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P r e f a c e

Applications of thermodynamic and kinetic arguments to chemical sys
tems in the earth sciences have become so widespread that no graduate
student can consider himself equipped for future professional work unless
h e i s a b l e t o u n d e r s t a n d t h e m . T h i s b o o k i s i n t e n d e d t o b e a n i n t r o d u c
tion to the subject within the grasp of the average undergraduate science
major.

The first five chapters provide an introduction to thermodynamic
logic, both from the macroscopic and atomic points of view. It is our
impression that the usual development of the subject is sufficiently
abstract to force all but the best student to a recipe approach when
attempting to apply his knowledge. It is our hope that our more direct
development will help to overcome this difl&culty. However, we cer
tainly do not wish to pass off our treatment as a substitute for a standard
thermodynamics text. Our coverage is clearly more limited and its
development considerably less rigorous. For students who plan to go
further into the subject, exposure to a standard thermodynamics text
is an absolute necessity. Since thermodynamics is one of those subjects
learned only by repetitive exposure, most students will find our intro-
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duction to the subject a worthwhile supplement to other training in this
area. In any case, these five chapters provide the theory needed to
treat most of the applications we deem important.

The remaining seven chapters deal with the most common types of
chemical reactions encountered in the earth sciences. In each case at
least one common process taking place within our solar system is treated
as an example. Both equilibrium and kinetic aspects are considered.
Problems at the end of each chapter are designed both to "cement" the
understanding of the material covered and to broaden the scope of
application to earth phenomena.

Although our book is designed for a one-semester course, the course
could easily be expanded to a full year by using the supplementary read
ings given at the end of each chapter in conjunction with current journal
articles. (In the supplementary readings, as well as in the problems
sections, items of more than average complexity are marked with an
asterisk.) Our intent was to present the bare bones of the subject—not
to review the successes and failures of attempts to apply this approach
to furthering our knowledge of earth processes and earth history.

We have received the assistance of many people during the prepara
tion of the manuscript, people without whose assistance the work would
never have been finished. G. D. Garlick, H. Greenwood, P. W. Gast,
and many others made helpful suggestions on how the manuscript could
be improved. During classroom trials with earlier versions of the
manuscript a number of students spotted ambiguities and errors which
have (we hope) been successfully eliminated. H. C. Helgeson and
D. R. Waldbaum allowed us to use prepublication data which were vital
to the presentations in Chaps. II and 12. We are extremely grateful
for their generosity. Last, but certainly not least, we thank M. L.
Zickle, our long-suffering typist, for the miraculous conversion of illegible
notes into neat typescript, and T. Zimmerman for the drafting of the
figures.

W a l l a c e S . B r o e c k e r
V i r g i n i a M . O v e r s b y
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T a b l e o f C o n s t a n t s
a n d C o n v e r s i o n F a c t o r s

C O N S T A N T S

Avogadro's number N 6.023 X 1023 mole-i
Bo l tzmann 's constant k 1.381 X 10~'® erg/deg
Planck 's constant h 6.625 X 10-22 erg-sec
G a s c o n s t a n t R 1.987 cal/deg-mole

8.315 joules/deg-mole
82.06 cm3-atm/deg-mole

Speed of light c 2.998 X 10^° cm/sec
A b s o l u t e z e r o - 2 7 3 . 1 5 ^ 0

Charge on the electron e 1.602 X 10-'® coulomb
Mass of the electron 9.109 X 10-28 g
Mass of the proton 1.673 X 10-2^ g
Mass of the neutron 1.675 X 10-24 g
Base of natural logarithm e 2 . 7 1 8
I n 1 0 2 . 3 0 3
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C O N V E R S I O N F A C T O R S

L e n g t h

1 cm = 0.3937 in. = 0.0328 ft = 6.214 X 10-" mile
1 i n . = 2 . 5 4 c m
1 m i l e = 1 6 0 9 m
1 A (angstrom unit) = 10"® cm = 10"" micron
A r e a

1 m^ = 10.76 ft2 = 1550 in.^ = 2.471 X 10"" acre

V o l u m e

1 m3 = 35.31 ft' = 1000 Uters = 6.102 X 10" in.'

T i m e

1 year = 365.24 days = 8.766 X 10' hr = 5.259 X 10® min
= 3.156 X 10^ sec

V e l o c i t y

1 m/sec = 3.281 ft/sec = 3.6 km/hr = 2.237 mile/hr
= 1 . 9 4 4 k n o t s

M a s s

1 kg = 2.205 lb = 1000 g

P r e s s u r e

1 bar = 0.9689 atm = 14.5 lb/in.' = 75.01 cmHg
= 401.5 in H2O = 1 X 10® dynes/cm'

E n e r g y

1 joule = 0.2389 cal = 9.481 X 10"" Btu
= 0.7376 ft-lb = 10' ergs

1 l i t e r - a t m = 2 4 . 2 r c a l
1 cal = 4.184 joules
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0^ chapter one Thermodynamics as a
Geolog ic Too l

Research in the geological sciences is directed toward understanding the
processes whicli have contributed to the development of the earth and
its fellow planets. Although some of these processes can be effectively
observed in action today, others occur so slowly, or in such remote places,
that effective observation is not possible. Still other processes took place
only in early periods of planetary history. To gain an understanding of
these unobservable phenomena, geologists have concentrated their
attention on the products of the processes. The fossil remains and
detrital mineral grains in sedimentary rocks provide clues regarding
paleoenvironment and climate; the textures and minerals of igneous and
metamorphic rocks bear record of processes occurring deep within the
crust and mantle of the earth; magnetic imprints tell us of slow but per
sistent global movements of large crustal plates. The problem is to
learn to read these records accurately and reliably. Obviously there are
innumerable pitfalls in any such endeavor. The more independent
approaches that can be brought to bear on a given problem, the greater
are the chances that the pitfalls will be overcome and a meaningful solu
t i o n a c h i e v e d .

1



2 C H E M I C A L E Q U I L I B R I A I N T H E E A R T H

One approach which has captured the fancy of earth scientists study
ing a wide variety of phenomena is that of chemical thermodynamics.
The idea is that, if, at the time a given material formed, its atomic con
stituents achieved their most stable chemical form and if after formation
this form remained unaltered, then the chemical configuration of the ele
mental and isotopic species present should define the environmental
conditions at the time of origin. Temperatures and pressures obtained
in this way would, of course, be invaluable in reconstructing earth and
planetary histories.

Although perfectly valid in concept, thermodynamic methods suffer
from the fact that their two basic assumptions are to some extent mutually
exclusive. If at the time of its formation the atoms in a material were
capable of intermixing to the extent required to yield the most stable
configuration, it is unlikely that, once the material was formed, this
mixing would completely cease. The instant quench or "freeze-in"
technique employed in laboratory studies rarely occurs in nature. On
the other hand, if a substance proves immune to secondary alteration,
there is usually some question regarding the equilibration of its con
stituent atoms with the surroundings at the time of formation. Like
other approaches, the thermodynamic one is far from infallible.

We begin our book by introducing the basic thermodynamic param
eters needed in stability calculations. By using these parameters it is
possible to show how the stable chemical configuration of a system will
vary with environmental conditions. Kno\ving the ideal state of a
system formed under a given set of conditions and then perfectly pre
served is not enough. In order to evaluate the pitfalls, we must also
know something of the rates at which the initial ideal equilibrium would
be approached under various environmental conditions and also how
rapidly it would be destroyed during storage under some other set of
environmental conditions. Thus we look briefly at the very complex
subject of kinetics.

Armed with this knowledge, we will consider in detail some of the
fundamental processes taking place in the earth and on its surface. In
what way do they leave their thermodynamic imprint? What kinetic
pitfalls are there? In addition to the examples in the text, problems at
the end of each chapter will prove helpful in grasping the principles
presented. Selected readings of journal articles provide insight into the
current status of attempts to apply these approaches to real geologic
problems.

Before we launch out into this course, it will prove helpful to adopt
some of the terminology and conventions normally used in the field of
thermodynamics. In the discussions which follow, the system is defined
as that part of the universe which is under primary consideration. The
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surroundings are then defined to be any part of the universe not included
in the system. The state of the system is specified by listing its properties
such as temperature, pressure, chemical composition, and any other
convenient parameters. The complexity of the system determines the
number of properties necessary to specify completely its state. Any
property which depends only on the state of the system, and not on the
manner in which that state was achieved, is called a variable of state, or
state function.

The concept of equilibrium, and the limitations which it places
on our ability to analyze systems, is of primary importance. The equi
librium state of a system is the state of maximum stability under a given
set of conditions. Once a system achieves this state of maximum stabil
ity, there is no tendency for it to change its state. Thus a characteristic
of the equilibrium state is that its measurable properties do not change
with time. However, this does not imply that the system is at rest on
the molecular scale. It is true only that any change which takes place
in the system on the molecular scale is balanced by changes in the
opposite direction, so that we macroscopically observe no change in
physical or chemical properties of the system as a whole. This condition
defines the state of dynamic equilibrium.

Any nonequilibrium state of a system is unstable with respect to the
equilibrium state. This relative instability causes the system to change
its properties with time until it reaches the equilibrium state. The rate
of this change may be so slow in some cases that we cannot perceive it,
but the tendency for change exists, nevertheless. On the molecular
scale this means that changes in both directions are occurring, but there
is a net change in favor of the direction toward equilibrium.

The factors which influence equilibrium depend on the complexity of
the system, but in most cases only three factors are of significance.
These factors are intimately related to the number of variables which
must be specified in order to describe completely the state of a system.
The simplest case is that of a pure liquid or gas whose state can be speci
fied completely by giving the value of any two of its variables of state.

The most convenient properties to use are those which can be easily
determined experimentally. These include temperature, pressure, and
specific volume or its reciprocal, density. Any other property of the
system may then, in principle, be calculated from the specified parame
ters. It is important to realize that, although temperature and pres
sure, temperature and density, or pressure and density are the common
variables of state, the state of the system is just as completely defined by
giving its refractive index and viscosity.

In the case of the liquid or gas discussed above, the state which we
have defined is the equilibrium state. If the system is not at equilibrium
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we cannot relate its properties theoretically, and the value of pressure
and density will not fix the temperature. In fact, if the system is not in
equilibrium there may be temperature differences within the system, in
which case there would not be a well-defined temperature of the system
as a whole. This represents a major limitation to our ability to analyze
systems. We are restricted to discussing systems at equilibrium, since
this is the only state for which we can completely describe the system by
listing a finite number of parameters. If a system initially at equilibrium
is perturbed by a change in conditions and passes through nonequilibrium
states to a new equilibrium state determined by these new conditions, we
are powerless to describe how it achieved its new equilibrium condition.
However, we can completely describe this new equilibrium state with a
limited amount of information. Fortunately, information concerning
the conditions of the final equilibrium state is all that is required in most
problems of geologic interest.

There is one special case in which we can describe all intermediate
states between an initial and a final equilibrium state. This is when
perturbation of the system is gentle enough and gradual enough so that
all intermediate states are also equilibrium states. Examples of equi
librium processes are the expansion of a gas against a pressure very
slightly less than its own pressure or the melting of a solid at the tem
perature of its melting point.

We can now consider in more detail the factors which influence the
equilibrium state of a system. As can be seen from the preceding dis
cussion, these factors are precisely the same factors which must be
specified to fix completely the state of the system. Variables of state
may be split into two major subdivisions. Those which depend on the
total amount of material in the system are called extensive variables;

those wh ich are independent o f the amount o f mater ia l a re in tens ive
variables. Temperature, pressure, and relative abundance of chemical
components are examples of intensive variables. Extensive variables,

such as volume or heat capacity, may be treated as intensive variables
when they are normalized by giving their value relative to a specific
amount of material, usually 1 gram (e.g., specific volume) or 1 mole (e.g.,
molar volume).

Experience has shown that it is usually sufficient to give the chemical
composition of a system and the value of two of its intensive variables in
order to specify completely the state of the system. The variables usu
ally chosen for geologic problems are temperature and pressure. Since
by definition the state of a system must be completely reproducible
when enough of its properties are fixed, we can test whether our specifica
tion is complete. Let us take a known mass of homogeneous fluid and
measure its temperature and pressure. If our theory is correct, this
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should completely specify the fluid's state and therefore fix the values of
all other properties of the fluid. To check this, let us measure several
other properties of the system, for instance, the density, refractive index,
and isothermal compressibility. Now we subject the system to a series
of arbitrary perturbations of any magnitude, with the restriction that no
material may be added. On returning the system to its original tempera
ture and pressure, we find that all its physical properties are the same as
they were before the series of perturbations. We can therefore conclude
that the state of our system (at constant composition) was completely
specified by two of its intensive variables, namely, temperature and
p r e s s u r e .

If any of the physical properties were found to be different at the
end of our experiment, we must conclude that our specification of the
state is not complete. This situation arises in the case of solids, where
strain history is of importance. Once our system is completely specified,
we can collect the information into a convenient form known as the equa
tion of state. Usually this "equation" consists of tabulated data, but in
certain idealized situations it may be represented as an analytic function.

We have seen that intensive or normalized extensive variables are
the factors which determine the equilibrium state of a system of con
stant composition. Any change in these variables will change the nature
of the equilibrium state of our system. We can greatly simplify our
problem by deciding what variations imposed from the surroundings are
of major significance in natural situations and how these variations affect
the state of our system.

The temperature of the surroundings is certainly of major impor
tance, since the system must eventually adjust itself to be in thermal
equilibrium internally and at its boundaries. The pressure applied on
the system by the surroundings is also important, since the system must
eventually attain mechanical equilibrium. The last factor of general
importance is the ability of the surroundings to exchange matter with the
system, since the properties of the system depend on its composition.

The effects of temperature, pressure, and composition of the sur
roundings on the system can, of course, be discussed in terms of the
temperature, pressure, and composition of the system. However, as
will be seen in Chaps. 2 to 5, the system can be more conveniently de
scribed in terms of defined thermodynamic functions which are them
selves dependent on temperature, pressure, and composition. These
functions are related to the energy content of the system, its degree of
disorder, and its ability to produce useful work.

In the discussions which follow, we will attempt to relate the macro
scopic condition of the system, which is the realm of thermodynamics, to
the microscopic condition of the system, which is the realm of statistical
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mechanics and atomic physics. We hope that this integration of methods
will give the reader more of an intuitive feeling for systems than would a
purist approach of either extreme.

LIMITATIONS OF EQUILIBRIUM CONSIDERATIONS

The thermodynamic study of geologic systems presents several difficulties
which must be thoroughly understood before meaningful and realistic con
clusions can be drawn. The most obvious problem is that thermo
dynamics can describe only systems which are at equilibrium or were
formed under equilibrium conditions. There is no guarantee that a
geologic system was ever totally in equilibrium with its surroundings.
We must examine each system carefully to find clues which will indicate
whether the system was evolved in a state of internal equilibrium. If
this is the case, it is likely that the system was also near equilibrium
with its surroundings.

The final judgment that a system evolved under equilibrium con
ditions involves the use of physical intuition and, in a sense, knowing the
answer before we ask the question. However, the situation is not really
as bad as it first seems. By examining a fair cross section of geologic
conditions for consistency with theoretical predictions, we can gain
insight into the nature of geologic systems under equilibrium or near-
equilibrium conditions. No process takes place under total equilibrium
conditions, since there is no tendency to depart from the equilibrium
state. What we need to know is the sensitivity of our results with
respect to large departures from equilibrium.

One of the major reasons for large departures from equilibrium
conditions is sluggishness of response of the system to changes in its
environment. The rates of chemical reactions become, in most cases,
the controlling factor in whether systems come to equilibrium. Hydro
gen and oxygen gases are thermodynamically unstable with respect to
formation of water. However, in the absence of a catalyst or spark,
H2 and O2 are not observed to react. It cannot be concluded that this
system is stable; it is merely not labial. That is, the rate of reaction of
H2 and O2 to give H2O is so slow in the absence of a catalyst that we
cannot perceive its taking place. We must consider experimental data
concerning the rates of chemical reactions in the system under examina
tion before we can draw any conclusions about whether the system was
formed under equilibrium conditions.

As will be discussed in Chap. 5, chemical reactions become much
more rapid at elevated temperatures. Thus the chances for our system
to attain internal equilibrium become greater as the temperature of the
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system becomes greater. Although it seems a disadvantage at first that
chemical reactions are slow at room temperature, it is this very fact that
makes useful the study of mineral assemblages as chemical systems.
When we examine a rock which was formed at elevated temperatures we
s e e a " f r o z e n - i n " r e c o r d o f t h e c o n d i t i o n s u n d e r w h i c h t h e r o c k w a s

formed. As a rock cools, the rate of chemical reactions to form more
stable configurations drops very sharply. Thus we now observe phases
in rocks which are highly unstable at room temperature and atmospheric
pressure but which persist because their rate of reaction to form more
stable phases is infinitesimally small.

Some reactions are extremely rapid at room temperature. These
reactions occur mainly in the gas or liquid state and include complexa-
tion, neutralization, and many oxidation-reduction reactions. For
tunately, most reactions influencing the present condition of natural
waters fall in this class. There are, of course, notable exceptions which
will be discussed later in conjunction with specific systems.

By combining our knowledge of reaction rates and thermodynamic
stability we can often say a great deal about the conditions prevalent
when a geologic system formed. The coexistence of two phases which
are thermodynamically unstable with respect to reaction to form a third
phase can be used to place an upper limit on the temperature of the
system when these phases were formed if we also know the dependence
of the reaction rate on temperature. The coexistence of unstable
phases with their stable reaction product can sometimes be indicative of
the duration of temperature and pressure conditions if we independently
know these T, P conditions and the rates of the reactions involved.

We shall first develop the thermodynamic theory necessary for
analyzing geological systems. The latter part of this book will be
devoted to applying this theory to specific natural chemical processes

S o m e o f t h e q u e s t i o n s t o b e c o n s i d e r e d i n d e t a i l a r e

1. In a given mixture of gases such as CO2, H2O, and CH ,̂ held at a specifie
temperature and pressure, what would be the chemical composition of the
equilibrium system?

2. Under what conditions of temperature and pressure will calcite, the
hexagonal form of CaCOs, invert to aragonite, the orthorhombic form?

3. What can the distribution pattern of trace elements and isotopes between
coexisting mineral phases tell us about the conditions under which the
minera ls were formed?

4. What factors influence the chemical composition of stream water?
5. Can the distribution of a trace element, such as Ni, be used to determine

the temperature of crystallization of a rock?
6. How do chemical and physical properties of solids affect the structure of

phase diagrams?
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7. Why do some solids unmix, and how can we quantitatively discuss
unmixing phenomena?

