SLP gradient \Rightarrow Sahel precipitation.

Land climate influences the ITCZ intensity and position.

intensity: Land $Q_{cond} \Rightarrow$ free tropospheric temperature \Rightarrow stability over the ocean \Rightarrow ITCZ intensity.

position: directly and indirectly forced wind \Rightarrow latent heat loss \Rightarrow SST \Rightarrow ITCZ position.

- Sahara $T_{sfc} \Rightarrow$ north tropical Atlantic Trades.
- Land $Q_{cond} \Rightarrow$ equatorial wind.
- Land $Q_{cond} \Rightarrow \text{ITCZ}$ intensity \Rightarrow surface wind at the edge of the ITCZ.

Land climate influences the ITCZ intensity and position.

intensity: Land $Q_{cond} \Rightarrow$ free tropospheric temperature \Rightarrow stability over the ocean \Rightarrow ITCZ intensity.

position: directly and indirectly forced wind \Rightarrow latent heat loss \Rightarrow SST \Rightarrow ITCZ position.

- Sahara $T_{sfc} \Rightarrow$ north tropical Atlantic Trades.
- Land $Q_{cond} \Rightarrow$ equatorial wind.
- Land $Q_{cond} \Rightarrow \text{ITCZ}$ intensity \Rightarrow surface wind at the edge of the ITCZ.

Land climate influences the ITCZ intensity and position.

intensity: Land $Q_{cond} \Rightarrow$ free tropospheric temperature \Rightarrow stability over the ocean \Rightarrow ITCZ intensity.

position: directly and indirectly forced wind \Rightarrow latent heat loss \Rightarrow SST \Rightarrow ITCZ position.

- Sahara $T_{sfc} \Rightarrow$ north tropical Atlantic Trades.
- Land $Q_{cond} \Rightarrow$ equatorial wind.
- Land $Q_{cond} \Rightarrow \text{ITCZ}$ intensity \Rightarrow surface wind at the edge of the ITCZ.

Land climate influences the ITCZ intensity and position.

intensity: Land $Q_{cond} \Rightarrow$ free tropospheric temperature \Rightarrow stability over the ocean \Rightarrow ITCZ intensity.

position: directly and indirectly forced wind \Rightarrow latent heat loss \Rightarrow SST \Rightarrow ITCZ position.

- Sahara $T_{sfc} \Rightarrow$ north tropical Atlantic Trades.
- Land $Q_{cond} \Rightarrow$ equatorial wind.
- Land $Q_{cond} \Rightarrow \text{ITCZ}$ intensity \Rightarrow surface wind at the edge of the ITCZ.

Land climate influences the ITCZ intensity and position.

intensity: Land $Q_{cond} \Rightarrow$ free tropospheric temperature \Rightarrow stability over the ocean \Rightarrow ITCZ intensity.

position: directly and indirectly forced wind \Rightarrow latent heat loss \Rightarrow SST \Rightarrow ITCZ position.

- Sahara $T_{sfc} \Rightarrow$ north tropical Atlantic Trades.
- Land $Q_{cond} \Rightarrow$ equatorial wind.
- Land $Q_{cond} \Rightarrow \text{ITCZ}$ intensity \Rightarrow surface wind at the edge of the ITCZ.

IMPLICATIONS: for models, TAV, and paleo

Implications: MODELING THE ANNUAL CYCLE

- CCM3 biases: reduce the overestimate of precipitation over land (by changing albedo?) $\stackrel{?}{\Rightarrow}$ solve the underestimation of precipitation in the ITCZ.
- CGCM biases: correct precipitation over equatorial coastal areas and Sahel \Leftrightarrow correct SST.
- CGCM biases: correct march of Atlantic ITCZ ⇔ correct AC of temperature in the Sahara and of precipitation in Africa and South America.

Implications: TROPICAL ATLANTIC VARIABILITY & CLIMATE CHANGE

- SST influences land precipitation at the annual timescale in the same way it does at the interannual timescale \Rightarrow the AC is indeed a useful analogue for TAV.
- AC of land influences AC of ocean $\stackrel{?}{\Rightarrow}$ continental variability influences maritime variability.
- Change in African climate (e.g. due to deforestation) [?]→ Northeast Brazil (via ITCZ).

Remaining question: How does the response time of the ocean modify the response to continental forcing at the interannual timescale?

Implications: PALEO CLIMATE STUDIES e.g. the Green Sahara

- Simulation of precipitation at edge of Sahara ⇔ correct basinwide Atlantic SST boundary conditions
- Simulation of precipitation in Sahara ⇔ correct simulation of soil albedo (soil moisture and vegetation).
- The greening of the Sahara should be visible in paleo records of the ITCZ position (e.g. from the Cariaco basin). Is it?

Caveat: what's the role of ocean dynamics?