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ABSTRACT

Many general circulation models (GCMs) share similar biases in the representation of the intertropical
convergence zone (ITCZ) in the Atlantic, even when they are forced with the time series of the observed
sea surface temperature (SST). Specifically, they overestimate precipitation in the Southern Hemisphere in
boreal spring and in the Caribbean region in boreal summer.

The majority of the models considered here place the rainfall maximum over the SST maximum, although
the true precipitation maximum does not occur there. This is the case even though these GCMs accurately
place the maximum in surface wind convergence away from the SST maximum, at the location where the
observed precipitation maximum lies.

Models that overrespond to SST in this way tend to (i) have fewer heavy-rain events, (ii) rain more for
a smaller amount of water vapor in the atmospheric column, and (iii) couple rainfall and surface humidity
too strongly and rainfall and humidity above the surface too weakly.

1. Introduction

Our ability to predict rainfall in such climate-
sensitive areas as the Gulf of Guinea, Sahel, and North-
east Brazil is contingent on our ability to predict the
evolution of SST in the tropical Atlantic (Goddard and
Mason 2002). Unfortunately, our coupled models are
woefully deficient in this regard (Goddard et al. 2001;
DeWitt 2004).

Such deficiency may derive from a model’s inability
to reproduce the annual cycle of precipitation and SST
in the tropical Atlantic (Huang et al. 2004; Biasutti
2000) and, indeed, most current coupled models fail to
reproduce even the gross features of the Atlantic ITCZ/
cold tongue complex (Davey et al. 2002).

Though exacerbated in coupled models, some of

these biases are already present in simulations of the
atmospheric model with prescribed SST or coupled to a
flux-adjusted slab ocean model. For example, in most
atmospheric GCMs, the Atlantic marine ITCZ (AMI)
reaches well into the Southern Hemisphere, contrary to
what is observed. The prevalence of this kind of bias
underscores our incomplete understanding of what con-
trols the location of precipitation over the tropical
oceans and warrants a thorough investigation.

If we take the view that convection is to first order
the release of an instability of the atmospheric column,
then we expect the ITCZ location and intensity to be
determined by environmental conditions, such as the
vertical distribution of moisture and temperature, SST,
and air–sea heat and moisture exchange. Atmospheric
GCMs are constructed to simulate all these aspects of
the problem through a combination of parameterized
and explicit processes, and yet the simulations are de-
ficient. There could be several reasons for a model’s
shortcomings in representing the AMI, but it is useful
to posit two simple scenarios: (i) the large-scale envi-
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ronmental conditions to which the convection responds
are unrealistic due to systematic errors in the large-
scale circulation that can be viewed as external to the
convection (e.g., the characteristics of air masses ad-
vected into the AMI from the Sahara might be biased),
or (ii) the model convection scheme (or other param-
eterized physics) responds incorrectly to the large-scale
environment (e.g., the Saharan air layer might be well
represented, but the convective parameterization might
be too insensitive to the presence of dry air at the top of
the boundary layer). While reality, in many models, is
probably a more complex situation in between these
two extremes, because of strong feedbacks between the
convection and its environment and between different
physical parameterizations, we find the simple parti-
tioning between environment and convective response
to be conceptually useful.

Our long-term goal is to identify whether biases arise
from an unrealistically simulated large-scale environ-
ment, from parameterization errors, or from some com-
plex interaction between the two. If parameterization
errors are involved as seems likely we aim to gain some
insight into how the parameterizations might be im-
proved. The scope of this study is more limited: first, we
present an overview of the biases in the annual cycle of
tropical Atlantic precipitation in several widely used
AGCMs; second, we diagnose the relationship between
precipitation and several environmental variables, com-
paring our findings for the models with current theories
and observations of the ITCZ. We highlight common
behaviors in models with common biases in precipita-
tion and thus identify to what atmospheric properties
precipitation is most sensitive in such models.

The paper is organized as follows. Section 2 presents
a short description of the datasets. Section 3 gives an
overview of precipitation biases in the tropical Atlantic.
Section 4 describes the simulated large-scale environ-
ment. Section 5 diagnoses the relationship between
convection and the environment. Section 6 draws our
conclusions and makes suggestions for model develop-
ment.

2. The datasets

For comparison to the models’ precipitation, we use
the Climate Prediction Center (CPC) Merged Analysis
of Precipitation (CMAP) (Xie and Arkin 1997), Global
Precipitation Climatology Project (GPCP) (Adler et al.
2003), and Arkin and Janowiak Geostationary Opera-
tional Environmental Satellite (GOES) Precipitation
Index (GPI) data (available online at ftp://lake.nascom.
nasa.gov/data/TRMM/Ancillary/3A44/README_gpi_
pentad) and precipitation estimate using microwave-
calibrated IR [from now on Tropical Rainfall Measur-

ing Mission (TRMM) data; Adler et al. 2000] datasets.
The climatology is calculated over the 1980–2001 pe-
riod in the former two datasets and over the 1998–2003
period in the latter. Other observational gridded
datasets used in this study are Reynolds SST (Reynolds
and Smith 1994), TRMM SST (Wentz et al. 2000) and
precipitable water, QuickScat surface winds (Graf et al.
1998), and surface fluxes climatologies from the
Southampton Oceanography Center (Josey et al. 1998;
Oberhuber 1988; Da Silva et al. 1994). Given the ab-
sence of upper-air data in the AMI region, we use
sounding data from the two Caribbean islands and one
coastal site in South America taken from the compre-
hensive Aerological Reference Data Set (CARDS; Es-
kridge et al. 1995) and daily gauge precipitation at the
same stations from the World Meteorological Organi-
zation (WMO) dataset through the International Re-
search Institute for Climate Prediction (IRI) data li-
brary (available online at http://iridl.ldeo.columbia.
edu).