8. How do solutions at high temperatures and high pressures differ from those
at room temperature and pressure?

We will be concerned with two distinct types of equilibria in our
discussions. The first, and probably simplest, is mechanical equi
librium. This is of importance in dealing with polymorphic conver
sions such as calcite ^ aragonite. In this case chemical reactions may
be possible, but their rate is negligible with respect to the process being
studied. The system would then be thermodynamically unstable as
a whole but in a transient state of mechanical equilibrium. In most
systems we will be concerned with chemical, or reaction, equilibrium.
In these cases mechanical equilibrium may, or may not, be achieved.
However, if chemical equilibrium is reached, mechanical equilibrium
almost invariably is also achieved.

We shall begin by considering simple systems at equilibrium and
attempt to define empirical and theoretical equations of state from the
pressure and temperature dependence of the volume which these systems
o c c u p y .

There are many excellent textbooks of physical chemistry and
thermodynamics. Books designed for chemists differ in their mode of
presentation and range of topics from books designed for physicists and
for engineers. The geologist will find useful information in each of these
approaches. In general, books written for physicists and engineers con
tain a more thorough treatment of the solid state, whereas books for
chemists deal predominantly with gases and liquids. The references
listed at the end of this chapter contain samples of both types of pre
sentation. The reader will undoubtedly find it beneficial to use these
references to supplement the material presented in Chaps. 2 to 6.

Some of the problems given at the end of each chapter require
experimental data not given in the text. Such problems are marked
with an asterisk. Most information required may be found in the
sources listed at the end of this chapter.
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One of the factors infiuencing the nature of the equilibrium state of a
chemical system is the volume which it occupies. Since different
atomic configurations in general liave significantly different densities,
phase changes or chemical reactions cause volume changes. Further,he volume occupied by any given atomic configuration will change with
temperature and with pressure. Our objective in this chapter will
be to develop equations of state for various types of matter which will

nable us to evaluate the volume changes resulting from changes in
e n v i r o n m e n t a l c o n d i t i o n s .

For a great variety of substances, the volume change of a system in
response to changes in its environment can be completely specified in
terms of temperature and pressure effects. The general form of tlie
equation describing a volume change is

This equation can also be written

d V = a V d T - d P

10
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where a is the coefficient of thermal expansion (the fractional change in
the volume of a substance per degree increase in temperature at con
stant pressure), and 18 is the isothermal compressibility (the fractional
change in volume per unit increase in pressure at constant temperature).
In partial-derivative form,

" f W / p

V \spJt

Although we will generally use the compressibility, )8, in this book, the
reader should be aware that its reciprocal, Bt, the isothermal bulk
modulus, is often used. Hence

Our problem has now been reduced to finding for all substances of inter
est the values of a and j8 (or Bt) for all values of temperature and
p r e s s u r e .

EQUATION OF STATE FOR GASES

An extremely simple kinetic treatment leads to an equation of state
which is valid for most gases at low pressures. The assumptions made
about the "ideal gas" are:

1. The gas consists of a large number of independent particles which occupy
a negligible fraction of the total available space.

2. The particles obey Newton's laws of motion.
3. No electrostatic attractions exist between the particles.

The pressure exerted by such a gas on its container is proportional to
the number of collisions which the molecules make against the con
tainer walls per unit time and to the average momentum change per
c o l l i s i o n .

Consider a cubic vessel containing Avogadro's number of molecules
(1 mole of gas). Although the actual molecular motion is chaotic,
with each molecule frequently changing direction and velocity as the
result of collisions, for the purposes of calculating the pressure exerted
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by the gas a macroscopically equivalent system can be adopted. In
this system, one-third of the molecules travel in a direction perpendicu
lar to each pair of container faces, and all the molecules travel with the
mean velocity, v. The pressure exerted by this organized gas will be
the same as that of the random gas.

The number of impacts per unit area and time against a given con
t a i n e r f a c e i s

Nq V I

where is Avogadro's number, 6.02 X 10^'; A is the area of the face;
and I is the distance between container faces. The momentum change
associated with each impact is 2mw, where m is the molecular mass.
Since pressure is the rate of change of momentum per unit area, it is
given by

Nov^m~ 3 7

where V is the volume {IA) of the container and hence also of the gas.
Furthermore, since mv^/2 is the mean kinetic energy per molecule, e,

P V =

The important result of this calculation is that, if the energy content of
the gas, Noe, is held constant, the volume of the gas will be inversely
proportional to the pressure exerted on it.

The energy associated with translational movement in an ideal gas
rises linearly with temperature, indicating that Aqc is proportional
to T. If No€ is proportional to T, the product, PV, must necessarily
also be proportional to T.

If the constant of proportionality is designated R, then the equation
of state for 1 mole of an ideal gas becomes

P V = R T

The value of this constant has been established experimentally. Its
v a l u e i n v a r i o u s u n i t s i s a s f o l l o w s :

R = 1.986 cal/deg-mole
= 0.08206 liter-atm/deg-mole
= 8.314 joules/deg-mole = 8.314 X 10^ ergs/deg-mole
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It is useful to calculate the energy increment which must be added
to each molecule in the gas in order to raise the temperature of the gas
by one centigrade degree. From the theory given above,

^Noe = RT
o r

The ratio, R/No, of the universal gas constant to Avogadro's number is
designated k (Boltzmann's constant). The value of k generally used is
that in the cgs system of units,

k = 1.380 X 10-»® erg/deg

If we differentiate the energy equation with respect to temperature,
t h e r e s u l t i s

^ _ 3
d T 2

Thus, for each degree of temperature increase, an amount of trans-
lational energy equal to f A; must be added to each molecule of gas.

The ideal gas equation of state can be put into the general form
given above if a and j3 are computed:

1 / d RT\ _ R
F VdT P )p~ VP~ T

1 / d RT\ ^ RT ^ I
V \dP P )t ~ VP̂  ~ P

It should be noted that the bulk modulus, Bt, of an ideal gas is simply
its pressure. Substituting the calculated values of a and /S into the
volume equation gives

V V
d V = - d T - - d P

T P

This equation can be rewritten

d V d T d P

V ~ T P

In this form the ideal gas law states that the fractional increase in volume
experienced by a gas as the result of a change in environmental con-
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ditions is equal to the fractional increase in absolute temperature minus
the fractional increase in pressure.

Real gas behavior does not always follow the ideal gas law described
above. At low pressures, where the mean distance separating the
molecules in a gas is hundreds or more times the molecular diameter,
the space occupied by the molecules is truly negligible. However, as
the pressure increases, the volume occupied by the molecules becomes a
sizable fraction of the total volume. Similarly, the mutual electrostatic
force between molecules has little effect when the molecules are well
separated but becomes important as the gas becomes more dense.
Thus, although the ideal gas law holds for all gases in the limit of vanish-
ingly small pressure, and for most gases up to moderate pressures of
several atmospheres, we must seek elsewhere for an equation of state for
real gases at elevated pressures.

Van der Waals proposed an improved equation of state which takes
into account the finite molecular volume and the mutual attraction
between molecules. Whereas the ideal gas law states

the van der Waals equation states

V - h 7 2

Elimination of the molecular-volume effect is easily accomplished if the
total molar volume, 7, is replaced by the free volume, 7 — 6. The
constant, 6, is the volume, made unavailable for movement because of
the finite size of the molecules. If this were the only difference between
a real gas and an ideal gas, the pressure predicted by the ideal gas
law would show increasing deviation from the actual pressure as
the density of the gas was increased. At elevated pressures a real
gas would exert a higher pressure than that predicted by the ideal gas
law. In terms of the kinetic model, the exclusion of volume increases
the frequency with which gas molecules strike the walls of the container.
This is most easily seen by considering two molecules traveling per
pendicular to the same wall of a rectangular chamber. If the molecules
were not on a collision course, the number of impacts with each wall
would be V, the average velocity of the molecules, divided by Z, the dis
tance between the walls. If the molecules were to collide, each would
travel a distance shorter by twice the molecular radius, r; hence the
collision frequency would rise to v/{l — 2r).
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We can obtain an estimate of the constant, h, by considering a
hypothetical collision between two molecules. As shown in Fig. 2,1,
each molecule excludes a volume equal to that of a sphere with twice its
radius. The excluded volume is 8 times the volume of the molecule
itself. However, since each collision involves a pair of molecules, the
volume forbidden to each molecule is only 4 times the molecular volume.
The constant, 6, should be 4 times the volume of Avogadro's number of
molecules. Since most gas molecules are of the order of 1.5 X 10~® cm
in radius, h should average 0.035 liter/mole. The prediction agrees
reasonably well with experimentally determined values of b (see Table
2.1).

The molecular-attraction effect causes a reduction in the pressure
which a gas exerts on its container. Within a gas these attractions are
equal in all directions and hence have no net effect on the molecular
motion. Near the walls of the container, the forces pull in only one
direction. A molecule attempting to leave the gas and hit the wall
\vill be "restrained" by its fellow molecules. The velocity of all mole
cules near the edge of the container will be decreased, causing a reduced
force of impact and commensurately lower pressure. Some molecules
will lack the kinetic energy to "escape" the gas and will fall back into
the gas, much as a rocket lacking escape velocity falls back to the earth.

The mutual attraction between molecules in a gas results to a first
approximation from electrostatic interaction between dipoles. All
molecules have nonuniform charge distribution; that is, they are more
negative on one side than the other. This nonuniformity may be perma-

E X C L U D E D V O L U M E P E R

Vexcl= f
= 8( f ,rr3)
= 8 V O L U M E O F ATO M

Fig. 2.1. Mechanical-collision model to
s h o w t h e e f f e c t o f t h e fi n i t e v o l u m e o f
molecules on the pressure of a real gas.
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TA B L E 2 . 1
Van der Waals Constants (a and &),t Critical Conditions
(Te, Vc, Pe), and Boyle Temperature {Tb) for a Number of Gases|

G a s a , b . T c , V c , P c . T b
l i t e r®- l i t e rs /mo le °K cmVmole a tm = a /Rh

atm/mo le®

H e l i u m 0 . 0 3 4 1 2 0 . 0 2 3 7 0 5 . 2 6 1 . 5 5 2 . 2 5 1 7
N e o n 0 . 2 1 0 7 0 . 0 1 7 0 9 4 4 . 7 5 4 4 . 3 0 2 6 . 8 6 1 5 0
Argon 1 . 3 4 5 0 . 0 3 2 1 9 1 5 0 . 8 7 7 4 . 5 6 4 8 . 3 4 5 0 8
Krypton 2 . 3 1 8 0 . 0 3 9 7 8 2 0 9 . 3 9 9 2 . 0 8 4 5 . 1 8 2 7 1 0
X e n o n 4 . 1 9 4 0 . 0 5 1 0 5 2 8 9 . 9 1 1 8 . 8 5 8 . 2 1 0 0 0
Hydrogen 0 . 2 4 4 4 0 . 0 2 6 6 1 3 3 . 2 6 9 . 6 8 1 2 . 8 1 1 2
Oxygen 1 . 3 6 0 0 . 0 3 1 8 3 1 5 4 . 2 8 7 4 . 4 2 4 9 . 7 1 3 5 2 1
Nitrogen 1 . 3 9 0 0 . 0 3 9 1 3 1 2 5 . 9 7 9 0 . 0 3 3 3 . 4 9 4 3 3
C h l o r i n e 6 . 4 9 3 0 . 0 5 6 2 2 4 1 7 . 1 1 2 3 . 4 7 6 . 1 1410
C a r b o n m o n o x i d e 1 . 4 8 5 0 . 0 3 9 8 5 1 3 4 . 4 9 0 . 0 3 3 4 . 6 4 5 5
Carbon d iox ide 3 . 5 9 2 0 . 0 4 2 6 7 3 0 4 . 1 6 9 4 . 2 3 7 2 . 8 3 1 0 2 5
W a t e r 5 . 4 6 4 0 . 0 3 0 4 9 6 4 7 . 3 5 5 . 4 4 2 1 8 . 5 2 1 8 0
Su l fu r d iox ide 6 . 7 1 4 0 . 0 5 6 3 6 4 3 0 . 2 5 1 2 4 . 8 7 7 . 6 5 1 4 5 0
Carbon d i su l fide 1 1 . 6 2 0 . 0 7 6 8 5 5 4 6 . 1 5 1 7 2 . 7 7 2 . 8 6 8 1845
A m m o n i a 4 . 1 7 0 0 . 0 3 7 0 7 4 0 5 . 5 7 2 . 0 2 1 1 2 . 2 1370
C a r b o n t e t r a

c h l o r i d e 2 0 . 3 9 0 . 1 3 8 3 5 5 6 . 2 5 2 7 5 . 8 4 4 . 9 8 17950
Benzene 1 8 . 0 0 0 . 11 5 4 5 6 1 . 6 2 5 6 . 4 4 7 . 8 9 19000

n d e r Wa a l s c o n s t a n t s t a k e n f r o m " H a n d b o o k o f C h e m i s t r y a n d P h y s i c s , " 4 5 t h e d . ,
The Chemical Rubber Publishing Company, Cleveland, Ohio.
t Critical-point data taken from E. A. Moelwj'n-Hughes, "Physical Chemistry," 2d ed.,
p. 586, Pergamon Press, New York, 1961.

nent as in the case of HjO, resulting from the asymmetry of the molecule,
or statistical as in the case of Ar, where it arises from random fluctua
tions in the positions of the electrons about the nucleus. Although the
repulsions between oppositely oriented molecules tend to compensate

the attractions between like-oriented molecules, the tendency toward
dipole alignment leads to a net attractive force. In the case of oppo
sitely charged molecules, or ion pairs, the attractive force varies inversely

h the square of the distance of separation, and pressure varies
inversely with the fourth power of this distance. For dipole inter
actions, the force drops with the fourth power of the distance; hence
pressure depends on the sixth power. The decrease in pressure in the
gas due to electrostatic effect falls with the square of the volume (as

oc r®). The constant, a, is a measure of the magnitude of the dipole
moment of the molecules. As shown in Table 2.1, it is fairly large for
asymmetric molecules like HjO and CS2 and rather small for the rare
gases He and Ne.
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It is convenient to think of the pressure terms in the van der Waals
equation in the following manner. The molecules making up the gas
are held apart by a thermal pressure, RT/(y — h). This pressure is
balanced by (1) the pressure resulting from the electrostatic attraction
between the molecules, a/F^, the internal pressure, and (2) the external
pressure, P. Hence there is an equilibrium between various kinds of
^ r c e s ;

Pressure holding molecules apart = pressure pushing molecules together

— = - + p
V - h

The terms internal, external, and thermal pressure will be used frequently
in the discussions which follow.

Since the two causes of deviation from the ideal pressure exerted
by a gas act in opposite directions, we might expect some set of condi
tions under which the opposing effects cancel each other. To determine
these conditions, we define the compressibility factor

For an ideal gas, Z is unity. For a van der Waals gas,

^ [ R T / { V - b ) - a / V W

1 - b / V R T V

Since b/V is generally much smaller than unity, we may expand the
first term of this equation in series, giving

Z is equal to unity over an extended range of pressure if the second
term of the expansion is zero. This is true when

a

This temperature, at which the gas behaves ideally over a wide range of
pressure, is called the Boyle temperature of the gas. A plot of the com-
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pressibility factor versus pressure is given for CH4 in Fig. 2.2. As can
be seen from the graph, considerable deviation from ideality occurs at
moderate pressures when the temperature is much higher or lower than
the Boyle temperature. At or near the Boyle temperature the gas
behaves ideally up to fairly high pressures. Since 6 is nearly the same
for most gases, Tb is determined mainly by a. Gases consisting of
asymmetric molecules have higher Boyle temperatures than those with
symmetric molecules (see Table 2.1).

For temperatures greater than the Boyle temperature the volume
effect dominates. The observed pressures are always greater than those
predicted by the ideal gas law for the same temperature and volume.

The reason for this can be easily shown. If the volume effect
alone were operative,

^ _ [RT/{V - b)]V V
R T V - b

The amount by which Z exceeds unity depends only on the molecular
volume occupied by the gas, not on its temperature. On the other hand,
if the electrostatic effect alone were operative,

^ (RT/V - a/V^)V a
R T R V T

The amount by which Z falls below unity depends not only on V but
also on T. As T rises, at any given value of the volume or gas density

3 0 0 6 0 0 9 0 0

P, a tm

Fig. 2.2. Compressibility factor, Z, plotted as a func
tion of pressure for the gas CH4. (After Castellan.)
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the molecular-volume effect will not change but the electrostatic effect
will decrease. Tb is the temperature at which the two effects become
equal. Above Tb the volume effect dominates at all pressures.

For temperatures below the Boyle temperature the molecular-
attraction effect dominates at low densities, but as the density increases,
the excluded-volume effect becomes more and more important. Even
tually, at high densities it becomes the dominant cause of nonideality.
For a given temperature, the molar volume, Vb, for which the compress
ibility factor crosses unity is given by

Vs^b^-l
Although differences in molecular size and degree of charge asym

metry lead to a wide range of molar volumes for different gases con
tained at the same temperature and pressure, it is possible to demon
strate a uniformity in the character of the nonideality of these gases.
This is done by normalizing both temperature and pressure to some
multiple of those values observed when the gas shows a given degree of
nonideality. The degree of nonideality chosen for this comparison is
that found at the so-called critical point.

The nature of this point can be seen as follows: When a liquid is
heated in a closed container, its vapor pressure increases with increasing
temperature. Concurrently, the density of the liquid phase decreases
and that of the vapor phase increases. Similarly, other properties of
the gas and liquid approach each other as the temperature increases.
Eventually, all the properties of the liquid and gas phases become iden
tical. The temperature at which this happens is called the critical
temperature, Tc; the pressure at the critical point is Pc, the critical
pressure. The ratios of the variables P and T to the critical constants,
Pc and Tc, for that gas are called the reduced variables of the gas:

Similarly, Fc is the critical volume, and Vr = V/Vc is the reduced vol
ume. Two gases which have the same values of their reduced variables
are said to be in corresponding states. To a close approximation, most
gases at moderate pressures show the same density when at the same
Tr and Pr.

As an example of an equation of state using reduced parameters,
the van der Waals equation can be converted to this form. In order to
make this conversion, we must examine the form of the van der Waals
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equation more closely. Figure 2.3 shows the P-V isotherms for CO2
near the critical point. The bell-shaped dashed line outlines the "two-
phase region" where liquid and gaseous CO2 coexist in equilibrium.
To the right of the two-phase field, only the gas is present, and to the
left, only the liquid is present.

The dashed lines inside the two-phase field are the solutions to the
van der Waals equation at two different fixed temperatures. Since
the van der Waals equation cannot describe two coexisting phases, the
calculated maximum and minimum shown are not physically meaning
ful. However, as higher-temperature isotherms are calculated, the
maximum and minimum approach each other and merge into an inflec-

3 2 3 6 4 0 4 4 4 8 5 2 5 6 6 0 6 4

V, cm'/mole

Fig. 2.3. Pressure-volume isotherms for CO2. See text for expla
nation of dashed lines. (After Walter J. Moore, "Physical Chemistry,"
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.)
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tion point at the critical temperature. At the inflection point both the
first and second derivatives of pressure with respect to volume at con
stant temperature must be zero.

Therefore, at the critical point the following equations must hold:

P = _ J L" V c - b F . 2

(?l)\dV/T (F, - by ^ Fc»
/d^P\ ^ 2RT, ^ _ 0
\ a F V r ( F o - b y V o *

These equations can be solved to give the critical constants in terms of
the van der Waals constants, a and 6, and the gas constant, R:

V c = 3 6 T , =

In addition, it is easily shown that

R T c 8
P . F . 3

a n d T b —

The variables of state, P, F, and T, may then be converted into reduced
v a r i a b l e s :

Substituting into the van der Waals equation, we find

V r - i V r '

The equation in this form contains only constants and reduced variables.
We can test the theory of corresponding states by plotting the com

pressibility factor, Z, against the reduced pressure, Pr, for several gases.
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w h e r e

f = ̂  y ̂  — fraction of free volume

-Pint = yi = internal pressure

Under most circumstances 2//(l + P/Pmt) for gases is much less
than unity, which allows the approximations

T
a n d

■^-p + p int P thermal

Since for an ideal gas / = 1 and Pint = 0, these expressions reduce to the
ideal gas values. The van der Waals equivalent of the differential form
of the ideal gas law becomes

V free P P thermal

where Ffree = V — b. For each percent the absolute temperature
increases, the free volume increases by 1 percent, and for each percent
the thermal pressure of the gas increases, the free volume decreases by
1 percent.

Written in the ideal gas form, the van der Waals equation becomes

PthermalFfree = RT

Although the van der Waals equation proves extremely valuable in
understanding density variations in real gases, as a practical equation of
state it suffers from two gross difficulties. First, it fails to yield suf
ficiently accurate density estimates for elevated pressures, and, second,
prohibitive algebraic difficulties are encountered in combining the van
der Waals equation with other thermodynamic equations.

Because of these difficulties it is necessary, as well as convenient,
to use the so-called virial equation of state:

P V = A B P C P " " + D P ^ +
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A, B, C, and D are the virial coefficients and must be evaluated for each
gas at each temperature of interest. However, once the virial coef
ficients have been determined, this equation is easier to use than any
of the theoretical equations which allow for nonideal behavior. It also
offers any degree of accuracy required (provided, of course, sufficiently
accurate experimental P, V, T data are available for the determination
of the virial coefficients). At low pressures, it is often possible to use a
virial equation of the simplified form

P V = R T + B P

Tables 2.2 and 2.3 show the gas molar volume as a function of
temperature and pressure for H2O and CO2. The second column was

TA B L E 2 . 2
Molar Volume of Water Vapor

C o n d i t i o n s t I d e a l V a n d e r E x p e r l - ~ b , a / V \
G a s , W a a l s , m e n t a l , ! l i t e r s a t m
l i t e r s l i t e r s l i t e r s

1 bar. 120®C 3 2 . 6 9 3 2 . 5 5 3 2 . 3 2 3 2 . 5 2 0 . 0 0 5 1 6
1 bar. 2 0 0 ° C 3 9 . 3 4 3 9 . 2 3 3 9 . 1 1 3 9 . 2 0 0 . 0 0 3 5 5
1 bar. 400' 'C 5 5 . 9 7 5 5 . 9 0 5 5 . 8 9 5 5 . 8 7 0 . 0 0 1 7 5
1 bar. 600°C 7 2 . 6 0 7 2 . 5 6 7 2 . 5 6 7 2 . 5 3 0 . 0 0 1 0 4
1 bar. SOO^C 8 9 . 2 3 8 9 . 2 0 8 9 . 1 9 8 9 . 1 7 0 .00069
1 bar. lOOO^C 1 0 5 . 8 6 1 0 5 . 8 4 1 0 5 . 8 4 1 0 5 . 8 1 0 . 0 0 0 4 9

10 bars. 200°C 3 . 9 3 4 3 . 8 2 1 3 . 7 2 6 3 . 7 9 1 0 . 3 7 4
10 bars. 400°C 5 . 5 9 7 5 . 5 2 7 5 . 5 2 3 5 . 4 9 7 0 . 1 7 9
10 bars. OOO-'C 7 . 2 6 0 7 . 2 1 4 7 . 2 2 8 7 . 1 8 4 0 . 1 0 5
10 bars, SOO^C 8 . 9 2 3 8 . 8 9 1 8 . 8 9 9 8 . 8 6 1 0 . 0 6 9
10 bars. lOOO^C 1 0 . 5 8 6 1 0 . 5 6 3 1 0 . 5 8 0 1 0 . 5 3 3 0 . 0 4 9

100 bars. 400®C 0 . 5 5 9 7 0 . 4 8 2 8 0 . 4 7 6 0 0 . 4 5 2 3 2 3 . 4 4
100 bars. 600°C 0 . 7 2 6 0 0 . 6 7 8 6 0 . 6 8 9 6 0 . 6 4 8 1 1 1 . 8 6
100 bars. 8 0 0 ' C 0 . 8 9 2 3 0 . 8 6 0 8 0 . 8 7 4 4 0 . 8 3 0 3 7 . 3 7
100 bars, lOOO^C 1 . 0 5 8 6 1 . 0 3 7 2 1 . 0 5 1 9 1 . 0 0 6 8 5 . 0 8

200 bars. 400 ' 'C 0 . 2 7 9 9 0 . 1 8 5 8 0 . 1 7 9 5 0 . 1 5 5 3 1 5 8 . 2 8
200 bars. 60G°C 0 . 3 6 3 0 0 . 3 1 3 9 0 . 3 2 7 0 0 . 2 8 3 4 5 5 . 4 6
200 bars. SOCC 0 . 4 4 6 2 0 . 4 1 4 8 0 . 4 2 9 3 0 . 3 8 4 3 3 1 . 7 7
200 bars, 1000°C 0 . 5 2 9 3 0 . 5 0 8 7 0 . 5 2 3 9 0 . 4 7 8 2 2 1 . 1 1

11 b a r = 0 . 9 8 6 9 a t m .
t Data taken from S. P. Clark, Jr. (ed.), Handbook of Phj'sical Constants, sec. 16, Geol.
Soc. Am. Mem. 97, 1966.
H Van der Waa ls vo lume.
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calculated by using the ideal gas law; the third by the van der Waals
equation. Column 4 is the experimental determination. It is evident
that the van der Waals equation is valid over a much larger range than
the ideal gas law. Only at low pressure and high temperature does the
ideal gas law give very good results.

TA B L E 2 . 3
Mo la r Vo lume o f Carbon D iox ide

Conditionsf I d e a l V a n d e r Experi n - 6 , a l Y \
Gas, Waals, m e n t a l , ! l i t e r s a t m

l i t e r s l i t e r s l i t e r s

25 bars, 200°C 1 . 5 7 4 1 . 5 2 4 1 . 5 2 8 1 . 4 8 1 1 . 5 5
26 bars, 400®C 2 . 2 3 9 2 . 2 1 8 2 . 2 3 4 2 . 1 7 5 0 . 7 3 0
25 bars, 800'C 3 . 5 7 0 3 . 5 7 3 3 . 6 0 7 3 . 5 3 0 0 . 2 8 1

100 bars, 200°C 0 . 3 9 3 0 . 3 4 3 0 . 3 6 1 0 . 3 0 1 3 0 . 4 9
100 bars, 400®C 0 . 5 6 0 0 . 5 4 0 0 . 5 5 8 0 . 5 0 0 1 2 . 3 0
100 bars, 800°C 0 . 8 9 2 0 . 8 9 6 0 . 9 0 9 0 . 8 5 4 4 . 4 7

200 bars, 400''C 0 . 2 8 0 0 . 2 6 5 0 . 2 8 1 0 . 2 2 2 5 1 . 1 9
200 bars, 800°C 0 . 4 4 6 0 . 4 5 2 0 . 4 6 4 0 . 4 1 0 1 7 . 5 5

400 bars, 800''C 0 . 2 2 3 0 . 2 3 4 0 . 2 4 4 0 . 1 9 1 6 5 . 6 0

t 1 bar = 0 .9869 atm.
t Data taken from S. P. Clark, Jr. (ed.), Handbook of Physical Constants, sec. 16, Oeol.
Soc. Am. Mem. 97, 1966.
H Va n d e r Wa a l s v o l u m e .

EQUATIONS OF STATE FOR LIQUIDS

Liquids are nearly incompressible when compared with gases. At
25°C the volume of a gas would halve if the external pressure were
raised from 1 to 2 atm. The same change would produce only a 50
parts per million (ppm) decrease in the volume of liquid water. At
1 atm a gas would expand by 1 percent when heated from 25 to 28°C.
Water would expand only 0.06 percent. Despite their small magnitude,
the compressibilities and coefficients of thermal expansion are important
to problems in chemical equilibrium. We will therefore explore the
factors controlling their magnitudes and their pressure and tempera
ture dependences.

One might think that a liquid should resemble a high-density gas.
If this were the case, then a should be given by some function of the
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fraction of the volume not occupied by the molecules, X, divided by the
absolute temperature. Hence

X

In like manner, /S should be the same function of the fraction of free
volume divided by the thermal pressure holding the molecules apart.
This thermal pressure is the sum of the internal and external pressures
acting on the liquid. Hence

^ =
■^thermal Pcxt + Pint

As stated above for a van der Waals gas,

^ / 1 ^ X
Tl- [2//(l + P/Pi„0] ~ T

! = ^
P + Pin. 1 - [2//(l + P/P|„.)l

. Y ! 1
1 - [2//( l + P/P,„.)]

It is evident that, when the internal pressure is much greater than the
external pressure, X is simply//(I — 2/).

Tait has shown that the compressibility of water follows the
empirical equation

A 0 . 1 3 7 ^ ,
P + 5 ~ P + 2800 ^

where A and B are constants independent of pressure. This relationship
is presented graphically in Fig. 2.5. The form of this equation is in
accordance with that predicted by the van der Waals equation. The
Tait constant, B, is equivalent to the internal pressure, a/V^, and his
constant A, to the parameter X.

For pressures up to 1000 atm neither the empirically determined A
nor B change appreciably. That this is again in agreement with the
van der Waals prediction is shown as follows: Over this pressure range

a n d

w h e r e
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RT/{V — 6), we have

SV

_ (0.082 liter-atm/deg-mole)(300 deg)
(0.107) (0.018 liter/mole)

= 12,800 atm

This result is far greater than the empirical value. However, H2O
molecules are known to associate in the liquid phase so that the mean
molecular weight is about 60 instead of 18. If this is taken into account,
the predicted internal pressure falls to 3800 atm, a value much more
nearly in agreement with Tait's 2800-atm value.

The van der Waals theory predicts a value of

T
= 4.6 X 10-^ deg-i

for the coefficient of thermal expansion of H2O. The observed room-
temperature value of a is 2 X lO--* deg-^ It is clear that the van der
Waals theory is not capable of providing accurate predictions of a and /3;
however, it does provide a basis for understanding their magnitudes and
their temperature and pressure dependences.

EQUATIONS OF STATE FOR SOLIDS

For solids there is no justification for the use of the van der Waals equa
tion of state. The atoms are in fixed positions and hence do not undergo
the random translational motions which characterize gases. A new
model is therefore necessary.

The simplest solids to treat are those bound by electrostatic attrac
tion between ions. The alkali halide salts approach this ideal. In
KCl (the mineral sylvite), for example, each K atom is stripped of one
electron and each CI atom has one extra electron. The positively charged
K atoms attract the negatively charged CI atoms with a force, F, propor
tional to the product of their charges divided by the square of the distance
separating their centers. Of course, there is a corresponding negative
force of repulsion between CI ions and between K ions. Because in
sylvite the six nearest neighbors of any given Cl~ ion are K+ ions, and
vice versa, the sum of the positive forces exceeds that of the negative
f o r c e s .
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In addit ion to the net force of electrostatic attraction between the
ions there is also a powerful short-range force of repulsion which operates
between "touching" ions. Since the latter force changes very rapidly
with distance, the ions have an almost rigid character. The electrostatic
forces pull the adjacent ions together until this "wall of repulsion"
prevents further collapse. The wall of repulsion arises from the inter
action between individual electrons when two ions are brought sufl&ciently
close to create serious overlap between their respective electron clouds.
The force of repulsion can be approximated by

a : "

where n is about 10 for alkali halide compounds.
If a single K+ and a single Cl~ ion were brought together, they would

come to rest when the repulsive force exactly balanced the attractive
force, or when

i! = J?

If the pair is subjected to mechanical squeezing pressure, P, taking the
cross-sectional area over which the pressure acts to be the ionic diameter
squared, hence approximately we have

BP x i + - ^ -
x ^ a ; "

The fractional change in separation per unit of added external pressure,
— {l/x)(dx/dP), is given by

However, since

x{dP/dx) (n -h 2)[P/(x»+2)] _

3.n+2

^ l / ( n - t - 2 )
xdP P + [(n - 2)/(n -h 2)](e^/x*)
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Taking a; = 3 X 10 ® cm, e = 4.8 X IG"'" esu, n = 10, and 10® esuV
cm^ = 1 atm, we have

1 d x 0 . 0 8

xdP~ P+ (0.16 X 10®)

Thus at low pressures the separation distance should decrease ^ ppm for
each atmosphere of pressure exerted.

Although for a real crystal the compressibility is more difficult to
calculate, we can arrive at an approximate result quickly by using two
additional facts. First, if all the bonds in the crystal are shortened by an
amount dx/x then the volume must diminish by an amount Zdx/x.
Second, the vector sum of all the attractive and repulsive forces acting
between a single K+-C1~ pair is 1.7 times that for the lone ion pair.
H e n c e

I d V _ Z d x 3 / ( n + 2 )
VdP~ xdP~P + 1.7[(n - 2)/{n + 2)]{e'M

0.25~ P + (0.27 X 10®)

or about 1-ppm decrease in volume per atmosphere increase in pressure.
The experimental value is 5 ppm.

The inverse of j9 gives the theoretical isothermal bulk modulus, Bt,
of KCl. At low pressure we would have

0 . 2 7 X 1 0 ®
^ a tm « 1000 kbars0 . 2 o

This is approximately a factor of 5 higher than the experimental value
of B t .

It is interesting to note that again the compressibility comes out in
the Tait form. The internal pressure is given by

1.7(w - 2)e^
(n + 2)x*

which is 2.7 X 10® atm for KCl. The fraction of free volume is

3/(n + 2)
1 + 6/in + 2)

which for KCl is 0.167.



V O L U M E 3 1

We have not yet considered the vibrations which occur in solids.
The addition of vibrational energy gives rise to the expansion of solids in
a manner similar to the expansion of gases by addition of translational
energy. The reason for volume expansivity of solids is not obvious. If,
for example, the vibrations were symmetric about the center of mass, the
volume of the solid would remain unchanged with increasing temperature.
The presence of thermal expansivity is a result of the asymmetric nature
o f t h e f o r c e s b e t w e e n a t o m s .

Figure 2.6 is a schematic potential diagram, showing potential
energy, as a function of the distance between atoms. In our simple
case the potential energy is that function which can be differentiated
with respect to distance to give the force. Thus,

~ J ?

d x

If the potential energy is less than or equal to zero for a diatomic mole
cule, there is a chemical bond between the two atoms. If the potential is
greater than zero, the two atoms exist separately.

D I S T A N C E O F S E P A R A T I O N

Fig. 2.6. Schematic potential diagram for a diatomic oscillator.
Horizontal lines in the "potential well" represent vibrational
states. The dashed line shows the equilibrium distance of
separa t ion fo r the two a toms.
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The potential is the sum of two terms, one for attractive potential
proportional to 1/a:, and one for repulsive potential proportional to
l/(x" — 1). This leads to an asymmetric total potential. The dashed
line in Fig. 2.6 connects the equilibrium position of the atoms in each
vibrational state. As potential energy is increased, the equilibrium
distance of separation increases and the solid expands.

As we shall see in the next chapter, the heat capacity of a solid is a
measure of energy taken up in vibrations. The temperature dependence
of the coefficient of thermal expansion should thus be related to the tem
perature dependence of heat capacity. As we shall see, both heat
capacity and the coefficient of thermal expansion are zero at absolute
zero and rise toward a nearly constant value at elevated temperatures.

The ionic theory predicts a rather definite relationship between com
pressibility and mean volume per ion pair for compounds of similar
structure and cation-anion valence. If the value of the repulsive expo
nent, n, for a group of these compounds is nearly the same, the reciprocal
of the compressibility should vary linearly with V^. This can be seen
as follows: As shown above,

Q ^ 3/(n + 2)P + A[in - 2)/(n -h 2)](e^M

where A is the product of the anion and cation charges, Zc X Za, multi
plied by a geometric constant dependent on the atomic arrangement
(that is, 1.7 for KCl). For values of A[{n — 2)f(n -|- 2)](e^/x*) much
greater than P we may approximate the bulk modulus by

= = - 2 ) e 2 a : - 4

Taking the logarithm of both sides and setting log [Ain — 2)e^/S] equal
to a constant, C, we have

log Bt = - I log F + C

This equation describes a family of straight lines, since A and n may be
different for different compounds. For each pair of A and n values a
unique straight line is described. Since chemically related compounds
should have essentially the same values of A and n, chemical "families"
which share the same valence and crystal structure should plot on the
s a m e l i n e .

The log of the bulk modulus for numerous solid compounds is plotted
against the log of the volume per ion pair in Fig. 2.7. As predicted, the
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possibly Fe, fall on a line with a slope of —4. Since almost all rocks fall
on this same line, it is of great geologic significance. What is the origin
of a line with a slope of —4? There is not at present complete agreement
on the meaning of this linear arrangement of oxides; however, there are
several features which can help us interpret the meaning of the line.