We use the reanalysis datasets both in lieu of upper-
air observations over the ocean and because they rep-
resent an intermediate stage between the observations
and the Atmospheric Model Intercomparison Project
(AMIP)-like simulations. We present data from both
National Centers for Environmental Prediction
(NCEP) reanalyses [NCEP–National Center for Atmo-
spheric Research (NCAR) Reanalysis 1 (Kalnay et al.
1996), hereafter NCEP1; NCEP Reanalysis 2 (Kana-
mitsu et al. 2002), hereafter NCEP2] and the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) 40-yr Re-Analysis (ERA-40) (Simmons and
Gibson 2000). Climatologies are calculated over the
1980–2001 period.

We analyze output from three versions of the NCAR
atmospheric model [Community Climate Model 3
(CCM3), Community Atmospheric Model 2 (CAM2),
and CAM2 with the relaxed Arakawa–Schubert con-
vective parameterization (CAM2wRAS)];1 the ECHAM
model [an offspring of the ECMWF model, modified in
Hamburg by Max-Planck Institute (MPI) scientists];
National Aeronautics and Space Administration’s
(NASA’s) Seasonal to Interannual Prediction Project
atmospheric model (NSIPP); and two models devel-
oped at the Geophysical Fluid Dynamics Laboratory
(GFDL_AM2, version 2 of the atmospheric model, and
GFDL_R30, an older coupled model).

1 Because we only have a subset of variables for CAM2 and
CAM2wRAS integrations, we will switch back and forth between
the two models in the subsequent analyses. The biases in March
and September climatological rainfall patterns in CAM2wRAS
are similar to those of CCM3 and CAM2 and will not be shown.
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Table 1 provides a list and summary description of
the GCMs analyzed in this study. For each model, we
list the resolution, the kind of convective parameteriza-
tion used by the model [following the classification pro-
vided by Arakawa (2004)], and the relevant references.
All AGCM simulations use observed SST as boundary
condition (AMIP-like integrations), with the exception
of CAM2wRAS, which was integrated with repeating
climatological SST. Besides the AGCMs, we also show
some results from the old GFDL_R30 coupled model,
which is flux adjusted to reproduce the observed SST.
In this case we calculate the climatology from 20 yr in
the middle of the control coupled integration.

To verify that our results do not depend on the use of
AMIP-style integration, we have also analyzed integra-
tions of CCM3 coupled to a slab ocean model (Biasutti
et al. 2005) and the fully coupled NSIPP (available on-
line at http://nsipp.gsfc.nasa.gov/data_req/coupled/
docs/exp036_info.html) and GFDL models (Delworth
et al. 2006). The question of whether the use of an
uncoupled, AMIP-like simulation is appropriate for our
scope stems from the work of Kumar and Hoerling
(1998), among others, who have shown how imposing
observed SST as boundary conditions for AGCM inte-
grations might lead to positive precipitation biases in
warm-pool regions, such as the Indian Ocean, where
high SST is forced by—not a forcing to—the atmo-
sphere. Obviously, this could be a problem in the At-
lantic as well, especially in the Caribbean, where SST is
warm and precipitation is weak.

In partially coupled integrations (specifically, of
CCM3 coupled to a motionless slab ocean model of
constant 50 m depth that is flux-adjusted to reproduce
the observed SST), the annual cycle of precipitation is
indistinguishable from that in uncoupled integrations,
which suggests that AGCM biases do not stem from the
way boundary conditions are specified. Similar conclu-

sions are drawn from a comparison of coupled and un-
coupled versions of the NSIPP and GFDL models. Cli-
matologies are modified by the coupling, but the over-
all characteristics of the biases are not. For example,
both the coupled and uncoupled NSIPP models erro-
neously simulate net vertically integrated moisture con-
vergence in the Caribbean; similarly, a tendency for a
southern ITCZ in boreal spring is present in the un-
coupled models and exacerbated in their coupled ver-
sions.

3. The simulated annual cycle of precipitation

a. The monthly mean climatology

Figure 1 shows the annual march of the ITCZ in the
central Atlantic (averaged over two grid points around
30°W) in observations, reanalyses, and the models. The
observations show the oft-noted Northern Hemisphere
preference of the ITCZ. The main axis of the AMI
moves as far north as 8°N in September and stays north
of the equator all year around, although the ITCZ does
widen into the Southern Hemisphere in boreal spring
and as far north as 14°N in late summer.

The most recent reanalyses (NCEP2 and ERA-40)
capture the meridional movement of the ITCZ quite
well. The ERA-40 simulation does particularly well
compared to NCEP2 during January through April: at
this time, NCEP2 precipitation extends too far south.
Both datasets grossly overestimate the intensity of pre-
cipitation all year round.2

The NCEP1 reanalysis and, to different extents, the
AGCMs have all the same bias: they simulate an annual

2 The ERA-40 Web site explains that excessive precipitation
after 1991 is due to the assimilation of water vapor from satellite:
the model rejects the observed values, and gets rid of what it
considers excessive moisture by precipitating it out.

TABLE 1. List of GCMs used in this study, of the kind of convective parameterization, according to Arakawa (2004), and relevant
references.