The first point to notice is that the high-pressure form of SiOz,
stishovite, and the low-pressure form, a quartz, lie on the line. This
suggests that the effect of pressure on the compressibility might play an
important part in our understanding of this relationship. For any sub
stance, both its compressibility and volume per ion pair decrease with
pressure. From the equations given above,

d ( l / | 8 ) d B r n - f - 2 4
d P ~ d P ~ 3 3

H e n c e

dBx dP
I P d V ^ '

w -|- 6 Bt
3 Y

Integration gives

I n H r = - \ n V + C
U

Since n is about 6 for oxides and silicates, the slope of this straight line
should be about —4. Indeed, almost all ionic compounds, including the
oxides, show this sort of pressure relationship between bulk modulus and
volume. Our clue is that the reduction of the volume occupied per ion
pair in going from oxide to oxide in certain cases yields large changes in
compressibility similar to those obtained when atoms are forced closer
together under great pressure, rather than the much smaller changes pre
dicted if smaller ions were substituted for larger ones. This difference
would result if the normal compounds were held apart largely by anion-
cation contacts and these "anomalous" oxides were held apart largely by
anion-anion contacts. If this were the case, substitution of a smaller
ion in these oxides would not necessarily lead to a volume change. Those
volume changes which occur reflect increased anion-cation forces which
serve to increase the pressure on the oxygen-oxygen contacts. On the
other hand, in nonoxygen compounds and "normal" oxides substitution
of a smaller ion would permit a decrease in volume purely because more
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efficient packing is achieved. In other words, in one case a lattice of
touching oxygen atoms is forced together by the electrostatic pull of
loosely fitting cations, and in the other, the anions are held apart by over
sized cations. Pauling assumed that anions were never in contact in
ionic compounds because the coordination number of cations always
adjusted itself to prevent this from taking place. Whereas Pauling's
rule seems to work for many groups of compounds, including those which
are highly covalent in character, it does not appear to hold for all the
ox ides .

The densities of a number of rock-forming oxides are given in Table
2.4. The molar volume divided by the number of oxygen atoms in the
formula is tabulated as the volume per oxygen atom. The volume/
oxygen varies from 7.0 for stishovite, the ultradense form of SiOz, to 13.3
for tridymite, a low-pressure, high-temperature form of Si02. All other
oxide minerals fall between these extremes. Table 2.5 shows the varia
tion of the volume per oxygen atom for different mineral assemblages
having the same chemical composition.

TA B L E 2 . 4

Oxygen Packing in Some Common Oxide Mineralsf
M ine ra l Fo rmu la Dens i t y Mo lecu la r Mo la r f Vo lume t Vo lume t

Weigh t V o l u m e A t o m Oxygen

Tr id joni te Si02 2 . 2 6 5 6 0 . 0 9 2 6 . 5 3 8 . 8 4 1 3 3
C r i s t o b a l i t e SiOa 2 . 3 3 4 6 0 . 0 9 2 5 . 7 4 8 . 5 5 1 2 8
Ca lc i t e CaCOs 2 . 7 1 2 1 0 0 . 0 9 3 6 . 9 4 7 . 3 9 1 2 3
Aragonite CaCOa 2 . 9 3 0 100 .09 3 4 . 1 6 6 . 8 3 1 1 4
Quartz S iOz 2 . 6 4 8 6 0 . 0 9 2 2 . 6 9 7 . 5 6 11 3
Per ic lase M g O 3 . 5 8 4 4 0 . 3 2 1 1 . 2 5 5 . 6 3 1 1 3
O l i v i n e Mg2Si04 3 . 2 1 4 1 4 0 . 7 3 4 3 . 7 9 6 . 3 0 1 1 0
E n s t a t i t e MgSiOs 3 . 1 9 8 1 0 0 . 4 1 3 1 . 4 0 6 . 2 8 1 0 4
A n d a l u s i t e A h S i O a 3 . 1 4 4 1 6 2 . 0 5 5 1 . 5 4 6 . 4 4 1 0 3
Coes i te SiOa 2 . 9 1 1 6 0 . 0 9 2 0 . 6 4 6 . 8 8 1 0 3
A n a t a s e T i O z 3 . 8 9 9 7 9 . 9 0 2 0 . 4 9 6 . 8 3 1 0 . 3
S i l l i m a n i t e AhSiOs 3 . 2 4 7 1 6 2 . 0 5 4 9 . 9 1 6 . 2 4 1 0 . 0
Spinel MgAl204 3 . 5 8 2 1 4 2 . 2 8 3 9 . 7 2 5 . 6 7 9 . 9
B r o o k i t e T i 0 2 4 . 1 2 3 7 9 . 9 0 1 9 . 3 8 6 . 4 6 9 . 7
R u t i l e T i 0 2 4 . 2 5 0 7 9 . 9 0 1 8 . 8 0 6 . 2 7 9 . 4
Kyani te AhSiOs 3 . 6 7 4 1 6 2 . 0 5 4 4 . 1 1 5 . 5 1 8 . 8
C o r u n d u m AI2O3 3 . 9 8 8 1 0 1 . 9 6 2 5 . 5 7 5 . 1 1 8 . 5
S t i s h o v i t e S i 0 2 4 . 2 8 7 6 0 . 0 9 1 4 . 0 2 4 . 6 7 7 . 0

t Data taken from S. P. Clark, Jr. (ed.), Handbook of Physical Constants, sec. 5. Geol.
Soc. Am. Mem. 97. 1966.
t Volume imits are cubic centimeters per mole. To obtain volume per atom pair, multiply
volume per atom by 2.
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TA B L E 2 . 5

Comparison of Volumes Occupied by Various
Atomic Configurations

M o l a r V o l u m e p e r
Volume, Oxygen Atom,

c m ' / m o l e c m V m o l e

AUOj + Si02
Corundum -f coesite 4 6 . 2 1 9 . 2
Corundum -f- quartz 4 8 . 2 6 9 . 7
Corundum -j- tridymite 5 2 . 1 0 1 0 . 4

Kyanite 4 4 . 1 1 8 . 8
S i l l i m a n i t e 4 9 . 9 1 1 0 . 0
A n d a l u s i t e 5 1 . 5 4 1 0 . 3

2MgO -j- SiOj
2 Periclase + coesite 4 3 . 1 4 1 0 . 8
2 Periclase -f quartz 4 5 . 1 9 1 1 . 3

Periclase -1- enstatite 4 2 . 6 5 1 0 . 6
O l i v i n e 4 3 . 7 9 1 0 . 9

MgO + AhOi
Per i c lase + co rundum 3 6 . 8 2 9 . 2

Spinel 3 9 . 7 2 9 . 9

From our considerations of the variation of bulk modulus with vol
ume and of the volume per oxygen atom for oxides it is evident that most
oxide compounds, and especially silicate minerals, exhibit distinctly differ
ent behavior from ionic compounds such as the alkali halides. The
silicates appear to act like a single material under different states of
compression rather than a family of chemical compounds possessing sim
ilar ionic structure. This may be due to the close-packed oxygen-oxygen
contacts in silicate structures.

P R O B L E M S

2.1 A gas has a molecular weight of 44 and molecular radius of 1.6 A.
Its density is 0.61 g/cm® at a pressure of 225 atm and a temperature of
27°C. Based on the van der Waals theory, what are the critical tempera
ture and pressure for this gas?

2.2 An unknowm gas has the following P, V, T relationship for 1 mole of
gas. At P = 10 atm, V = 41, the temperature is 500.2°K. At P =
100 atm, V = 0.6Z, the temperature is 799.3°K.

(a) Is the gas ideal?
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(b) Calculate the van der Waals constants (a and b) for the gas.
Are they sensitive to an error of 1 deg in the temperature?

(c) Using Table 2.1, determine the nature of the unknown gas.

2.3 The function f(V) = (7 — Fc)® must become zero at the critical
point. Use this fact and the van der Waals equation to find the critical
constants in terms of a, b, and R. {Hint: If two functions are equal to the
same constant each of the power terms must be separately equal. Given
aix^ + + Uzx = 1 and b\X^ + b^x"^ + bzX = 1, ai = 6i, etc.)

2.4 Show that the virial coefficient, B, in the equation PV = RT + BP
must be related to the van der Waals coefiicients approximately by
B = b - a / R T.

2.5 A liquid at 300°K has a compressibility of 5 X 10""® at 1 atm and of
1 X 10"® at 1000 atm. What will its compressibility be at 3500 atm?
What would you predict the coeflficient of thermal expansion to be at
1 a t m ?

2.6 Prove that dBr/dP = (n + 2)/3 + | as P -> 0 starting from

B fr I . (»-2)en» + 2Bt I^P + A 2)j.4j 3
and noting that

1 d V S d x

V d P ~ x d P

2.7 Periclase (MgO) has a compressibility of 5.97 X 10"^ atm"^ at 1 atm,
300°K. Assuming the ideal Pauling relationship, estimate the com-
pressibiUties of ZnS (sphalerite, p = 4.088), PbS (galena, p = 7.597),
CaS (oldhamite, p = 2.602). Compare with the experimental values of

G a l e n a 1 . 9 6 X 1 0 " ® a t m " ^
O l d h a m i t e 2 . 3 2 X 1 0 " ®
Sphalerite 1.30 X 10~®
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The second property of a chemical system which must be known in order
to determine its equilibrium state is the energy content of each of the
possible arrangements of the atoms and molecules present. Energy is
stored in two forms: kinetic energy associated with the motion of the
atoms and potential energy associated with the electrostatic interaction
between the atoms. Although the amount of energy contained by a sys
tem is primarily a function of the chemical form and physical state of the
atoms present, for any given atomic arrangement the energy content will
vary with environmental conditions. Changes in these conditions
which increase the temperature of the substance lead to larger amounts of
stored energy. Changes whicli increase the volume of the substance also
increase the stored energy in most cases. As no evidence for the net
generation or destruction of energy during chemical processes has been
found, the first law of thermodynamics applies. This law states that
energy is conserved during all natural processes. If energy is added to a
system during any process it must be balanced by a corresponding loss
from the surroundings.

Energy transfer is generally accomplished either by heat flow or by

38
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reapportionment of space between the system and the surroundings.
This means that the energy content of most substances depends only on
temperature and volume. Thus the change in energy content of the sub
s t a n c e c a n b e w r i t t e n a s f o l l o w s :

E N E R G Y A S S O C I A T E D W I T H M O L E C U L A R M O T I O N

The temperature of any material reflects the degree of agitation of its
component atoms. At constant volume, energy can be added only by
increasing the kinetic energies of these motions. The energy required to
raise the level of thermal agitation in a specified amount of material so
that its temperature rises 1 deg is defined as its heat capacity. If this
heating is carried out at constant volume, the heat capacity is designated
Cv- In partial-derivative form, by definition

( i).=-
Although molecular motion can consist of translation, rotation, and

vibration, only rarely do all three types of motion contribute to the
energy of a substance. For example, for gases at low temperatures only
translational and rotational modes of motion are important. On the
other hand, for solids only vibrational motion is generally possible. The
available types of motion interact in such a way that the number of
modes of motion available to any given atom is always three. The
identity of the modes of motion will change if the physical state of the
atom is changed. Thus an Ar atom has three modes of translational
motion in the gaseous state but has three modes of vibrational motion
w h e n f r o z e n i n t o a s o l i d .

In order to raise the temperature of any substance the energy associ
a ted w i t h a l l ava i l ab le modes o f mo t i on mus t be i nc reased . I f t he
amount of energy required by each mode for this increase were identical,
it follows that the heat capacity per atom of all substances would be
identical. In other words, the energy required per mole of atoms at
constant volume to raise by 1 deg the temperature of solid pyrite would
be the same as that for liquid water and that for gaseous methane. Also,
heat capacity would not change with temperature or pressure.

Although room-temperature heat capacities per atom for a wide
range of substances are similar, there are real differences. Also, almost all
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materials show variations of heat capacity with temperature. These
deviations from the very simple model given above stem from two sources.
First, twice as much energy is required to raise the temperature of a
vibrational mode by 1 deg than for a translational or rotational mode.
Second, vibrational modes accept their full share of energy only at rela
tively high temperatures. They accept negligible energy close to abso
lute zero. Whereas these exceptions to the simple model permit a com
plete range of heat capacities from twice the universal value suggested
above (for solids at very high temperature) to zero (for solids near
absolute zero), in the room-temperature range the two effects partially
cancel, leading to values which fall within ±50 percent of this simple
predicted heat capacity.

The reason for the twofold larger heat capacities of vibrational
modes is related to the nature of the motion involved. For translation
and rotation, the energy added goes into kinetic form only. For vibra
tional motion, the energy added is used to increase both the kinetic and
potential energy of the atoms involved. The potential-energy increase
arises from the stretching of the electrostatic bonds between atoms dur
ing a vibration, and the kinetic-energy increase is associated with the
motion itself. At the extremes of the vibratory path the participating
atoms are momentarily at rest and all the energy is in the potential form.
By contrast, as the atoms pass the vibratory midpoint they are traveling
at maximum velocity, all the energy being in kinetic form. The average
value of the kinetic-energy contribution is the same as the potential-
energy contribution. Regardless of the position of the atoms at any
given instant, the sum of the kinetic and potential energy is constant.
Since two atoms are involved in opposing motion and each experiences
an increase in its energy content because of the motion, twice as much
energy must be supplied to the system to produce a given increase in
temperature than would be necessary for a single translational or rota
t ional mode.

The second exception to the simple model of heat capacity is the
failure of vibrational modes to accept their full component of energy at
low temperatures. The problem stems from the fact that the energies
for any type of motion are quantized. In other words, there are certain
definite energies which a mode of motion can assume. These levels are
separated by energy gaps. One requirement for equipartition of energy
is that the mean thermal-agitation energy in the medium be comparable
to the width of these gaps. If this is not the case, the transitions between
permissible levels will be greatly impeded.

This problem is serious only for vibrational levels, since they are
generally separated by gaps much larger than the ambient thermal
energy of the atoms at room temperature. For translational motion the
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spacing of levels is so small that free movement between levels is possible
even close to absolute zero. Rotational modes normally have an inter
mediate spacing such that temperatures of only tens of degrees are neces
sary before the ambient thermal energy is adequate to move the atoms or
molecules freely from state to state.

Since almost all materials of interest show only partial activation of
vibrational modes, a few words regarding the manner in which this acti
vation takes place is in order. The simplest type of vibration is that
which takes place between two atoms in a diatomic gas. Each molecule
undergoes an independent vibratory motion along its bond axis. For any
type of vibration the molecular dumbbell has its own characteristic fre
quency, V. This frequency depends on the mass of the atoms and the
rigidity of the bond binding them together. Even at absolute zero the
molecule would vibrate with its fundamental frequency. The energy
associated with this ground-state motion has been shown to equal ^hv,
where h is Planck's constant. In addition to the ground state, a series of
higher energy states of vibration exists. The energy separation between
the lowest levels, hv, is proportional to the fundamental frequency.
Since the difficulty of activation is proportional to the magnitude of the
energy gap, higher temperatures are required to populate the elevated
vibrational states of a molecule with a high fundamental frequency than
for one with a low frequency.

As will be shown in Chap. 4, from a knowledge of the spacing of the
lower vibrational states, hv, and of the mean state of thermal agitation,

O J Q 2 0 . 3 0 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 I . I 1 , 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0

T / e = k J / J n v

Fig. 3.1. Activation of the heat capacity of a simple diatomic oscil
lator plotted as a function of kT/hv. R, the gas constant, is the
fully activated value of Cv.
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kT, it is possible to predict what fraction of the molecules are in the
ground state and in each of the elevated states. Once this is known, the
total energy associated with vibration can be calculated at all tempera
tures. The change in this energy per degree of temperature rise is the
heat capacity due to this vibration. As shown in Fig. 3.1, when a plot of
vibrational heat capacity for an ideal diatomic molecule is made against
the ratio kT/hv, a curve is obtained which starts at zero at absolute zero,
rising to half its fully activated value when kT/hv reaches one-third.
This is where the mean energy available for exciting motion equals one-
third of the spacing between energy levels. Beyond kT/hv equals unity,
the predicted heat capacity levels off at its equipartition value. This
curve is calculated by using the Einstein equation for vibrational heat
capacity.

Although any given vibration can be characterized simply by its
fundamental frequency, it proves to be more convenient to assign it a
characteristic temperature, 6, the temperature at which kT = hv. The
characteristic temperature is then that temperature at which the vibra
tional heat capacity is 92 percent of the fully "activated" value. One-
half activation occurs at the temperature 0/3.

With these basic concepts in mind, it is possible to consider in more
detail the heat capacities of various materials.

H E AT C A PA C I T Y O F G A S E S

As mentioned in Chap. 2, the heat capacity at constant volume for
translational motion is ffc. Thus, for each translational mode the
molecule (or atom) should absorb k/2 units of energy per degree tem
perature rise. The rotational modes would each have an identical heat
capacity and each of the vibrational modes twice this heat capacity. For
1 mole of molecules (or atoms) undergoing a given mode the heat capacity
would be 6.02 X 10^® times as large. The result is about 1 cal/deg-mole
for translational and rotational modes and 2 cal/deg-mole for vibration.

The only modes of motion available to the atoms in a monatomic gas
are translational. Since there are three possible orthogonal directions in
which atoms may move, Cv should be 3 cal/deg-mole. Since transla
tional motion is fully activated even close to absolute zero, this heat
capacity should remain constant with temperature. Observation con
firms this prediction.

Diatomic gases such as H2 or O2 have six possible modes of motion
per molecule (2 atoms/molecule X 3 modes/atom). In addition to three
translational modes of the molecule as a unit, it can also have two rota
tional modes. These rotations occur on axes orthogonal to that of the
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molecular axis. Rotation on the bond axis is not an available mode
because nearly the entire mass of the two atoms (their nuclei) lies pre
cisely on this axis. The sixth mode is a vibration along the bond axis.
The heat capacity corresponding to full activation of these modes is then

Ck = 3X1 + 2X1 + 1X2 = 7 cal/deg-mole

At temperatures at which the activation of the vibrational modes is
negligible the heat capacity is 5 cal/deg-mole. Close to absolute zero,
where rotational uptake is impeded, the heat capacity drops to 3 cal/deg-
mole. The temperature dependence of the heat capacity of H2 and O2 is
shown in Fig. 3.2 The characteristic temperature for their vibrations
are, respectively, 6300 and 2280 deg absolute.

For triatomic molecules the theoretical heat capacity depends on
whether the molecule is linear (all three atoms in line) or nonlinear.
Whereas both types have three translational modes out of nine, three
modes of rotation are available to the nonlinear molecule and only two to

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 T O O 8 0 0 9 0 0 1 0 0 0 1 1 0 0

T . ' K

Fig. 3.2. Heat capacity at constant volume for the gases Oj and Hj.
These gases have characteristic Einstein temperatures for vibra
tion of 2280°K for Oo and 6300''K for H2. The translation-plus-rotation
contribution is 5 cal/deg-mole, and the ideal fully activated heat
capacity is 7 cal/deg-mole for both gases. (Dafa from K. K. Kelley,
U.S. Bur. Mines Bull. 584, 1960, and "Handbook of Chemistry and
Physics," 45f/) ed.. The Chemical Rubber Publishing Company. Cleve
land, Ohio.)
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Since almost all gases with four or more atoms are nonlinear, their
heat capacities for full excitation can be computed from the following
general relationship;

Cr = 3 X 1 + 3 X 1 + (3n - 6)2 = 6(n - 1) cal/deg-mole

For such gases each of the 3n — 6 vibrational modes would have its own
characteristic temperature.