Model Resolution Convection General reference Convection reference

CCM3 T42 L18 Relaxed adjustment (Z–M );
mass flux (H )

Kiehl et al. (1998) Zhang and McFarlane (1995);
Hack (1994)

CAM2 T42 L26 Relaxed/triggered adjustment
(Z–M ); mass flux (H )

Kiehl and Gent (2004) Zhang and McFarlane (1995);
Hack (1994)

CAM2wRAS T42 L26 Relaxed adjustment (RAS);
mass flux (H )

Kiehl and Gent (2004) Moorthi and Suarez (1992);
Hack (1994)

ECHAM4.5 T42 L19 Mass flux and relaxed
adjustment

Roeckner et al. (1996) Tiedtke (1989); Nordeng (1994)

NSIPP 2.5° � 2°34L Relaxed adjustment (RAS) Bacmeister et al. (2000) Moorthi and Suarez (1992)
GFDL_AM2 2.5° � 2°24L Relaxed adjustment (RAS) Anderson et al. (2004) Moorthi and Suarez (1992)
GFDL_R30

(coupled;
flux adjusted)

R30 (3.75° � 2.25°)
L14

Instantaneous adjustment Delworth et al. (2002) Manabe et al. (1965)
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FIG. 1. The annual march of the central Atlantic (30°W) ITCZ in (top row) observations, (second row) reanalyses, and (third and
bottom rows) models. The shading interval is 4 mm day�1, starting with 1 mm day�1; darker shading indicates more intense rainfall.
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march of the AMI that is too symmetric about the
equator, with a broad maximum of precipitation in the
Southern Hemisphere during the first half of the year.
Most models also tend to underestimate the maximum
in precipitation intensity during boreal summer and
fall, which makes for very little annual variation in the
ITCZ intensity. ECHAM4.5, while not immune to
these problems, is only weakly affected by them: spring
precipitation is close to the equator and is weaker than
summer precipitation (but note that fall precipitation is
underestimated). The GFDL_R30 captures the north-
ern preference of the AMI quite well, but dramatically
underestimates its intensity.

Figures 2 and 3 show the climatological SST and pre-
cipitation in March and September, respectively. Two
points can be made from these figures. The first is that
substantial precipitation is limited to regions of SST
warmer than about 27° or 28°C; this is the reason be-
hind the common statement that maximum precipita-
tion is collocated with maximum SST. The second point
is that a closer examination of the zonal asymmetries in
the observed fields indicates that the maxima of pre-
cipitation and SST are in fact not coincident in the At-
lantic. In March, precipitation is maximum on the equa-
tor, offshore of South America, while SST is maximum
in the Gulf of Guinea and 1°C colder in the western
basin (where the local maximum is at 5°S). Similarly in
September, precipitation in maximum in the eastern
basin, off the Guinea Coast, while SST is maximum in
the west Atlantic and in the Caribbean Sea.

The NCEP2 and ERA-40 reanalyses capture the off-
set between the precipitation and SST maxima. ERA-
40, in particular, seems to reproduce even details, such
as the northward tilt of the ITCZ west of 30°W in Sep-
tember, and the equatorial maximum in March. As
noted before, NCEP2 brings the March ITCZ a little
too far south, closer to the local SST maximum.

The NCEP1 reanalysis and the models (again, with
the partial exception of ECHAM4.5 and the
GFDL_R30 model) do not reproduce the observed re-
lationship between SST and precipitation. Instead, the
simulated precipitation closely mimics the pattern of
the prescribed SST. This induces the common problem
of a southern ITCZ in boreal spring and of excessive
rainfall in the Caribbean. As mentioned in section 2,
the fact that (i) ECHAM seems immune to this bias and
(ii) a version of CCM3 coupled to a slab ocean model
shows the same bias as its uncoupled counterpart seems
to indicate that this problem does not arise from the
AMIP-style integration, but is most likely a conse-
quence of the physics employed by the atmospheric
GCMs.

Another view of the rainfall biases is given in Figs. 4

and 5, which show the difference between the GCM
integrations and the CMAP dataset in March and Sep-
tember. In March, the models rain too little on the
equator and, in most cases, too much south of the equa-
tor. In September, they rain too little in the eastern half
of the basin and, in most cases, too much in the western
half.

Figure 6 shows the annual cycle of precipitation and
evaporation in the Caribbean region (defined as the
region 10°–25°N, 80°–60°W). All reanalyses and
AGCMs overestimate the precipitation in the region by
a factor ranging from 50% (ECHAM4.5) to 150%
(CCM3). The GFDL_R30 model underestimates it dur-
ing summer and fall, and overestimates it during spring.
Even more disturbingly, all reanalyses and two of the
AGCMs (CCM3 and NSIPP) have precipitation ex-
ceeding evaporation during the Caribbean rainy sea-
son. In the case of the AGCMs, this means a bias in the
large-scale circulation: they simulate net moisture con-
vergence (P � E) in the Caribbean, while the observa-
tions show that this region is either near radiative–
convective equilibrium (P � E) or a source of moisture
(E � P). Moisture convergence into the warm pool in
the Caribbean supports a maximum in rainfall in this
part of the basin, likely at the expense of the ITCZ in
the east.

Note that we cannot infer a convergence bias in the
case of the reanalyses, because in their case moisture is
not necessarily conserved [e.g., A. M. Mestas-Nunez
(2005, personal communication) shows that NCEP1
simulates moisture divergence out of the Caribbean, at
the same time that P � E is positive].

b. The daily precipitation

Up to this point, we have focused on the biases in the
monthly mean precipitation; in the remainder of the
section, we show how the models reproduce the vari-
ability of daily rainfall in the AMI.