TA B L E 3 . 1

Heat Capacity of Water Vaporf

Te m p e r a t u r e , C a l c u l a t e d C v , O b s e r v e d C v ,
' K c a l / d e g - m o l e c a l / d e g - m o l e

3 0 0 6 . 0 2
4 0 0 6 . 1 8
5 0 0 6 . 4 0 6 . 5 1
6 0 0 6 . 6 7 6 . 7 3
7 0 0 6 . 9 5 6 . 9 3
8 0 0 7 . 2 3 7 . 1 5
9 0 0 7 . 5 3 7 . 3 8

1 0 0 0 7 . 8 3 7 . 6 1

t Data from K. K. Kelley, C/.S. But. Mines Bull. 584,
1960, and "Handbook of Chemistry and Physics," 45th
e d . , T h e C h e m i c a l R u b b e r P u b l i s h i n g C o m p a n y,
C l e v e l a n d , O h i o .

HEAT CAPACITY FOR SOLIDS AND LIQUIDS

Since the atoms present in solids generally undergo only vibrational
motion, their heat capacities, Cv, should approach 3n X 2 or 6n cal/deg-
mole at high temperatures, where n is the number of atoms per formula
weight. As absolute zero is approached, the heat capacities approach
z e r o .

The pattern of increase in heat capacity is, in general, considerably
more complex than that shown above for a simple diatomic molecule.
The Cv versus T curve will be a composite of Zn separate activation
curves, one for each mode of vibration. Because the vibration fre
quencies associated with the various modes are, in general, not all the
same, the composite curve will not follow that of a single Einstein func
tion. Further, only 3(n — 1) of the vibrational modes can be character
ized by a single frequency. The other three consist of a whole spectrum
of frequencies and hence are not subject to the Einstein treatment.
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Debye showed that the frequency spectrum could be integrated to yield
a heat capacity versus temperature relationship which could be written
in terms of a characteristic temperature, do, in the same manner as the
Einstein function is written in terms of 6e- The so-called Debye tem
perature is equal to hpmax/k, where vmax is the maximum frequency in the
spectrum. Plots of heat capacity versus fraction of Einstein and fraction
of Debye temperature are given in Fig. 3.4. The Debye vibrations show
a higher degree of activation for any given fraction of the characteristic
temperature. This is because the mean frequency for a Debye mode is
considerably less than the maximum frequency used to define the Debye
temperature.

For most solids a good fit to the observed heat capacity can be
obtained by summing a limited number of Debye and Einstein com
ponents. Although the 6ds and Bes obtained by these empirical separa
tions have no theoretical significance, they provide a useful means of
expressing the temperature dependence of heat capacity. For example,
the heat capacity of SrO can be written

The characteristic temperature for the Debye mode is 261''K and that

T / 8

Fig. 3.4. Comparison of Debye and Einstein heat-capacity activation
for sol ids.
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TA B L E 3 . 2
Heat Capacity per Atom
for Representative Soiidsf

Compound Heat Capacity
per Atom at 298°K,

ca l /deg-mo le

S y l v i t e ( K C l ) 6 . 1 0
S p h a l e r i t e ( Z n S ) 5 . 5 0
F l u o r i t e ( C a F 2 ) 5 . 3 4
C a l c i u m o x i d e ( C a O ) 5 . 1 2
a Q u a r t z ( S i 0 2 ) 3 . 5 4
F o r s t e r i t e ( M g 2 S i 0 4 ) 4 . 0 2
P e r i c l a s e ( M g O ) 4 . 5 2
C o r u n d u m ( A I 2 O 3 ) 3 . 7 8
S i l i c o n c a r b i d e ( S i C ) 3 . 2 1
D i a m o n d ( C ) 1 . 4 5

t Heat-capacity data from K. K. Kelley, U.S.
Bur. Mines Bu l l . 584, 1960.

for the Einstein mode, 444®K. The separate curves and their sum are
shown in Fig. 3.5.

The heat capacities on a per atom basis at room temperature for a
number of sohds of geologic interest are given in Table 3.2. It is clear

2 5 5 0 7 5 t o o 2 0 0 3 0 0 4 0 0 5 0 0

T. " C

Fig. 3.5. Heat capacity for SrO as a function of temperature. The
total Cvmay be expressed as the sum of a Debye mode contribution
with Bd = 261°K and an Einstein mode contribution with Be = 444®K.
Data from K. K. Kelley, U.S. Bur. Mines Bull. 584, 1970.
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that there is a considerable variation in the degree of activation of the
vibrational modes at room temperature. This range stems from a differ
ence in the bond strengths for various solids; the more rigid the bonding,
the lower is the room-temperature heat capacity. For molecules with
strong covalent bonds, such as AI2O3, the heat capacity is fairly low. For
solids such as metallic iron, the intermolecular forces are relatively weak
w i t h a c o m m e n s u r a t e l y h i g h h e a t c a p a c i t y . 

The room-temperature heat capacities of the oxides show a particu
larly interesting property. They are additive. For example, the molar
heat capacity of sillimanite, AhSiOs, is equal to the sum of that for quartz,
Si02, and corundum, AI2O3. This suggests that, in oxides, the vibration
frequencies which are not fully activated at room temperature are largely
dependent on the nature of the individual cation-oxygen bonds, and not
on the atomic arrangement in the complex solid. On the other hand,
the heat capacities at 50°K are not additive, implying that the important
vibrations in this region are strongly dependent on the particular atomic
s t r u c t u r e . 

A list of heat capacities for simple oxides at room temperature is
given in Table 3.3. With this list, a very good estimate of the heat
capacity of any complex oxide can be made. Some examples are given
in Table 3.4. This table also illustrates the nonadditivity of oxide heat
capacities at 50®K.

The liquid of prime importance in natural systems is water. The
heat capacity of water (18 cal/deg-mole) is surprisingly large compared
with that of ice (~9 cal/deg-mole) and with that of water vapor (~8
cal/deg-mole). The value for liquid water corresponds to the theoretical
heat capacity for a solid with all its vibrational modes fully activated.

ENERGY ASSOCIATED WITH VOLUME OCCUPIED

In addition to taking up energy by increased molecular agitation, all
real substances take up energy when they expand (except under con
ditions of extreme pressure). This energy goes into stretching electro
static bonds. If the change in energy content is considered as a function
of volume at constant temperature, only this electrostatic component 
i s i n v o l v e d . 

The amount of energy required to cause expansion should then be
the internal pressure operating in the substance times the change in
v o l u m e . H e n c e 

i E = P , „ . d V = - P « . ) d V 

The value of the thermal pressure for any van der Waals substance
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TA B L E 3 . 3

Heat Capacities of the Simple Oxides
at Room Temperature

O x i d e C p t n C p / n

B2O3 1 5 . 0 0 5 3 . 0 0
B e O 6 . 0 6 2 3 . 0 3
COat 9 . 3 4 3 3 . 1 1
a m 9 . 6 0 3 3 . 2 0
SOst 1 3 . 5 9 4 3 . 4 0
Si02 1 0 . 6 2 3 3 . 5 4
A1203 1 8 . 8 8 5 3 . 7 8
T i 0 2 1 3 . 1 6 3 4 . 4 0
L i20 1 3 . 3 8 3 4 . 4 6
Z r O s 1 3 . 4 2 3 4 . 4 7
M g O 9 . 0 3 2 4 . 5 2
Z n O 9 . 6 2 2 4 . 8 1
T h 0 2 1 4 . 7 6 3 4 . 9 2
FezOs 2 4 . 8 1 5 4 . 9 6
C a O 1 0 . 2 3 2 5 . 1 2
M n O 1 0 . 5 4 2 5 . 2 7
F e O 1 0 . 5 6 2 5 . 2 8
N i O 1 0 . 6 0 2 5 . 3 0
S n O 1 0 . 6 0 2 5 . 3 0
S r O 1 0 . 7 6 2 5 . 3 8
B a O 1 0 . 9 5 2 5 . 6 7
N a 2 0 t 1 6 . 8 4 3 5 . 6 2
K ,O i 1 7 . 5 0 3 5 . 8 2

t Heat-capacity data from K. K. Kelley, U.S. Bur.
Mines Bull. 584, 1960. Units are calories per
degree-mole.
t Approximate values, calculated indirectly: for
example, COj = CaCOs - CaO.

has been shown to equal a function of the fraction of available volume
divided by the compressibility. Hence

^ p a n d - ^ t h e r m a l ^
• ' t h e r m a l P

Since the coefficient of thermal expansion for such substances is a = X/T,
the thermal pressure is equal to the absolute temperature times the ratio
of the coeflScient of thermal expansion to the compressibility. It follows
t h a t

d E = d V
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TA B L E 3 . 4

Comparison of Heat Capacities Obtained
by Summation with Measured Vaiuesf
(Units Are Calories per Degree-mole)

Te m p . ,
" K

P r e d i c t e d

O b s e r v e d

Q u a r t z + c o r u n d u m = S k y a n i t e
S i O a A I 2 O 3 = 2 A l j S i O s

3 0 0 1 0 . 6 2 + 1 8 . 8 8 = 2 9 . 5 0 2 9 . 1 0 1 . 0 1
5 0 1 . 3 8 + 0 . 3 6 = 1 . 7 4 0 . 8 4 2 . 0 7

C r i s t o b a l i t e + c o r u n d u m = 2 s i l l i m a n i t e
S i O j + A I 2 O 3 = 2 A l e S i O s

3 0 0 1 0 . 5 6 + 1 8 . 8 8 = 2 9 . 4 4 2 9 . 3 1 1 . 0 0 5
5 0 1 . 5 6 + 0 . 3 6 = 1 . 9 2 1 . 7 9 1 . 0 7

P e r i c l a s e + c o r u n d u m = 2 s p i n e l
M g O + A I 2 O 3 = S M g A h O a

3 0 0 9 . 0 3 + 1 8 . 8 8 = 2 7 . 9 1 2 7 . 7 1 1 . 0 0 6
5 0 0 . 2 2 + 0 . 3 6 = 0 . 5 8 0 . 8 8 0 . 6 6

P e r i c l a s e + q u a r t z = 2 p y r o x e n e
M g O + S i O i = 2 M g S i O s

3 0 0 9 . 0 3 + 1 0 . 6 2 = 1 9 . 6 5 1 9 . 6 2 1 . 0 0 1
5 0 0 . 2 2 + 1 . 3 8 = 1 . 6 0 1 . 3 3 1 . 2 0

W o l l a s t o n i t e + r u t i l e = 2 s p h e n e
C a S i O s + T i 0 2 = 2 C a T i S i O s

3 0 0 2 0 . 3 8 + 1 3 . 1 6 = 3 3 . 5 4 3 3 . 2 1 1 . 0 1
5 0 2 . 7 0 + 1 . 4 1 = 3 . 7 1 3 . 5 7 1 . 0 4

A n h y d r i t e + i c e = 2 g y p s u m
C a S 0 4 + 2 H 2 O = 2 C a S 0 4 - 2 H 2 0

3 0 0 2 3 . 8 2 + ( 2 ) ( 9 . 3 0 ) = 4 2 . 4 2 4 4 . 4 6 0 . 9 5 5
5 0 3 . 8 6 + ( 2 ) ( 1 . 9 0 ) = 7 . 6 6 7 . 6 0 1 . 0 1

P e r i c l a s e + i c e = 2 b r u c i t e
M g O + H 2 O = 2 M g ( 0 H ) 2

3 0 0 9 . 0 3 + 9 . 3 0 = 1 8 . 3 3 1 8 . 4 3 0 . 9 9 4
5 0 0 . 2 2 + 1 . 9 0 = 2 . 1 2 1 . 1 8 1 . 8 0

t Heat-capacity data from K. K. Kelley, U.S. Bur. Mines Bull. 584, 1960.

As shown in Chap. 2, a for an ideal gas is l/T and /3 is 1/P. The
thermal pressure, T(a/fi), is then equal to P, the external pressure, and
(dE/dV)T is zero. This is to be expected since by definition an ideal gas
is one in which no electrostatic interactions take place. The only way
the energy content of an ideal gas can be changed is to change its degree
of molecular agitation. The internal energy of an ideal gas is inde
pendent of its molar volume.

Although it cannot be proved here, the relationship Pthermai =



E N E R G Y 5 1

T(a/fi) is universally valid. It applies to solids as well as to van der
Wa a l s s u b s t a n c e s .

For an ideal ionic solid the thermally induced vibrations maintain
separations between the atoms exceeding those predicted by a simple
balance between the forces of attraction and repulsion. If, for example,
the mean separation distance exceeds the "equilibrium" distance,
a^equii) by an amount Ax, then a thermal force, Fthermai, must balance the
excess of the electrostatic attraction force plus external force over the
force of repulsion. For a single ionic pair we may approximate the
balance of forces by

S i n c e
^ u e 2

w = 1 _ ( ^ g q u i i V ~ ^ , „(Xeaun + AxY L Ueauii + W J
which for Ax <3C ajequii can be approximated by

Fthermal ~ ('^ 2) —j -j- Fcxt
^cquil ^cquil

P t h e r m a l ^ - 2 ) + P e x t
^equil ^cquil

For a crystal such as KCl (following the treatment in Chap. 2),

( n - 2 ) 1 . 7 A F , „■ f ^ t h e r m a l „ 4 ^ " T e x t
" ^ e q u i l ' e q u i l

Since for KCl the term [{n — 2)1.7/3](eV^^uii) is equal to 1 X 10® atm,
and at room temperature A7/Fo (the volume change from absolute zero
to T) is about 2 X lO"'^, the thermal pressure is about 2 X 10* atm.
This result can be compared with that obtained from the ratio of the
coefficient of thermal expansion for KCl, 1.1 X 10~* deg~* divided by its
compressibility 5 X 10~® atm"^ times the absolute temperature, 300 deg
[hence T{a/^)]. The result of 6600 atm is the same order of magnitude
as that obtained from the simple ionic-bonding model.

In summary, the energy content of any substance can be raised either
by increasing its degree of molecular agitation (hence its temperature) or
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by increasing the separation between its atomic or molecular units (hence
its volume). The total internal-energy change is given by

dE = CvdT + {T̂-l̂dV
This result is completely general.

V A R I A T I O N O F S T O R E D E N E R G Y W I T H T E M P E R A T U R E
A T C O N S T A N T P R E S S U R E

For most natural processes, temperature and volume change together.
Thus the contribution of changes of thermal agitation {Cv dT) and of
interaction energy [(aT/jS — P) dV] must be simultaneously considered.
Since many natural processes are isobaric (occur at constant pressure) the
total energy change under these conditions is of interest. Since for iso
baric processes AF = Fa AT, it follows that

dE = - PVc^ dT
where the first term represents the contribution of molecular motion,
and the second and third that of bond stretching.

If the sources of the energy involved in an isobaric heating are con
sidered, rather than the mode of storage of the energy, it is convenient to
combine the firs t two ins tead o f the las t two terms. The sum Cv +
TFaV/S represents the amount of heat which must be added to the sub
stance at constant pressure to raise its temperature 1 deg. It is the sum
of the energy, Cv, required to increase the degree of thermal agitation,
and the energy, TVa^/p, required to expand the solid in response to the
thermal pressure. This sum is defined as the heat capacity at constant
pressure, Cp.

The increase in energy content of the solid, dE, is always somewhat
less than the heat added because some of the heat, PVa dT, is used in
pushing back the surroundings. In terms of Cp, the internal-energy
increase at constant pressure is

dE = (Cp - PVa) dT

or, in partial-derivative form,
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Since PVa dT = P dV, at constant pressure

d E = C p d T - P d V

As will be shown in the next chapter, the amount of heat transferred
between the system and the surroundings during isobaric processes has
special importance in dealing with entropy changes. For this reason a
composite property of the system equal to the sum of the internal energy,
E, and the product, PV, is defined as the enthalpy, H, of the system.
H e n c e

H = E - { - P V
a n d

d H = d E - \ - P d V - \ - V d P

Since for isobaric processes dP = 0,

d H = d E + P d V

and thus at constant pressure

dH = Cp dT

In this way the amount of heat transferred between the system and the
surroundings, Cp dT, can be related directly to the change in the enthalpy
of the system.

It is of interest to consider the relative magnitudes of the amount of
heat required to increase the molecular motion and that required to
expand the substance against the total confining pressure (Pint + Pext)-
The ratio of these two energies is equal to (Cp — Cv)/Cv- If Cp/Cv is
defined as 7, then

Cp - Cv ^ _ TVa^
C v fi C v

For an ideal gas, /S and a are 1/P and 1/T, respectively. Thus

Cp - Cv ^ ^
C v C y

The amount of energy per degree temperature increase required to expand
an ideal gas during an isobaric heating is thus 2 cal/deg-mole. This can
be compared with the Cv of various gases at room temperature: Ar, '^3
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IÎuis ̂jgA OS SI gSu^qg guin|OA gq^^ jo gpnfjiuS^m gqfj Suiij.'Bgq ou^qosi jo^

snqx Plios gq^^
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pared with that for gases. Thus {Cp — Cv)/Cv is much smaller for
solids than for gases.

Although a general relationship between a and j8 is not available for
solids, empirical observation demonstrates that the ratio Voc^/^Cp'^
remains nearly constant with temperature and pressure for a given solid.
That this constancy is reasonable can be shown as follows: As mentioned
previously, both the heat capacity and coefficient of thermal expansion
depend upon the degree to which the vibrations have been activated.
Consequently, a is roughly proportional to Cp. Both are zero at absolute
zero and rise toward nearly constant values at high temperature. Vol
ume and compressibility do not change significantly with temperature.

T V a ^ F a 2C -̂Cy = — = ̂  Cp'T = ACp^T
H e n c e

C p - C v A C p ^ T A C p ^ T A C p T
Cv ~ Cv ~ Cp - ACp^T ~ 1 - ACpT ~

The relationship between y and T is written in terms of Cp rather than Cv,
since for solids Cp alone can be determined by experiment. Whereas
for a gas the volume can be held constant during heating, this is not
practical when dealing with solids. If Cv is needed, it must be obtained
from a combination of theory and experiment from the equation

C p ^ C P - ^

C v = C p - A C p ^ T

The values of Cv, Cp, a, A, Cp — Cv, and y are given in Table 3.5 for
copper at several different temperatures.

For water at room temperature the energy associated with over
coming the internal pressure during an isobaric heating, TVa^/fi, is 0.18
cal/deg-mole compared with 18 cal/deg-mole for the energy required to
excite molecular motion. Thus (Cp — Cv)/Cv for water is only 0.01.