Figure 7 shows the distribution of daily rainfall for
grid points in the AMI region (specifically, days 180–
365, from 2° to 10°N). In the GPI dataset, 60% of the
days show less than 3 mm of accumulation; 10% of the
days accumulate between 3 and 6 mm, and larger pre-
cipitation is distributed over a wide range of values
(with episodes of more than 30 mm of rainfall in one
day). This distribution is reproduced to different de-
grees by all datasets. Some datasets (NCEP1, CCM3,
GFDL_AM2, ERA-40) produce a distribution that is
too uniform. Some fail to extend the tail of the dis-
tribution to high enough values (NCEP1, CCM3,
GFDL_AM2, CAM2wRAS, CAM2). NCEP2 and
ECHAM4.5 reproduce the observed distribution with
good accuracy.
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FIG. 2. The climatological March SST (shaded, the shading interval is 1°C, starting with light shading at 26.5°C and getting darker
for warmer SST) and precipitation (contours, the contour interval is 4 mm day�1; the first contour, which delineates the ITCZ, is the
2 mm day�1 isoline). The Reynolds SST dataset is used in the CMAP and GPCP panels, TRMM SST is used in the TRMM panel, and
the surface temperature field for each model is used in the other panels.
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FIG. 3. As in Fig. 2, except for September.
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Is there a consistent relationship between biases in
the distribution of daily rainfall and biases in the
monthly mean? For example, do models that underes-
timate the frequency of heavy-rain events underesti-
mate the monthly accumulation? Unfortunately, there
is not such a simple and consistent correspondence. For
example, AM2 does not simulate days with very heavy
rainfall, but reproduces the maximum intensity of
the summer ITCZ quite well; GFDL_R30 model in-
stead has heavy-rain days, but a disproportionate per-
centage of drizzle days, and a weak monthly mean
ITCZ. Similarly, the daily rainfall distribution is too flat
in both ERA-40 and NCEP1, but the former overesti-
mates AMI monthly rainfall, while the latter underes-
timates it.

The only consistent relationship between daily distri-
bution of rainfall and monthly biases seems to be the
following one: models in which precipitation is more a
slave to SST (i.e., in which the maximum in precipita-
tion and the maximum in SST coincide) have a reduced
range in daily precipitation. We will return to this in
following sections.

The temporal characteristics of daily rainfall are di-
agnosed in Fig. 8, which shows the autocorrelation of
daily precipitation computed for each grid point in the

AMI region (2°–12°N during May–December) and
then averaged over the grid points. In the GPI dataset,
autocorrelation drops to less than 0.3 for a one-day lag
and stays around 0.2 for longer lags. Such a sharp drop
in autocorrelation is confirmed in station data in the
Caribbean and French Guiana and is captured fairly
accurately by the reanalyses. Instead, the AGCMs
grossly overestimate the autocorrelation at all lags
(CAMwRAS less than the others); only the GFDL_R30
reproduces the short decorrelation time (the moist con-
vective adjustment used in this model to parameterize
convection is known for producing so-called popcorn
convection). A spectral analysis of daily precipitation
(not shown) confirms that the models underestimate
the high-frequency variability, and simulate an exces-
sively red time series.

4. The large-scale environment

In this section, we give an overview of the large-scale
environment simulated by the reanalyses and the mod-
els in the tropical Atlantic. Because the models are
designed to be physically consistent and to reproduce
the basic balances that one sees in nature, we expect to
see biases in the large-scale environment that are con-
sistent with the biases in precipitation. For example,

FIG. 4. The difference between climatological March precipitation in the models and the CMAP dataset (the contour interval is 2
mm day�1; negative contours are dashed; the zero line is thick).
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conservation of moisture will prescribe that the col-
umn-integrated moisture convergence will be equal to
precipitation minus evaporation (P – E). Similarly, con-
densational heating exceeding radiative cooling will be
associated with large-scale ascent; the stronger the pre-
cipitation, the stronger the ascent. Moreover, precipi-
tation centers in the Tropics have a large effect on the
global circulation, and whatever bias we see in the latter
might very well be a consequence as much as a cause of
biases in the former. Thus, in most cases, when we look
at the large-scale environment, we can point only to
consistency, not to causality. That said, we can glean
some clues about mechanisms from features of the
large-scale environment that, while not inconsistent
with, are not expected from the precipitation biases
described in section 3.

Figure 9 shows the surface mass convergence during
September; precipitation is superimposed on it for ref-
erence. The observations and the reanalyses show that
substantial precipitation (say, larger than 4 mm day�1)
is associated with surface mass convergence. Interest-
ingly, the models have an easier time simulating the
convergence than the precipitation: even the models
that put the precipitation maximum in the Caribbean
do a very good job at simulating the maximum conver-
gence off the African coast. The ability of the models to

generate the correct surface winds even as they bias
precipitation suggests that—at least in this region and
in this season—surface wind may be forced more di-
rectly by SST gradients [as in the Lindzen and Nigam
(1987) model] than by free-troposphere heat sources.

The simulated relationship between surface conver-
gence and precipitation is important in determining
what factors control precipitation in the models. Cur-
rent theories of tropical precipitation can be organized
in two broad classes. In one class (e.g., Holton et al.
1971; Charney 1971; Lindzen 1974; Lindzen and Nigam
1987; Waliser and Somerville 1994; Tomas and Webster
1997; Tomas et al. 1999) the convergence of the low-
level winds determines the location and intensity of
precipitation. The SST enters the picture through its
control on the winds via the momentum budget, which,
in some cases (e.g., Lindzen and Nigam 1987), can be
evaluated without any knowledge of the convective
heating associated with precipitation. We will call this
mechanism “dynamic control” of precipitation. In the
other class (e.g., Emanuel et al. 1994; Sobel and
Bretherton 2000; Raymond 2000; Raymond et al. 2003;
Neelin and Held 1987; Neelin 1997; Neelin and Su
2005), precipitation is determined locally by the SST
and related thermodynamic factors (such as boundary
layer entropy or moist static energy). In this latter view,

FIG. 5. As in Fig. 4, except for September.
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FIG. 6. The annual cycle of precipitation (bars) and evaporation (line) averaged over the Caribbean region (10°–25°N, 80°–60°W).
The annual cycle is repeated twice.

944 J O U R N A L O F C L I M A T E VOLUME 19



surface convergence is either secondary in importance,
or a consequence of (rather than an external forcing
for) precipitating convection. We will call this mecha-
nism the “thermodynamic control” of precipitation.

Thus, the failure of some models to overlap surface
convergence and precipitation would seem to indicate
that these models (which have the worst bias in pre-
cipitation) weigh the thermodynamic control of convec-
tion disproportionally more than the dynamic control,
while both means of control would seem to have a role
in determining the location of the observed ITCZ. A
quantitative assessment of the relative role of dynamics

and thermodynamics in controlling convection in the
ITCZ is beyond the scope of this paper.

The pattern of column moisture convergence strictly
mimics the precipitation field (not shown). Thus, the
disconnect between surface convergence and precipita-
tion seen in some models (but not in observations) in-
dicates a mistaken relation between surface mass con-
vergence and column moisture convergence. We will
return to the subject of above-surface moisture at the
end of this section.

We have noted in section 3 that the AGCMs tend to
place the maximum of precipitation close to the maxi-

FIG. 7. Normalized distribution of daily rainfall in the AMI region (2°–10°N across the span of the Atlantic, calculated on days
180–365). Each bar represents the fraction of data points with accumulation falling in each category: 0–3, 4–6, . . . , �30 mm.
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FIG. 8. Autocorrelation of daily precipitation in the AMI region (2°–10°N across the span of the Atlantic, calculated on days 180–365)
as a function of lag (days). The two lines in the GPI box (upper right) correspond to data points with the original resolution (open circle)
and the data points regridded at the NCEP2 resolution (stars).
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FIG. 9. Climatological September convergence at the surface or at 1000 hPa (shaded, the shading interval is 4 � 10–6 m s�2, only
positive convergence is shaded, with darker shading indicting stronger convergence) and precipitation (contours; the contour interval
is 4 mm day�1, starting at the 2 mm day�1 contour). The convergence field is not accurately calculated near orography.
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mum of SST, to an extent not found in observations.
We add here that in all datasets—observations, re-
analyses, and models—SST is the main factor control-
ling the distribution of surface moist static energy, hs,
which is maximum where SST is maximum: over the
Caribbean in September and in the Gulf of Guinea and
offshore from Northeast Brazil in March (not shown).
At odds with simple models of tropical precipitation
[such as, e.g., that of Sobel and Bretherton (2000), in
the cases where they ignored horizontal moisture ad-
vection] the observed precipitation at each point is not
uniquely determined by the local surface moist static
energy, and thus not by the local SST either.

Many explanations that remain consistent with the
view of thermodynamic control of precipitation can be
invoked for the lack of better correspondence between
hs and precipitation, such as the role of the free-
tropospheric temperature and humidity, or the impor-
tance of low convective inhibition as another require-
ment for deep convection (e.g., Yu and Neelin 1997;
Mapes 1997; Raymond et al. 2003). Behind these ex-
planations is the fundamental notion that as a parcel of
air leaves the surface in a convective updraft, its buoy-
ancy is affected by the characteristics of the environ-
mental air around it. Thus, in the remainder of this
section and the following section, we’ll bring our atten-
tion to the simulated relationship between precipitation
and the vertical profiles of moisture and temperature.

Figure 10 shows latitude–pressure cross sections of
relative humidity and pressure vertical velocity (omega)
in the central Atlantic for the climatological Septem-
ber. As expected, we see that in all datasets ascent is
aligned with the humidity maximum at all levels. If as-
cent is displaced from its observed position, so is the
maximum humidity, but the humidity profile at the cen-
ter of the convective region is reasonably well repro-
duced (although NSIPP simulates an unusually dry
boundary layer, and GFDL_R30 an unusually dry
midtroposphere). The most remarkable feature that
distinguishes the AGCMs from the NCEP2 and ERA-
40 reanalyses is the dryness of the lower troposphere in
the subsidence region north of the ITCZ (while we are
only showing September relative humidity, the same
feature is just as pronounced during March and in the
specific humidity field). The result is an excessively
sharp gradient in low-level relative humidity across the
convection/subsidence boundary to the north of the
ITCZ in all AGCM, aside NSIPP (e.g., the drop in
relative humidity at about 850 mb between 8° and 20°N
equals, in September, 27% for NCEP2, and 49% for
CCM3 and CAM2). As an aside, we remark that the
drier subsidence zone at about 10°–20°N is not associ-
ated with overestimated subsidence, but rather with a

deeper subsidence, and a less developed shallow circu-
lation (cf. Zhang et al. 2004). In the next section we will
address whether a drier boundary layer in the upstream
region is likely to affect the ITCZ in these models.

Finally, we note that some models, namely CCM3,
NSIPP, and the GFDL_R30, simulate shallower ascent
than the reanalyses, and all models simulate an ascent
profile that is more bottom heavy than that in the re-
analyses. This latter feature is unique to the ITCZ: in
the Caribbean, both models and reanalysis put maxi-
mum ascent at about 400 hPa (but models fail to cap-
ture the low-level descent, not shown).

While the depth of convection can explain biases in
the position of minimum relative humidity in the upper
troposphere, we can hypothesize that tropospheric hu-
midity would also affect the depth of the convection:
excessive dryness being carried down to the lower tro-
posphere in the trades region might reduce the intensity
of convection in the ITCZ. At the very least, we can
expect that the excessive dryness of the boundary layer
plays a role in the above-mentioned disconnect be-
tween surface mass convergence and column-integrated
moisture convergence. The next section explores the
relationship between rainfall and humidity in more de-
tail.