A D I A B A T I C C H A N G E S

Processes carried out in systems thermally isolated from their surround
ings are also of importance in the earth sciences. For adiabatic expan-
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TA B L E 3 . 5
Thermal Properties of Copperf

T , C p . C v . a , P , V . C p - C r .
® K c a l / c a l / 1 0 " ' I Q - s c m V c a l /

d e g - d e g - d e g - ^ a t m ~ ^ m o l e d e g - m o l e
m o l e m o l e

5 0 1 . 5 0 1 . 5 0 1 1 . 4 0 . 7 2 2 7 . 0 0 0 . 0 0 1 5 2 1 . 3 5 1 . 0 0
ICQ 3 . 8 5 3 . 8 3 3 1 . 5 0 . 7 3 1 7 . 0 1 0 . 0 2 3 0 1 . 5 5 1 . 0 0
1 5 0 4 . 9 0 4 . 8 6 4 0 . 7 0 . 7 4 4 7 . 0 2 0 . 0 5 6 7 1 . 5 7 1 . 0 1
2 0 0 5 . 4 5 5 . 3 6 4 5 . 3 0 . 7 5 9 7 . 0 3 0 . 0 9 2 0 1 . 5 5 1 . 0 2
250 5 . 7 4 5 . 6 2 4 8 . 3 0 . 7 7 3 7 . 0 4 0 . 1 2 8 1 . 5 6 1 . 0 2
3 0 0 5 . 8 6 5 . 6 9 5 0 . 4 0 . 7 8 8 7 . 0 6 0 . 1 6 5 1 . 6 0 1 . 0 3
500 6 . 1 7 5 . 8 6 5 4 . 9 0 . 8 5 0 7 . 1 2 0 . 3 0 5 1 . 6 0 1 . 0 5
8 0 0 6 . 6 3 6 . 0 8 6 0 . 0 0 . 9 3 5 7 . 2 6 0 . 5 4 1 1 . 5 4 1 . 0 9

1 2 0 0 7 . 2 2 6 . 2 2 7 0 . 2 1 . 0 4 5 7 . 4 5 1 . 0 4 7 1 . 6 7 1 . 1 6

t After M. W. Zeinansky, "Heat and Thermodynamics," 5th ed., McGraw-Hill Book
Company, New York, 1968.

sion or compression, changes in internal energy can be accomplished only
through work done on the surroundings. Hence

d E = - P d V

An internal exchange of energy between potential and kinetic forms also
takes place. For example, during an adiabatic compression, potential
energy is released as the atoms move closer together. This energy
excites the molecular motions to higher thermal levels, raising the tem
perature of the substance. As shown above, for any process

d E C v d T d V

Since dE = —P dV for adiabatic processes,

C v d T + T - d V = 0
/3

However, since
d V = a V d T - ^ V d P

the following relationship results:

\Cv + dT = TV a dP

A ,
1 0 - s

mole/
c a l



E N E R G Y 5 7

o r

CpdT ■■
In partial-derivative form

©,
where S indicates entropy. As will be shown in the next chapter, adia-
batic reversible processes are processes carried out at constant entropy.

For an ideal gas, a = 1/T; hence

/ d T \ V R T

\dp)s ~ Cp~ CpP
Nitrogen gas at room temperature has a Cp of ^7 cal/deg-mole. Thus
at 1 atm and 25^0 the adiabatic gradient for N is

/ d T \ 2 X 3 0 0 ,Wj. = T3^ = ^
Rising air masses whose moisture content remains constant should cool
initially at the rate of 8.5 deg/km, because atmospheric pressure drops an
average of 0.1 atm/km for heights up to a few kilometers.

For water, a = 2.1 X 10"^ deg~S V = 1.8 X 10"'' liter/mole, and
Cp = 18 cal/deg-mole at 300°K. The adiabatic gradient for water is
t h u s

/dT\ (3.00 X 102)(1.8 X 10-2)(2.1 X lO"'')
\dp)s ~ 1.8 X 10

= 6.3 X 10~® deg/cal-liter

= 1.5 X 10"® deg/atm

In descending from the surface to a depth of 3 km a mass of seawater
would be warmed by 0.45 deg (pressure increases 100 atm for each
kilometer depth).

For the mineral periclase at a temperature of 1000®C and a pressure of
1 atm, a = 4.2 X 10~® deg~S V = 1.096 X lO"'^ liter/mole, and Cp =
12.7 cal/deg-mole. The adiabatic gradient would be

(̂ ) ̂  ̂  deg/atm
If, as some geophysicists believe, the earth's mantle undergoes con-
vective overturn which is rapid with respect to the flow of heat, then the
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temperature gradient should be that for adiabatic compression. When
the result for periclase is used, a gradient of 300 deg per 1000 km is
obtained (pressure in the mantle rises about 330 atm/km).

I S O T H E R M A L C H A N G E S

One other type of process needs consideration: pressure changes which
occur at constant temperature. Although such changes rarely take place
in natural systems, such paths are useful in calculating energy changes.
For example, if the enthalpy of quartz at 500°C and 400 atm were needed,
the most convenient way to calculate it from the enthalpy at standard
conditions (that is, 1 atm, 25°C) would be as follows: The change for an
isobaric heating from 1 atm, 25®C, to 1 atm, 500®C would first be calcu
lated. Next the change for an isothermal-pressure increase from 1 atm,
500®C to 400 atm, 500®C would be computed. By adding the sum of these
changes to the enthalpy at standard conditions, the enthalpy at 400 atm,
500®C would be obtained.

We have already shown how the energy of a substance changes for
an isobaric-temperature increase, but we have not done this for an iso
thermal-pressure increase.

As shown above, for all processes

dE = CvdT pj dV
For the isothermal-pressure increase the first term is zero and dV =
— FjS dP, Hence

dE = V{^P - aT) dP

Since dH = dE -|- P dV + V dP, we have

dH = (P7/3 - TV a - P7/3 + 7) dP
o r

dH = 7(1 - aT) dP

In any process, if the changes in pressure and temperature are very
large it is necessary to use a slightly different form of the equations given
above. If changes are large, one must consider a, /?, and 7 to be functions
of temperature and pressure. In these cases, the differential form of any
equation must be integrated, taking into consideration the temperature
and pressure dependences of all parameters. For example, for moderate



E N E R G Y 5 9

changes in pressure, we may use

dH = F(1 - oiT) dP

But for large changes, say, over 1000 atm, the expression must be changed
t o

A i ? = V ( 1 - a T ) d P

where V and a must be given as explicit functions of pressure.

E N E R G Y C H A N G E S A S S O C I A T E D W I T H C H A N G E S I N A T O M I C A R R A N G E M E N T

Up to this point the discussion has revolved around how the energy of
one particular atomic arrangement varies with temperature and pressure.
Our ultimate concern, however, is with the energy differences between
different arrangements under one set of conditions. Although the major
contribution to this difference comes from the potential-energy change
stemming from the rearrangement itself, the contribution of volume
differences and differences in heat capacity are of great importance to our
study of chemical equilibria. If the rearrangement energy were always
dominant, for a given set of constituents only one stable configuration
(i.e., mineral assemblage) would exist, regardless of the values of tem
perature and pressure. Our interest in the subject stems from the fact
that for most systems several configurations are possible, each having its
own stability field on a pressure-temperature diagram. This is the case
partly because energy differences between two configurations change
significantly with temperature and pressure.

An example of the variation of the energy difference between two
atomic configurations with environmental conditions is provided by the
two CaCOs polymorphs, calcite and aragonite. Their thermodynamic
properties at 1 atm pressure and room temperature are given in Table 3.6.
Calcite has an enthalpy 48 cal/mole greater than that for aragonite. As
P AFarag-caic is ouly 0.07 cal/mole, AE very nearly equals AH under these
c o n d i t i o n s .

If the temperature is raised from 25 to 225®C (pressure held at 1 atm)
we can calculate the changes in H and E for both polymorphs, using the
relationships

A E = ( fi p - P V a ) d T

AH = fj' Cp dT
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TA B L E 3 . 6

Thermodynamic Data for Calcite and Aragonitej

C a l c i t e Aragon i te

Molar volume, cm® 3 6 . 9 4 3 4 . 1 6

Coeffic ient o f thermal 1.58 X 10-® 5.55 X 10-®

expansion, deg~^
Compressibility, atm~^ 1.37 X 10-® 1.55 X 10-6

Enthalpy of formation -288,086 -288 ,134
at 298® K, cal/mole

Heat capacity. 24.98 -1- (5.24 X lO-^T) 20.13 + (10.24 X 10-®r)
cal/deg-mole - (6.20 X io®r-®) - (3.34 X io®r-®)

t Heat-capacity data from K. K. Kelley, U.S. Bur. Mines Bull. 584, 1960. Other data
taken from S. P. Clark, Jr. (ed.). Handbook of Physical Constants, Geol. Soc. Am. Mem. 97,
1 9 6 6 .

C A L C I T E A H = 4 4 8 4 - 3 5
I atm, 500® K 5 X lo' ofm ,500® K

A H = 4 6 1 0

I otm , 238® K
AH = -4470 + 21 )
■ 5 X l o ' o t m , 2 9 8 ® K

A R A G O N I T E A H » 4 1 8 6 - 1 1 3
I aim , 500® K 14073 ̂  ̂  lO^otm . 500® K

A H = 4 4 4 0 A H « -

A H = - 4 1 4 0 + 6 7

I otm . 298® K 124073 g ^ 298® K

CALCITE -ARAGONITE

I aim . 500® K — t̂̂ ")°376 ,̂ 3 ,̂̂  gQ^o
A H = 2 1 8 A H = 5 9 4

A ( A H ) = 1 7 0 A ( A H ) = - I

I otm , 298® K . A(AH) = -376 ̂  ̂  ,̂ 3 298® K
A H = 4 8 A H = 4 2 4

Fig. 3.6. Enthalpy cycle for calcite and aragonite. See text for
d e t a i l e d d i s c u s s i o n .
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As the PVa term is negligible at 1 atm, E and H both change by the same
amount. As shown in Figs. 3.6 and 3.7, calcite shows an internal energy
and enthalpy increase of 4610 cal and aragonite of 4440. AE and AH
both rise from 48 to 218 cal/mole.

If the pressure is now increased to 5000 atm (T held at 225®C) the
changes in H and E can be calculated from the following relationships:

A E = F ( / 3 P - a T ) d P
a n d

A H = V ( 1 - a T ) d P

w h e r e V i s t h e v o l u m e a t 2 2 5 ° C .
As seen from Fig. 3.7, the internal energies of calcite and aragonite

fall 35 and 113 cal/mole, respectively (because of the release of electro
static energy during compression). The larger decrease for aragonite

C A L C I T E

I otm , 500® K A E = - 3 5 5X10*otm,500® K

A E = 4 6 1 0 A E » - 4 5 6 0

I otm , 298® K -— 5 X 10* otm ,298® K

A R A G O N I T E

I otm , 500® K ° 5 x 10? otm , 500® K

A E » 4 4 4 0

A E » 6 7 sI otm, 298® K ——— 5 X 10* otm , 298® K

C A L C I T E - A R A G O N I T E

I o t m , 5 0 0 ® K j q S 5 0 0 ® K
A E > 2 1 8 A E = 2 9 6

A ( A E ) = 1 7 0 A ( A E ) = - 2 0 2

I otm , 298® K ■ A(AE)°-46 ic? otm ,298® K
A E = 4 8 A E = 9 4

Fig. 3.7. Energy cycle for calcite and aragonite. See text for detailed
d i s c u s s i o n .
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reflects its higher coefficient of thermal expansion. This increases the
internal-energy difference between the two polymorphs to 296 cal/mole.

The pressure increase result's in increases in both the enthalpy of
calcite and that of aragonite. Because its molar volume is greater, the
increase for calcite exceeds that for aragonite.

If the crystals are returned to the starting conditions first by lower
ing the temperature to 25®C (at 5000 atm) and then lowering the pressure,
the enthalpies of the two polymorphs change by the same amounts as
during the heating and compression (see Fig. 3.6). The internal-energy
change during cooling does not match that during heating nor does the
internal-energy change during decompression balance that for compres
sion. The reasons are as follows: (1) Cooling at high pressure leads to a
significant contribution of the PVa term in the equation; (2) decom
pression at low temperature reduces the magnitude of the TV a term in
the equation. The two effects cancel one another so that the energy
change around the cycle is zero, as it must be.

P R O B L E M S

3.1 A hypothetical ideal gas has a heat capacity of 0.19 cal/g-deg at T =
1°K, 0.27 cal/g-deg at T = lOO^K, and 0.59 cal/g-deg at T = 1000°K.
What is the molecular weight of the gas? Is it linear or nonlinear? How
many atoms are there per molecule? Which heat capacity was measured?

3.2 A van der Waals gas has a critical temperature of 400°K. Its mole
cules have a diameter of 2 X 10"® cm. At T = 300°K, P = 10 atm,
what will be the difference between the heat capacities, Cj» — Ck?

3.3 A solid with six atoms per formula and a formula weight of 150 g has
a density of 3.00 g/cm®. The Debye temperature is 150®K. If the
density decreases 100 ppm for each degree temperature rise and increases
2 ppm for each atmosphere-pressure increase, how much heat is required
to raise 1 g of this substance from 200 to 300°C?

3.4 A sohd has a heat capacity of 3.5 cal/deg-atom at 300®K and 0.4
cal/deg-atom at 50°K. If half of its vibrations can be approximated by a
single Debye function and half by a single Einstein function, what are the
approximate Debye and Einstein temperatures?

3.5 What is y for a solid which at 400®K has an adiabatic gradient of
1 X 10~® deg/atm and a thermal pressure of 2 X 10^ atm?
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3.6 The heat capacity (Cp) of sylvite at 600®K is 13.32 cal/deg-mole.
The vibrational modes are all fully activated at 600®K. The volume
of sylvite at this temperature is 28.28 cm'; the thermal pressure is 1.62 X
10^ atm. Find the coefficient of thermal expansion and the compress
ib i l i ty.

3.7 Lava lakes generally have a temperature of about 1100°C. Assum
ing that the magma travels from its place of origin quickly enough so that
negligible heat is lost to wall rocks, calculate the temperature of the
magma at a depth of 40 km. The density of basaltic liquid at 1200°C is
2.61; the coefficient of thermal expansion is about 1 X 10"^. Assume a
heat capacity of 0.2 cal/g-deg.

3.8 Calculate the internal-energy and enthalpy changes when water vapor
at 10 atm, 400®C, cools to 1 atm, 100®C; condenses; and further cools to
25®C. The required thermodynamic functions are Cp (water vapor) =
7.30 + (2.46 X lO-'T) cal/deg-mole, Cp (liquid H2O) = 18 cal/deg-
mole, a = 2.1 X 10-< deg-', j9 = 0.137/(P -f 2800) atm"'. Assume
ideal gas behavior for water vapor.



From the volume and energy content of a chemical system it is possible to
determine the degree of randomness of the atoms present. By random
ness "we mean the number of different ways in which the atoms can arrange
themselves wth respect to their geometric locations and their energy
content. The degree of randomness depends heavily on the physical
state of the system. The molecules in a gas can assume a vast number of
"visibly" different locations and have a far higher degree of geometric
disorder than when frozen onto the ordered lattice points of a solid. The
rise in the number of energy levels available to individual atoms as a sub
stance is heated is a less obvious, but equally important, source of
increased randomness. The greater the amount of energy available to
the atoms, the greater is the number of ways it can be distributed among
the atoms, and the greater the randomness of the system.

Quantitatively, the randomness of any system can be measured by
the number of complexions, W, available to the atoms. An example will
b e s t i l l u s t r a t e h o w t h i s n u m b e r c a n b e o b t a i n e d . C o n s i d e r a r o w o f s i x
clear plastic straws, as shown in Fig. 4.1. If four ball bearings are ran
domly distributed, one to a straw, there will be 15 "visibly" different

64
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is one energy unit. If the total energy content of the system is three
energy units and if the likelihood of occupation is identical for all levels,
there are 20 ways of distributing the energy for each geometrical arrange
ment. This result could be computed as follows.

There are three basic ways in which the energy could be distributed.
It could all be given to one ball. Since there are four balls, this mode of
distribution gives rise to four complexions. Another possibility would be
to give three different balls one unit of energy each [(4 X 3 X 2)/(3 X
2 X 1) = 4 complexions]. Finally, one ball could be given two units
and another ball one unit (4 X 3 = 12 complexions). The total com
plexions thus equal 4 -j- 4 -|- 12, or 20 (see Table 4.2).

If one more unit of energy were added to the system there would be
five basic distributions. All the energy could be given to one ball (4
complexions), each ball could be given one unit of energy (1 complexion),
two units could be given to each of two balls (4 X 3)/2 = 6 complexions),
one ball could be given three units and another one unit (4 X 3 = 12
complexions), or two balls could each be given one unit and another two
units [(4 X 3 X 2)/2 = 12 complexions]. Thus the addition of one
energy unit raises the total number of energy complexions from 20 to 35.
Randomness increases with the amount of available energy and hence
with temperature.

The overall randomness of the six straw-three energy unit system is
the product of the number of geometrical complexions (15) and the num
ber of energy complexions (20). This gives a total of 300 complexions.
That of the seven straw-four energy unit system is 35 X 35, or 1225
complexions.

The number of complexions is a property of the system just as is its
volume or energy. One major difference exists, however. Whereas
energy and volume are additive properties, the number of complexions is
multiplicative. The total energy of a series of systems is the sum of the
energies of each of the individual systems, but the randomness is the
product of the number of complexions for each of the individual systems.
Randomness can be converted to an additive property in the following
way. We will define a new property called entropy, designated S, which
is proportional to the logarithm of W:

< S a I n W o r I F o c g s

The number of complexions changes much more rapidly than the entropy.
Differentiating both sides of the expression, we obtain
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TA B L E 4 . 2

Energy Complexions for a Single
Geometric Complexion f
(Total energy = 3 units)

1 2 3 4 5 6

1 3 0 0 0 0 0
M o d e 2 0 3 0 0 0 0

1 3 0 0 3 0 0 0
4 0 0 0 3 0 0

5 1 1 1 0 0 0
M o d e 6 1 1 0 1 0 0

2 7 1 0 1 1 0 0
8 0 1 1 1 0 0

9 2 1 0 0 0 0
1 0 2 0 1 0 0 0
1 1 2 0 0 1 0 0
1 2 1 2 0 0 0 0
1 3 0 2 1 0 0 0

M o d e 1 4 0 2 0 1 0 0
3 15 1 0 2 0 0 0

16 0 1 2 0 0 0
1 7 0 0 2 1 0 0
1 8 1 0 0 2 0 0
1 9 0 1 0 2 0 0
2 0 0 0 1 2 0 0

t First four straws contain one ball; last two are
empty : a r rangement 1 in Tab le 4 .1 .