5. The local relationship between precipitation and
the environment

If convection is the release of an instability, then pre-
cipitation at any given point is, to first order, a function
of the local vertical profile of temperature and humid-
ity. In this section, we take a close look at the simulated
relationship between precipitation and its environment.
To do so, inspired by Bretherton et al. (2004), we or-
ganize the data according to the amount of precipita-
tion, and not according to geography or seasonality:
geography and seasonality are assumed to be acting on
convection solely through their action on the large-
scale environment.

In Fig. 11, we take a look at how the vertical profiles
of temperature and humidity differ in dry and rainy
conditions. Here, temperature and humidity are com-
bined in potential temperature, equivalent potential
temperature—calculated neglecting the contribution
from liquid water (Emanuel 1994)—and saturated
equivalent potential temperature. In our computation,
we have used daily data, yet we expect that the differ-
ence in vertical profiles for rainy and dry days reflects
climatological differences, more than day-to-day vari-
ability.

The reanalyses show that rain is associated with
warmer boundary layer temperatures, but that tem-

948 J O U R N A L O F C L I M A T E VOLUME 19



perature in the free troposphere is the same, indepen-
dent of rainfall, consistent with the weak temperature
gradient view of the Tropics (Sobel and Bretherton
2000). This pattern is overall well reproduced, but three
of the models (CCM3, CAM2wRAS, and GFDL_R30)
tend to simulate a slightly cooler free troposphere in
presence of rain. The treatment of moisture is some-
what more variable. All models simulate a moister free
troposphere under rainy conditions, but some (ERA-
40, ECHAM4.5, GFDL_AM2) do so more than others
do. Furthermore, models disagree in their treatment of
the surface layer humidity: most models simulate either

the same surface humidity in dry and rainy conditions,
or a minutely drier surface for rainy conditions (in the
three reanalyses, CCM3, and ECHAM4.5 the equiva-
lent potential temperature at the surface is increased
from dry to rainy conditions by either the same amount
as the potential temperature—indicating no change in
moisture, or less—indicating a small reduction in
moisture), but in other models (CAMwRAS and
GFDL_R30) the surface layer is substantially drier in
rainy conditions and in GFDL_AM2 the surface layer is
moister in rainy conditions. We have done the same
calculation for station data from Caribbean Islands and

FIG. 10. Climatological September relative humidity (shaded; shading interval is 20%, the darkest shading indicates RH greater than
80%, the lightest indicates RH less than 20%) and vertical velocity (contoured in white; contour interval is 0.01 Pa s�1 for positive,
downward, values, and 0.025 Pa s�1 for negative, upward, values) as a function of pressure and latitude in the central Atlantic (30°W).
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FIG. 11. Vertical profiles of potential temperature, equivalent potential temperature, and saturated equivalent potential temperature
(left to right in each plot) binned according to the value of local precipitation and then averaged over all data points with precipitation
less than 1 mm day�1 (thin line) and greater than 5 mm day�1 (thick line). For the reanalyses and models, we have used one year (1999)
of daily data at ocean grid points in the region 15°S–20°N, 50°W–10°E. For observations, we have used daily data for 1994–99.
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coastal South America (Fig. 11, upper panels). These
datasets show virtually no change in the potential tem-
perature profile for rainy or dry conditions; they show
an inconsistent change in surface humidity, but the ex-
pected moistening of the free troposphere for rainy
conditions. In particular, they do not show that high
precipitation amounts are associated with warmer sur-
face temperature; such behavior might be explained by
the fact that these are soundings over land and the
surface warming that precedes rain over land and the
cooling that follows it are averaged out in the daily
data. Surprisingly, the observed profiles also indicate a
lower atmosphere closer to saturation than it is in the
ITCZ of any reanalysis or model. Unfortunately, we
lack the oceanic observations needed to determine
which of the various modeled behaviors is correct, if
any.

Figure 12 shows the lead–lag correlation between
precipitation at the surface and specific humidity
throughout the troposphere; correlations are calcu-
lated, for models and reanalyses, on an eight-month-
long (May–November) daily time series for all grid
points at the AMI location (2°–12°N), and then aver-
aged over all grid points. The choice of domain was
made to minimize the contributions of regions of sub-
sidence to the correlations. (The same calculations
done over larger domains and for the entire year give
nearly identical results. Data points in the Caribbean
region show quantitatively different correlations, but
the substance of our results does not change.) In lieu of
observations in the AMI, we use radiosonde observa-
tions at two island locations in the Caribbean and a
coastal location in French Guiana. Correlations are cal-
culated over the rainy season (day 180–365), and aver-
aged over six rainy seasons (1994–99). Because the ob-
servations describe conditions at individual stations and
not over larger spatial scales, we expect the observed
relationships to be noisier than the modeled ones.

First, we note how, as should be expected, models
that overestimate the autocorrelation of precipitation
also overestimate its correlation with humidity for long
lead and lag times. Note in particular that correlations
for station data are much smaller than for the reanaly-
ses and models (observed correlations have been
doubled before being plotted in Fig. 12).

Second, we note in both models and observations a
tendency (admittedly neither very sharp nor robust) for
greater correlations between precipitation and lower-
level humidity when humidity leads, and greater corre-
lations between precipitation and upper-level humidity
when precipitation leads. Such a relationship would be
consistent with the expectation that deep convection
occurs for high boundary layer and lower-troposphere

humidity (moist static energy), and subsequently de-
trains moisture in the free troposphere, and is also con-
sistent, for example, with observations over the tropical
oceans (Sherwood and Wahrlich 1999; Straub and Kila-
dis 2002, 2003; Sobel et al. 2004). We suppose the rela-
tionship would become more evident at time scales
shorter than daily, but we lack the data to verify as
much.

Third, we note a peculiar pattern of correlation in
CCM3 and, to a much lesser extent, GFDL_AM2 and
CAM2wRAS: correlations between precipitation and
humidity have a strong minimum in a layer just above
the surface. This pattern of correlation indicates that
the surface humidity is decoupled from humidity in the
layers just above the surface,3 and that precipitation
responds, in these models, primarily to surface humid-
ity. In contrast, the reanalyses show that the maximum
correlation occurs at or above the 850-mb level, consis-
tent with some control of deep convection by humidity
in the free troposphere (e.g., Sherwood 1999). This
might indicate a more prominent role for entrainment
in determining the intensity of precipitation in the re-
analyses. The precipitation/humidity observed correla-
tion in the Caribbean Islands and the South American
coast is different; it is weaker and it increases with
height until the top of convection. The latter might be
a consequence of the fact that these are land sites, and
the diurnal cycle of temperature (not captured by the
daily averages used here) is expected to have a stronger
control on stability and convection than humidity
alone.

At what level of atmospheric humidity does deep
convection start and rainfall result? Figure 13 shows the
joint distribution of monthly rainfall and total column
water vapor (a proxy for lower-tropospheric vapor). In
observations, substantial rainfall occurs only if the col-
umn humidity exceeds about 40 mm; precipitation in-
creases exponentially with increasing humidity. All re-
analyses and models capture the exponential behavior.
The most recent reanalyses capture the humidity
threshold as well, but the slope of the exponential curve
is not well captured—as would be expected, given the
wet bias of both reanalyses.

In contrast, most models tend to rain for column hu-
midity that is considerably too low, with the notable

3 This is confirmed by the lead–lag correlation between surface
humidity and humidity at higher levels. Observations and the new
reanalyses show that correlations with the surface decrease with
height, and become insignificant for longer lead–lag times the
further from the surface; in contrast, CCM3 and, to a much lesser
degree, CAM2wRAS and GFDL_AM2 show no correlation at
any lag between surface humidity and humidity in the levels just
above.
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FIG. 12. Lead–lag correlation between precipitation at the surface and specific humidity, as a function of pressure level (hPa) and
lead–lag time (days). Correlations are calculated for days 180–365 in 1999 and averaged over all grid points in the Atlantic between 2°
and 12°N in the case of reanalyses and GCMs. Correlations are calculated for days 180–365 for each year 1994–99 and then averaged
together in the case of the station data. Observed correlations are multiplied by 2. The color axis goes from �0.8 to 0.8, with negative
values in blue and positive values in red.
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FIG. 13. Normalized joint probability density function for monthly mean precipitation and precipitable water. Only ocean points in
the region 20°S–20°N, 70°W–20°E were used; all available months were used. The thick lines represent the mean of the distribution for
the models (solid line) and the TRMM dataset (dashed line). The thin, vertical lines indicate the minimum value of precipitable water
for which the TRMM dataset exhibits mean precipitation (dashed) and the maximum value of precipitable water at times of no rain.

15 MARCH 2006 B I A S U T T I E T A L . 953



exception of ECHAM4.5. Both the very low humidity
threshold and the sloping right edge of the distribution
(best visible in the daily data, not shown) indicate that
these models cannot sustain high column humidity, and
instead tend to rain prematurely. It is no surprise, then,
that these models fail to reproduce the true range of
daily rainfall amount, as was shown in Fig. 7.

Finally, in Fig. 14 we show the joint distribution of
monthly rainfall and SST. In the TRMM observations,
rainfall occurs for SST larger than 26°C, increases lin-
early until the SST reaches 28°C, and then levels off.
The other observational datasets suggest a similar be-
havior, but with a more gradual increase for cool SST
and a tendency to decreasing rainfall for very warm
SST. Among the models, the local relationship between
rainfall and SST varies more widely. The CCM3 and
CAM2 models show a remarkably linear relationship,
as we would have expected from the strict correspon-
dence in the rainfall and SST patterns shown in Figs. 2
and 3. The NSIPP and GFDL_AM2 models instead
show a sharp decline in rainfall for SST warmer that
about 28°C. This is consistent with the fact that, in both
these models, rainfall, while biased toward the local
maximum of SST, does not mimic the SST pattern as
closely (see, e.g., how the maximum September precipi-
tation, while biased toward the western basin, does not
reach into the Caribbean; Fig. 3).

6. Summary and conclusions

This study describes the annual cycle of precipitation
in the tropical Atlantic basin and compares the avail-
able observations to three reanalysis products (the first
and second reanalyses from NCEP and ERA-40 from
ECMWF) and the simulations of five general circula-
tion models forced with the time series of observed SST
and one flux-adjusted coupled GCM. Our focus is on
evaluating the GCMs’ simulations. A succinct summary
of our findings is offered in Table 2. As one would
expect, at zeroth order, the annual march of the ITCZ
can be described as following the north–south seasonal
march of the warmest SST, with substantial rainfall oc-
curring only for SST warmer than about 27°C. At the
same time, the Atlantic warm pools are not character-
ized by large precipitation. In March, the SST is warm-
est in the Gulf of Guinea, but rainfall is maximum off
the Brazilian coast; in September the SST is warmest in
the Caribbean Sea, but rainfall is maximum in the east-
ern basin.

The most recent reanalyses overestimate tropical At-
lantic rainfall by roughly 50%, but capture the location
of the rainfall maximum quite accurately. Atmospheric

GCMs simulate the intensity of the ITCZ rainfall bet-
ter, but they have much worse biases in their simula-
tions of the annual march of the ITCZ. During boreal
winter and spring AGCMs tend to bring the ITCZ too
far into the Southern Hemisphere and in some cases
produce a spurious second rainfall maximum in the
Gulf of Guinea. During boreal summer and fall they
grossly overestimate rainfall in the Caribbean region
and in some cases fail to produce a well-defined ITCZ
that stretches from Africa into the eastern Atlantic. An
exception is ECHAM4.5, which—even if not free from
biases, both in the mean ITCZ intensity and especially
in the characteristics of daily rainfall—is quite accurate
in its placement of the maximum rainfall.