Entropy change is thus proportional to the fractional change in the num
ber of complexions of the system.

Consider two systems, A and B. The total randomness is

Was = WaWB
The total entropy becomes

>Sab a In Wab

oc In (WaWb)

^ In Wa + In

= <Sa + 'SB
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It proves convenient to assign to entropy the units of heat capacity;
then TS has the units of energy. The gas constant, R, is selected as the
proportionality constant,

d S = R —
W

S = R l n W

VARIATION OF ENTROPY WITH TEMPERATURE AT CONSTANT VOLUME

There are two ways in which the entropy of a substance can be raised:
by increasing the energy associated with the motion of its constituent
atoms or by increasing the free volume available to the atoms. Let us
first consider how the number of complexions available to the atoms
changes with temperature at constant volume.

Despite the fact that an infinite number of energy levels is availa
ble to each atom, the total energy restriction leads to a finite number of
energy complexions, A major difference from the simple straw model
given above must be taken into account, however, when dealing with
atoms; the probability of occupation of the various energy levels is not
the same for all levels, Boltzmann showed that the probability, p,-, of
finding a given atom in any given energy level, e,, is proportional to
exp (—ei/kT). The number of atoms at any given level drops expo
nentially with the energy of that level. Although a proof of Boltzmann's
distribution law is beyond the scope of this book, a rather simple argu
ment makes it plausible. The probability that an atom will gain energy
during a collision is The mean energy change per mode of motion
during a collision should be roughly equal to the mean energy per mode
of motion, kT/2. Thus the probability that an atom will be raised to
some unusually high energy, e, is

p =

Taking the natural logarithm of both sides.

2 6 , 1 - 6

Taking the antilogarithm.

p s e x p -



-uojssnosjp
paije^ap jo^ ;x3; aag * -ASjaua uoijoun^ e se sjaAai
ASjaue joi sjaqiunu uoDednaoo uuBLuzjiog 'Z'fr "Sij

A9UaN3

UT aSu-Bijo -B iCq pasiiBO '̂p 'suopcafduioo jo jaquinu aq;̂ tii aSuBqo aqx

Xq TiaAiS SI
uiot̂B uaAiS V joj suoTxaiduioo XSiaiia jo laquinu aq(̂ uopoui i'buo'̂Bisu'bj(̂

JO apoui qo^a joj aouan -siaAaj aiq^pBA-e Xq'Bnba asaq;^ jo jaquinu aq^j
oj pnba aq uaqj p^noAV suoixaiduioo XSjaua jo jaquinu aqj iuojb a[Suis b
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temperature, dT, would be

Since dS = R dW/W,

d W I d T

W ~ 2 T

2 T

From our considerations of how energy varies with temperature we know
that R/2 is the heat capacity per mode of motion for 1 mole of atoms, and

dS = CvY

The entropy change is equal to the energy added to the substance (Cv dT)
divided by the temperature {T) at which it was added. Hence energy
added at 10°K is 10 times more effective in changing the entropy of
translational motion than energy added at 100°K.

Where all three modes of translational motion are considered,

2 T

As ^R/2 is the translational heat capacity, again the entropy change is
given by the heat added (3^ dT/2) divided by the temperature at which
it is added.

The same argument can be made for rotational motion. The energy
€„ = n(n + l)e° is the sum of the energies for the rotational modes in
the nth rotational energy level. Since n is very large, » n(n + 1)
and n « \/e„/e". For each mode of rotational motion the fractional
change in energy complexions with temperature will be the same as for
t r a n s l a t i o n a l m o t i o n :

d W I d T

W ~ 2 T
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and the entropy change per rotational mode for 1 mole of molecules
w i l l b e

2 T T

As will be shown below, this relationship is valid for all processes:

There is an important requirement, however, which we have not yet
stated. Entropy changes can be directly related to heat addition only
if the process is reversible. Since truly reversible processes are rare, it
would seem at first thought that this relationship of entropy to heat
capacity is not very useful. The usefulness becomes apparent when we
remember that entropy is a staie function, whose value depends only
on the state of the system and not on its history. If we wish to calculate
the entropy change for a process, we simply specify the initial and final
states of the system and calculate the entropy change along a reversible
path connecting these states.

VARIATION OF ENTROPY WITH VOLUME AT CONSTANT TEMPERATURE

The number of complexions available to the atoms in any substance would
logically be related to the free volume (i.e., the volume not occupied by
the atoms themselves). Hence, let us assume

W = f V

The change in the number of complexions must then be proportional to
the change in free volume,

dW oc dVhee = dV

and thus the fractional change in complexions must equal the fractional
change in free volume,

d W d V

W ~ fV
As shown in Chap. 2,
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Substituting, we get
dW ̂  Pthermal dV
W ~ R T

The entropy change per mole of atoms is then

jCf -Pthermal

or the heat energy per mole (Pthcrmoi dV) added to the substance divided
by the temperature of addition.

Since Pthcrmal = T{a/0),

vWr " /3
The general relationship for entropy change in terms of temperature

and volume changes becomes

dŜ d̂T + jdV
By combining this relationship with that obtained for internal energy,

dE = Cv dT + {̂T - 1̂  dV
the entropy change may be written in terms of internal energy and vol
ume changes. Thus

dS = \,dE + ̂dV
T T

E N T R O P Y C H A N G E F O R VA R I O U S T Y P E S O F P R O C E S S E S

For an adiabatic reversible process the entropy change is zero, since an
adiabatic change is, by definition, one in which no heat energy enters or
leaves the system.

For an isothermal expansion the volume change is given by

dV = -^V dP
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such processes

For ideal gases

H e n c e

Thus for the adiabatic cooling from B to C,

f Tc C v d T r v c R
J t h y ~ ~ J v b V

o r

^ , T c V cC . l n - = - J e i n -

and for the adiabatic heating from D to A,

H e n c e

a n d

o r

Thus Carnot's cycle is consistent with the relationship among entropy,
temperature, and volume given above.

A B S O L U T E E N T R O P Y

Since at absolute zero temperature almost all pure solid substances have
only one geometric configuration {W = 1), the entropy of the substance is
zero (In 1 = 0). Thus there can be no entropy change for any chemical
r e a c t i o n b e t w e e n t h e s e s u b s t a n c e s w h e n c a r r i e d o u t a t a b s o l u t e z e r o .
For example, if calcite were converted to aragonite at absolute zero, the

- ^ d V

- — d Vu , r

1 T / f F AC . l n - = - T e m

p i P I- 7 e i n - = T e i n -

V b ^ I C
V a F n
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atoms would be shifted from one set of lattice points to another. Their
randomness would not change. Since at absolute zero all vibrations are

in their ground state there is also only one energy complexion. For this
reason the absolute entropy of any pure substance can be defined as the
entropy change it undergoes when taken from T = 0°K (and P = 1) to
that temperature and pressure of interest. The entropy of any sub
stance can thus be computed from a knowledge of its heat capacity and
coefiicient of thermal expansion:

The variation of Cp and a with T and P must, of course, be taken into
account in the integration.

The coefficient of thermal expansion, a, is zero at absolute zero, and
so the choice of 1 atm for the heat-capacity integration is a matter of
convenience chosen because Cp measurements are made at this pressure.
This integration provides an accurate result only if the heat capacities
are precisely known over the entire temperature range. Although small,
the pressure effect on entropy becomes important beyond a few hundred
atmospheres. The absolute entropy of any substance can in principle be
obtained either by integrating measured heat capacities or by employing
s t a t i s t i c a l m e c h a n i c s .

For solids which undergo no phase transformations between absolute
zero and the temperature of interest, the integration is relatively simple:

r T C p f Ps = L -^dT- f aV dP
y O l a t m y J I t

If phase changes take place, the entropy changes associated with
them must be taken into account. For example, if a substance undergoes
a solid-solid, then a solid-liquid, and finally a fiquid-to-gas transformation,
its entropy would be given by

C _ /Twii-wi, (Cp)80l, , AJ^solj-soI, , fT.oii-iki (Cp)ao\t

I Ajyaolj-liq , r riiq-ga. (Cp)liq Affiiq-gas
Tao^-nq T ^ Tnq-aag

+ r ^^ iT-f \vdPJ T i i a - g - T J I

For an ideal Debye solid the entropy will show a simple relationship
to the characteristic temperature. The higher the value of do, the lower
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the entropy at any given temperature. This relationship is shown in
Fig. 4.4. Table 4.3 shows that solids with low heat capacities also have
low entropies.

TA B L E 4 . 3

Entropy and Heat Capacity per Atom
for Several Solid Compoundsf

Compound s, S / n Cpfn,
ca l /deg-mole at Zgs-'K

B e O 3 . 3 7 1 . 6 8 3 . 0 3

Si02 (a quartz) 1 0 . 0 0 3 . 3 3 3 . 5 4

AUSiOs (kyanite) 2 0 . 0 2 2 . 5 0 3 . 6 4

CaCOs (calcite) 2 2 . 2 4 . 4 4 3 . 9 1
PbCOa 3 1 . 3 6 . 3 4 . 1 8

TiOa (rutile) 1 3 . 1 6 4 . 0 1 4 . 3 9

Fe304 3 5 . 0 5 . 0 4 . 8 9

CaF2 1 6 . 4 6 5 . 4 5 5 . 3 4

t Entropy data taken from K. K. Kelley and E. G. King, U.S. Bur.
Mines Bull., 592, 1961. Heat-capacity data taken from K. K. Kelley,
U.S. Bur. Mines Bull., 584, 1960.

T.®K

Fig. 4.4. Debye entropy plotted as a function of temperature for four
values of do- To obtain the molar entropy, multiply by the number
of atoms in the compound.
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half the fractional increase in temperature. If entropies are to be
obtained by statistical calculations, it is necessary to obtain a rigorous
relationship between the number of energy complexions and temperature
for all types of motion, including partially activated modes.

First let us see why the motions of atoms are restricted to discrete
energy levels. This restriction is a reflection and consequence of the dual
nature of matter. At the beginning of this century a group of scientists
realized that many of the properties of rapidly moving particles could be
understood only if the particles were considered to act as waves. For
example, electrons are diffracted on passing through a crystal. The
mechanism of diffraction is well understood for waves such as x-rays; the
problem of electron diffraction is easily understood if we can endow elec
trons with the properties of waves.

In 1923, the physicist Due Louis de Broglie proposed that all matter
exhibited this dual nature. We do not observe diffraction or other wave
effects in the case of particles with masses of a gram or so because they
have such small wavelengths. However, the wave nature of the particle
is still present. The wavelength, X, of a "particle wave" is called the
de Broglie wavelength of the particle. It is equal to Planck's constant, /i,
divided by the momentum of the particle, mv:

h
X = —

m v

We may easily obtain the de Broglie wavelength by starting with
Einstein's principle of mass-energy conversion. If a particle of mass, m,
were converted entirely into a quantum (or "bundle") of electromagnetic
radiation, the wavelength of this quantum would be found as follows:
Einstein's equation states that the energy release, E, is equal to the mass
of the particle times the speed of light squared (E = mc^). This energy
must equal the energy of the radiation which is given by hv or hc/\.
Thus,

h
X = —

m c

The quantity mc represents the momentum of the photon, and so

h
X = -

P

De Broglie maintained that this equation is true for all particles, if p is
the momentum of the particle.
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If a moving particle exhibits wave properties, it must always move so
that the waves it produces are in phase. This produces constructive
interference. Destructive interference, or out-of-phase waves, is not
allowed. For a rotating molecule, constructive interference can occur
only when its rotation frequency is an exact multiple of the fundamental
frequency of its de Broglie wave. This condition obtains only at certain
critical values of the rotation energy. These values represent the allowed
energy levels. Other rotation energies are excluded because of destruc
t i v e i n t e r f e r e n c e .

In 1926, Erwin Schrodinger formulated a differential equation from
which quantum energy levels could be calculated. He started with the
differential equation which defines all wave motion, which in one dimen
s i o n i s

d^A _ 1 d^A
d x ^ ~ d t ^

To separate out the time dependence, he defined a parameter ^ as a
periodic function of time:

\ b =
sin 2r{v/X)t

In terms of ^ the wave equation becomes

Substituting the de Broglie value for X, we obtain

(Pxl/ 4:ir^m^v^ , -
^ + -^^ = 0

Since the kinetic energy of the particle, mv^i2, is equal to its total energy,
e, minus its potential energy, u, we have

This is the one-dimensional form of ScHrodinger's famous equation.
This equation is as important to quantum mechanics as Newton's F = ma
is to classical mechanics. We shall now consider the results obtained
from the solutions to this equation for various types of motion.
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D E T E R M I N A T I O N O F E N E R G Y L E V E L S

Potential energy has the agreeable property that the zero point may be
arbitrarily fixed. It is convenient to choose the translational potential
energy of a molecule moving in a gas to be zero. The Schrodinger equa
tion for one dimension then becomes

d x ^ ^

In an ideal gas, the molecules can be considered to collide with only the
walls of the container and not with each other. The allowed values of
the particle's energy may then be calculated from the Schrodinger equa
t i o n . T h e r e s u l t i s

8 m a ^

where n may be any positive integer, m is the mass of the particle, and a is
the distance between the walls of the container. The spacing between
energy levels decreases with increasing mass of the particle and with
increasing size of the container. The energy spacing between adjacent
levels increases with the number of the level:

= (2» + 1 ) —

The spacing between level 4 and level 5 is 3 times the spacing between
levels 1 and 2.

If the problem is solved for an ideal gas in a real three-dimensional
container, the result has three quantum numbers, ni, n^, and riz. These
quantum numbers are associated with the three orthogonal dimensions of
the container, oi, a2, and az:

(n^ , ̂  _l_ nz \̂
Va i ® a z ' a z ' J

This solution allows two different states to have the same energy, a
condition called degeneracy. For example, if the container is a cube
with tti = a2 = az, a threefold degeneracy is possible for the energy
e = Qh^/8ma^. This energy results from

( 1 ) W i = 1 7 1 2 = 1 U z = 2
( 2 ) n i = 1 U z = 2 n z = I
( 3 ) T i l = 2 7 1 2 = 1 7 1 3 = 1
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To calculate the rotational energy levels, we may consider a diatomic
molecule to be a dumbbell with masses at each end of a rod (the molecular
bond axis). The potential energy of this rotating dumbbell is taken as
zero. We may further simplify the calculations by reducing the problem
to one in which a single object of mass, /u, rotates at a distance, r, around
an origin. This distance is the distance of separation of the original
masses. If the angular momentum of the two systems is to be the same,
the masses must satisfy the condition

m i + m 2

The quantity m is called the reduced mass of the system. For this case
the Schrodinger equation becomes

d x ^ ^ ^

j(j + l)/t^ ^ jU + I)
87rV2[mim2/(mi + m2)]

where j is any positive integer (or zero), mi and are the masses of the
atoms in the diatomic molecule, and r is the bond length. The separation
of energy levels again decreases with increasing mass of either atom
making up the molecule. It also decreases with increasing bond length.
The spacing between levels increases with increasing level number:

Ae„+i.„ = 2(n + 1)

We may calculate the vibrational energy levels of a diatomic mole
cule by using a simple idealized model. This model will consist of two
masses connected by a spring so that the "molecule" resembles a dumb
bell. We shall assume that the restoring force exerted on the masses is
proportional to the linear distortion of the spring. This distortion is the
deviation of the separation between the end masses from the equilibrium
separation distances. Our assumption could be more concisely stated
by claiming that the spring obeys Hooke's law.

The motion of an oscillator consisting of two masses joined by a
spring is analogous to that of a ball rolling in a parabolic track, as shown
in Fig. 4.6. The potential energy of the ball at point (1) is given by mgh.
For a parabolic track, the elevation, h, is proportional to the square of
the horizontal distance, x, from the null point. This means that at the
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As mentioned in Chap. 3, the spacing between energy levels is great
est for vibration and least for translation. Let us consider as an example
the molecule CO, carbon monoxide. The force constant, k, for CO is
1.85 X 10® dynes/cm; the reduced mass, /i, is 1.14 X 10~^® g; and
h/2ir is 1.054 X 10"" erg-sec. The spacing of vibrational levels is

I 1.85 X 10®Ae,ib = (1.054 X 10 ") "VnixlÔS
Acvib = 4.25 X 10~" erg

This energy difference is large when compared with the average thermal
energy of a particle, kT, at room temperature. For 300®K,

kT = (1.38 X 10-»®) X (300)
= 4.14 X 10-" erg

The spacing between rotational levels for CO can be calculated using
r = 1.13 X 10"® cm. This value is obtained from analysis of infrared
rotational spectra. The spacing between the levels j = 1 and j = 0 is

2h^

= 1.53 X 10-" erg

This spacing is very small compared with kT at room temperature. The
spacing Aci.o would be equal to kT at 11.1®K; this temperature is well
below the solidification temperature of CO.

Let us calculate the spacing between translational levels for a CO
molecule in a cubic container 30 cm on a side. The volume of this con
tainer would be 27 liters. The spacing between levels 1 and 2 is given by

_ (2 -f- 1)(6.62 X 10-")^~ (8) (4.65 X 10-2®) (9 X 102)

= 3.93 X 10-®® erg

This value is infinitesimally small compared with kT at any reasonable
tempera ture .

The form of the energy-level quantizations for the three modes of
motion can be seen without becoming involved with the complex Schro-
dinger equation. For the case of translation we may consider a ball



= A = 9

OS pa's '9|n08I0UI OTUIOI^'Bip
■B JO 'rf 'ssBui paonpaj s!^u9S9Jd9J Suujs jo pua aq^^ ssisui aqx

■^ = i = d
tiu l[

'uoi:̂Bi9J oqSojg ap aq;̂ raoĵ
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-m9:j 0J9Z ojoiosq-B -ye u9Ag[ ■siq'j S9TU9p soiu-Bqogxu ran:ju'Bnb f!jS9J 9q
O!̂ JO(jBjqTA 9qj AV0|P 9AV ̂'̂BqJ ST AVOU ui9jqojd JUQ 'onpA J93uTpojqog
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summation yields t

k T 8 w ^ n r % T~ h^/8irW^ "

Since the j = 1 energy level, ci, has energy

^ 8ir^fjir^

we may express the total rotational partition function in terms of the
energy of this level:

2 k T
Qiot —

€ l

We may approximate the contribution of each rotational mode separately,
Qrott by taking the square root of qrot-

Qrot —

The partition function for vibration must be treated in a manner
d i f f e r e n t f r o m t h a t f o r t r a n s l a t i o n a n d r o t a t i o n . T h i s i s b e c a u s e t h e

temperature at which the spacing between levels equals kT is generally
several hundred degrees. For CO, this temperature would be 3080®K.
Thus the assumption that many levels are populated at room tempera
ture, which is valid for translation and rotation, is clearly invalid for
vibration. Almost all the CO molecules remain in their ground vibration
state at room temperature.