There seems to be an overarching reason for the
widespread AGCMs’ biases: an excessive sensitivity to
the direct forcing from the local SST. The majority of
the models considered here place the rainfall maximum
squarely over a local SST maximum. This occurs even
as these AGCM accurately place the maximum surface
wind convergence away from the SST maximum, at the
location where the observed ITCZ lies. We interpret
this result as follows: monthly mean surface conver-
gence is determined by the meridional wind compo-
nent, which in turn is mostly determined by surface
boundary conditions through a Lindzen and Nigam
(1987) mechanism that is well captured by the models.
This is consistent with the results of Chiang et al. (2001)
who found that this mechanism is more important for
the meridional wind than the zonal wind (and thus
more likely to determine convergence in regions of
large meridional SST gradient where most convergence
is meridional), and not inconsistent with Bacmeister
and Suarez (2002) who found that the Lindzen–Nigam
mechanism was less important than forcing of the sur-
face wind by deeper pressure gradients, but only exam-
ined the zonal component of the flow. Yet, in most
models convection responds to dynamic lifting and
moistening in the boundary layer less than it responds
to thermodynamic convective available potential en-
ergy (CAPE) generation in the surface layer over high
SST, thus the tendency to lay maximum rainfall over
the local SST maximum and not over the maximum
surface convergence.

We have explored the relationship between precipi-
tation and the vertical profile of humidity by looking at
the large-scale, monthly mean fields and at the statisti-
cal relationship between the two fields at daily time
scales. The monthly mean precipitation and humidity
maxima track each other in both reanalyses and GCMs:
in the ITCZ region, relative humidity is higher than
80% at the surface and drops off with height more
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FIG. 14. Normalized joint probability density function for monthly mean precipitation and SST. Only ocean points in the region
20°S–20°N, 70°W–20°E were used; all available months were used. The thick lines represent the mean of the distribution for the models
(solid line) and the TRMM dataset (dashed line).
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slowly than outside the ITCZ. The AGCMs overesti-
mate the humidity gradient to the north of the ITCZ,
and place a sharp humidity minimum below the 800-
hPa level at 20°N.

The lead/lag correlation between daily precipitation
and humidity profiles indicates that most models are
much less sensitive to humidity in layers just above the
surface than they are to humidity at the surface. This
could be due to an excess of convective mass flux oc-
curring in parameterized updrafts with very low en-
trainment rates. Analysis of cloud-resolving models
shows entrainment rates much larger than those used in
typical convective parameterizations (Derbyshire et al.
2004; Kuang and Bretherton 2006) and this has been
implicated in biases in GCM simulations of the Mad-
den–Julian oscillation (Tokioka et al. 1988; Lee et al.
2003).

Models that present a weak response to lower-
troposphere humidity tend to bias Atlantic precipita-
tion in the following ways. First, as we have mentioned
above, the thermodynamic forcing of convection is de-
termined in these models by the surface layer, with the
consequence that maximum precipitation is errone-
ously placed over maximum SST. Second, a smaller
amount of water vapor in the atmospheric column is
necessary to initiate convection, with the consequence
that there are more rainy events for lower precipitable
water in the atmospheric column and fewer heavy-rain
events, making the distribution of daily rainfall amount
flatter than observed. Thus, the way a model simulates
the relationship between precipitation and atmospheric
humidity appears to affect both steady (monthly mean
position) and transient (distribution of daily rainfall)
characteristics of the precipitation field. This surprising
result follows: models that are oversensitive to SST un-

derestimate the number of days with high rain accumu-
lation.

A consistent picture is emerging from this diagnostic
study, that of an Atlantic ITCZ driven by both thermo-
dynamic and dynamic forcings, and quite sensitive to
the humidity in the lower troposphere. Models simulate
the dynamic forcing well. The sources of bias are the
oversensitivity to the thermodynamic forcing in the
presence of very warm SST and the lack of sensitivity to
humidity above the surface layer.
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TABLE 2. Summary of model bias in the following areas: the monthly mean rainfall in the ITCZ, the monthly mean P–E in the
Caribbean, the characteristics of daily precipitation in the ITCZ, and the large-scale environmental variables. Good performance is
indicated by italics. (In the case of the meridional gradient of atmospheric humidity good performance is defined as agreement with the
reanalyses.)

Model
ITCZ
max

Spring
ITCZ
south

Summer
Caribbean

P � ITCZ P

Summer
Caribbean

P � E
Daily

P histogram
P � 30 mm

events
Daily P

spectrum

� ● usfc

Max and
P max overlap

Sharp
�latq

NCEP1 �Obs Yes Yes Yes Flat No Weakly red No No
NCEP2 �Obs Weakly No Yes �Obs Yes �Obs Yes No
ERA-40 �Obs No No Yes Flat Yes Weakly red Yes No
CCM3 �Obs Yes Yes Yes Flat No Red No Yes
CAM2 �Obs Yes Weakly No Flat No Red Partial Yes
CAM2wRAS �Obs Yes Yes No �Obs No Red No Yes
ECHAM4.5 �Obs Weakly No No �Obs Yes Red Yes Yes
NSIPP �Obs Yes Yes Yes N/a N/a N/a Partial Weakly
GFDL_AM2 �Obs Yes Weakly No Flat No Red Partial Weakly
GFDL_R30 �Obs No No No Peaked Yes �Obs Yes No
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CMAP, GPCP, and station precipitation data were ob-
tained through the data library at IRI (http://ingrid.
ldgo.columbia.edu/).
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