The partition function for vibration is given by

e x p -
(n + ^)hv

Since the levels are widely spaced, we may not integrate; fortunately this

t There is one more detail which must be considered to make this equation completely
accurate. For homonuclear molecules like O2 or Nj, the integers n must be either all
even or all odd. This is referred to as a symmetry restriction. Half the states available
t o h e t e r o n u c l e a r m o l e c u l e s l i k e C O o r N O a r e f o r b i d d e n t o h o m o n u c l e a r m o l e c u l e s . T o
allow for this restriction, grot for homonuclear molecules must contain an additional factor
o f 2 i n t h e d e n o m i n a t o r .



= 03

puis 'o = } punojS jo^

"VCf + ?) = ■'

iCq u8AiS SI jaAay qo'sg jo XSigua aq;̂ puB

U-7/-' -) dxa

:% qaAaf qoua ui suio^̂u jo uoîtOBjj aq:j saAiS uoî^nquqsrp uuBuiẑpa aqx
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Thus the fraction of atoms in the ground state is

&K^{—hv/2kT)

= 1 - 0 . 0 0 0 0 3 3

^ 0 . 9 9 9 9 7

Only about three atoms in every one hundred thousand are not in the
ground state.

For the first excited state, ei,

ci ~ ^hv

exp (— Shv/2kT)

1 .9 X lO - ' ^

5 . 8 X 1 0 - '
= 3 . 2 8 X 1 0 - 5

Essentially all the atoms which are not in the ground state are in the first
excited state. The second excited state with energy

€2 ~ ^hv

contains only about one atom in 10®.
The total partition function for a single diatomic molecule in a box of

v o l u m e V i s

w h e r e
? ~~ S'transQ'rotQ'vib

/ 2 i r m k T \ ^g.™.. - J V

Qtot

f fv ib =
exp (— hv/2kT)

1 — exp (— hv/kT)

Since the translational term incorporates volume changes, this $ is a mea
sure of the total (volume -f- energy) complexions available to the molecule.

If more than one molecule is present in the box, then the q for each
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(̂ transQ'rot̂ vib)'̂
A H .

_ gtransgrotgyib
(N \y " ^

The Nl factor must be introduced for the same reason as it was in the
straw problem. The molecules are indistinguishable.

For large numbers,

m)"" = ̂
H e n c e

ff t rana^rot^v ibC» N

For purposes of calculation, it is convenient to combine the term
resulting from indistinguishability, e/N, with the translational partition
f u n c t i o n ;

/ 2 i r m k T \ ^ Ve

j F
From a knowledge of the partition function of a gas molecule it is

possible to calculate the absolute entropy of the gas. As shown above, at
c o n s t a n t v o l u m e

dS =̂ dT
T

H e n c e

= r^dT
J o X

By definition

= Ov
The internal energy can be calculated from the partition function as
follows: The total energy of the system is the sum of the contribution
due to each molecule:

E = NZfiii

m o l e c u l e b e c o m e s

o r .

where e,- represents various total energies that a molecule can assume.
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In accordance with the discussion above,

H e n c e

H o w e v e r,

_ exp (— ij/kT) _ exp (— n/kT)
S e x p ( — c , / A ; r ) q

1 dq

q d T

Integrating by parts.

<! PT^ J- I?

Writing the remaining integral in terms of q rather than T, since g—> 1
as r—> 0,

which yields
o d T J i fi

S = RT--̂ -\- Rlnq
q dT

S = RT̂^ + Rlnq
We have shown that for a gas.

q = qriqTotQvih
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H e n c e

In g = 1 -f- In + In grot + In gvib

a _ p , d In (g t r a n s 9 t r a n sS - R + R T +

+ «7'̂ ^̂  + ieingv,b

TRANSLATIONAL AND INDISTINGUISHABILITY ENTROPY

The entropy of a monatomic gas would have only the component due to
translation and indistinguishability;

o ^ RT d\v\. (gtrana/^) , ^ , gtrans= + +

As stated above,

^ z^Y V
\ J N

d(gtrans/A) ̂  /2Tmk\i V3^
d T \ / i W N 2

H e n c e

This yields

Ttm ^ (fftrana/A) 3 ^
dT

„ / 2 i m k r \ i VSTi = ̂ R + Rln[—l̂ j -
The entropy of a monatomic gas then rises by an amount fi2 for each
factor of e (~2.7) the temperature is increased and by an amount R for
each 2.7-fold increase in molar volume. If the atoms of gas A were 2.7
times as heavy as those of gas B (Ne and He differ by about this factor)
gas A would have an entropy ^R greater than gas B.

The translation entropy of 1 mole of CO at 300°K in a volume of
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24.6 liters (2.46 X 10^ cm') can be calculated as follows: Under these
conditions the pressure of the gas is 1 atm. The values of the parameters
required are

2 8 g 1 m o l e
mole 6.02 X 10^® molecules

N = 6.02 X 10^' molecules

kT = 4.14 X 10-14 erg
= 4.38 X 10"" erg'i-sec^

r, , ^2irmkT\iSti = + /? In I———j
i 2.46 X 104]

6.02X1023J
= ̂ R-\-R\ f [(6-28) (2.8 X 10i)(4.14 X 10-i4)1i 2.46 X^ "U (4.38 X 10-5') (6.02 X 1023) J 6.02 X
= / i ! I n ( 5 . 9 2 X 1 0 ' )

= ^R + 2.303/2 log (5.92 X 10')

= 1 8 . 1 / 2

= 36.0 cal/deg-mole

R O T A T I O N A L E N T R O P Y

The rotational contribution to the entropy of a diatomic gas is

S , u = + R i n g . , ,

As shown above,

a n d t h u s

SK^/jir'kT~ k '

dqiot 8ir^t i r%
H f ~

H e n c e

p_ d In grot _ RT dgrot _ p
d T q , o t d T

Srot — /2 "i" /2 In
^ i r V k T
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For CO at 1 atm, 300®,

M = 1.14 X 10-2' g
r = 1.13 X 10-8 cm

nr^ = 1.45 X 10-'® g-cm2

^ r o t = + / e i n 1 0 8 = b . l R
= 11.3 cal/deg-mole

Since, as we shall see below, the vibrational contribution to the entropy
of CO is negligible at room temperature,

= 36.0 + 11.3 = 47.3 cal/deg-mole

VIBRATIONAL CONTRIBUTION TO ENTROPY

As shown above, the vibrational entropy is given by

S v i b = + R \ n q , , ^

Qvih —
exp ( — hv/2kT)

1 — exp {—hv/kT)

Taking the derivative of gvib with respect to T,

dgvib ̂  {hv/2kT )̂ exp {-hv/2kT)
dT 1 — exp (—hv/kT)

exp (-hp/2kT)[exp (-hv/kT)](hu/kT^)
[1 - exp i-hp/kT)]^

1 dgvib ^ hp [exp (-hp/kT)]{hp/kT^)
gv ib dT 2kT^ 1 - exp { - hp / kT )

Thus the vibrational entropy is

^ _ Rhp Rhp exp (—hp/kT) exp ( — hp/2kT)2kT kT 1 — exp ( — hp/kT) ̂  1 — exp ( — hp/kT)

kT exp (hp/kT) — 1
— In 1 — exp ( —
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For CO at 300"K,

exp - ̂  = 3.3 X 10-'
S„b = -R In [1 - (3.3 X 10-')] + B(10.3) „

The first term is very close to zero. The value of the second term is

iSvib = 7.3 X 10-" cal/deg-mole

The vibrational term contributes a negligible amount at low temperatures
but becomes very important at high temperatures.

This concludes our discussion of statistical mechanics. The results
we have derived are very basic and show only a small part of the power of
the method. The reader who is interested in learning more about this
subject is referred to an excellent book by Frank C. Andrews- entitled
"Equilibrium Statistical Mechanics" (John Wiley & Sons, Inc., New
York, 1963).

P R O B L E M S

4.1 A box has five equally spaced platforms arranged in a vertical series.
Let the first platform represent one energy unit, the second, two units,
etc. Six marbles, three of which are white and three of which are black,
are placed in the box. What is the total number of complexions for a
total energy of 12 units?

4.2 Find the de Broglie wavelength for (a) a golf ball weighing 50 g and
traveling at ICQ m/sec; (6) a neutron (thermal neutron at
T « 300°K). Would you expect to see any wave effects from either
particle?

4.3 A box has sides a\, a^, as and contains one particle. If = as — 2a\,
find the first four degenerate energy levels for translation. What is the
order of the degeneracy?

4.4 The entropy of NaCl (solid) at 25°C is 17.30 cal/deg-mole; its heat
capacity is Cp = 10.98 + (3.90 X 10"® T,°K) cal/deg-mole. The density
at 1 atm, 25°C is 2.163 g/cm®. The average coefficient of thermal expan-
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sion from 20 to 200®C is 1.26 X 10"^ deg"'; the compressibility is 4.26 X
IQ-® atm-h Calculate the entropy at 100 atm, 200oC.

4.5 The bond length for HOP® is 1.30 A; its fundamental wave number
for vibration is 2989 cm~h Calculate the statistical entropy of HOP®
at 300®K, 1 atm.

4.6 Show that if qrx gives the average number of translational states for
the X component of direction, the number of these states is approximately
equal to n, the quantum number of the state whose energy equals the
mean thermal energy for that component.



chap te r five Equi l ib r ium and I ts
A t t a i n m e n t

In any chemical problem two relevant questions arise. The first is,
What is the equilibrium configuration of the atoms present? This
question can be answered by thermodynamics. The second is, How long
will it take for this configuration to be established? Here, thermo
dynamics cannot help us; we must look to kinetics for the answer. Both
thermodynamic and kinetic aspects will be dealt with in this chapter.

EQUILIBRIUM

The equilibrium state is that state which leads to the greatest degree of
randomness in the universe. All spontaneous processes lead to a net
entropy increase for the system and its surroundings taken together. If
the system undergoes a decrease in entropy in a spontaneous process, the
surroundings must experience an even larger increase in entropy. Thus,
for any spontaneous process

A»Suniv ASsya "f" A<SBQr > 0

99
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This inequality is a statement of the second law of thermodynamics.
Although no formal proof of this law is possible, the absence of any
experimental exceptions provides confidence in its validity.

Two examples of the use of the second law will best serve to demon
strate its applicability.

1. F low of heat

Two identical copper blocks, one at temperature Ti and the other at
7*2, are placed in contact. Experience tells us that they will come to a
common temperature T2)/2. If no heat is allowed to pass between
the blocks and the surroundings, the entropy change for the surroundings
will be zero. Thus the entropy of the blocks must rise if the second law
is valid. If the heat capacity is constant over the temperature range of
interest, the entropy change for the first block will be

(Ti + TO/Z Cy dT
T

= Cy In T2

and for the second block.

{.Ti + Ti)/2 Cy dT
r , ^

= Cy In T2

The total entropy change will be

AiSsys = Cv In (Ti + T2Y
4T1T2

If Ti is equal to T\ + AT, then

ASsys — Cy In
4Ti2 -F 4Ti AT + AT2

4 Ti 2 + 4 Ti AT

ASays = Cy In V i T i T, )



E Q U I L I B R I U M A N D I T S AT TA I N M E N T 1 0 1

Since the fraction /^T'^/^TiT^. cannot be negative, the total entropy
change for the universe must be greater than zero, regardless of the sign
of AT'. The only case where the entropy change can be zero is that when
AT = 0. This corresponds to an ideal reversible process carried out at
equilibrium; when AT = 0, the blocks are in thermal equilibrium with
each other before being brought together. For the spontaneous process,
AT 9^ 0, the entropy of the universe must increase.

2. Mixing of gases

The contents of two identical flasks at the same temperature are
allowed to mix spontaneously. One flask initially contains 1 mole of
He and the other 1 mole of Ar. These gases behave nearly ideally, and
so the presence of one will not affect the other. Each gas will "see" only
that the volume of its container has been doubled. Thus the entropy
change for this mixing process will be the same as the entropy change
associated with doubling the volume of each gas separately at constant
t e m p e r a t u r e :

f V t P d V r V x R m ^ 2 D i oA^He = A/Sap - -Y~ - Jv, ydV - R\n - R\n2
A^Sgys = AjSho "h A/Saf = In 2

F R E E E N E R G Y

In chemical studies our interest is focused on the system in which we are
particularly interested. It would be more convenient in equilibrium con
siderations if we could direct our attention to only the properties of the
system and define our criterion of equilibrium in terms of the system's
properties only. Most important natural systems are subject to the
restraint of constant pressure and temperature. Fortunately, such
systems can be analj'zed rather easily. The entropy of the surroundings
can be affected only through exchange of heat with the system and hence
is determined entirely by the heat balance of the system. As shown
previously, the heat added to the system in a constant-pressure process is
equal to its enthalpy increase, AH. As the surroundings constitute an
infinite heat reservoir, the heat transfer may be considered reversible for
the surroundings. Hence



1 0 2 C H E M I C A L E Q U I L I B R I A I N T H E E A R T H

Thus for processes carried out at constant P and T the entropy change
for the universe can be written wholly in terms of properties of the system:

ASu.,v = AS.„ - ̂
In order to put the criterion for equilibrium in terms of energy units

rather than entropy units, chemists have rewritten the previous equation
a s

T A«S>univ ~ T ASsya —

A new property of the system, the Gibbs free energy, G, is then defined as

G = H - TS = E + PV - TS
a n d

A G = A H ~ T A S - S AT

For the processes carried out at constant temperature.

a n d h e n c e
A G = A H - T A S

A G g y g = - TA S ,

Since A^univ must increase for all natural processes, it is clear that AGs
must decrease. For isobaric, isothermal processes

A G = A H - T A S

where all the parameters refer to the system. Most of the remainder of
this book will involve application of this equation to chemical systems in
nature. For any process to proceed spontaneously the system must
satisfy the inequality AG < 0. If the system is at equilibrium, AC? = 0
for all possible processes.

Occasionally it is necessary to consider a system constrained to con
stant volume, but where the pressure may vary. In these cases, the
Gibbs free energy is not a particularly useful concept. However, the
entropy change of the universe may still be written in terms of properties
of the system. At constant volume the heat exchanged between the
system and the surroundings is equal to AEgyg (the change in the internal
energy of the system). Thus
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The Helmholtz free energy, A, is then defined as A = E — TS. For
isothermal processes, the change in the Helmholtz free energy of the sys
tem is given by

A A = A B - T A S

If the process is carried out at constant volume,

AAsya ~ —^ A(Suniv

a direct analogy to the constant-pressure case.
Although the property free energyf was initiated as a convenience,

it has a direct physical significance. The quantity —AG represents the
portion of the energy made available by any natural process which can be
converted into useful work.

For example, during an isothermal chemical reaction carried out at
constant pressure, an amount of heat, AH, is released. This heat normally
flows into the surroundings, causing an increase in entropy. However,
one might attempt to "capture" this energy and convert it into useful
work. To perform this conversion quantitatively in cases where the
entropy of the system decreases clearly would violate the second law of
thermodynamics. If complete conversion of this heat into work were
accomplished, the entropy change for the surroundings would be zero;
hence the total entropy change would be that for the system alone. Thus
the entropy of the universe would fall, violating the second law. Actually,
regardless of the design of the system, if AS^ya is negative, an amount of
heat equal to — T ASaya must be used to increase the entropy of the sur
roundings. If the entropy of the system increases during a spontaneous
process, an extra quantity of work is obtained over that derived from AH.
The maximum energy, —AG, made available by a spontaneous process
for the operation of a heat engine or a battery is thus given hy T AS —
AH, the free energy released by the system.

An excellent example of this principle is provided by Carnot's ideal
heat engine discussed in Chap. 4. It is easily shown that the fraction,
/, of the heat energy extracted from the hot reservoir which can be con
verted to useful work is always less than unity. The net work done dur
ing a given cycle is the work performed on the surroundings during
expansion minus the work done on the system during compression.
Since the change in internal energy for a complete cycle must be zero,
the net work done must equal the net gain of heat energy, which is the
difference between the heat, qn, added from the hot reservoir during the

t In all cases which follow, the term free energy will refer to Gibbs free energy unless other
w i s e s t a t e d .
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isothermal expansion and that, qc, lost to the cold reservoir during the
compression, t

H e n c e

^ _ net work done _ qn — qch e a t e x t r a c t e d q n

= l - i 5
i a

However, since the entropy change per cycle must also be zero,

q n _ q c
V h ~ ¥ C

giving
. , T c T h — T c

Complete conversion of energy derived from the hot reservoir to useful
work can be accomplished only if the cold reservoir is at absolute zero.
For example, if Th is 400°K and Tc is 300®K, / will be 0.25. Thus for
each 100 units of heat energy removed from the hot reservoir, at least 75
must be lost to the cold reservoir. The useful work cannot exceed 25
units of energy.

This same result can be obtained by considering the entropy change
associated with short-circuiting the same quantity of heat from the hot
to the cold reservoir, with no attempt made to derive useful work. For
such a process the entropy change for the hot reservoir is

and for the cold reservoir.
L S h = ^

A S c =

t All thermodynamic arguments can be formulated in terms of thermodynamic variables.
In this case, qa and qc are equivalent to the enthalpy changes for the hot and cold reservoirs,
respectively (the exchange of heat is carried out at constant temperature and pressure for
the reservoirs). Since the classic treatment of Carnot cycles is always cast in terms of heat
exchange, in order to acquaint the reader with the traditional mode of presentation we shall
use heat exchange in this and the following examples.

If enthalpy change is used instead of the amount of heat exchanged, care must be taken
that the enthalpy change of the reservoir and not of the gas is used. In an isothermal
expansion the pressure of the gas obviously changes; however, enthalpy change can be
equated to heat exchange only for constant-pressure processes. Thus q is not equal to
AHgaa but is equal to A//reservoir, since the reservoir is maintained at constant pressure.
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The net entropy change for the universe will be

= qQr Th - Tc ^ q Th-Tc
T c T H T C T H

In terms of the free energy change for the cold reservoir,

AG = — Tc AiSuniv = — q
T h - T c

Further, since the enthalpy change for the cold reservoir, AH, is equal to q,

A G =
1 H

- A G = f A H

Again the negative of the change in free energy, —AG, is that portion of
the total heat energy made available by the system that can be used for
u s e f u l w o r k .

The change in free energy is also the amount of energy wasted during
unharnessed natural processes. The energy is wasted in the sense that
it generates more useless randomness rather than accomplishing useful
w o r k .

Now that we have shown that the most stable chemical configuration
is that leading to the lowest free energy for the system, it is of interest to
consider how this principle may be applied to chemical systems. The
question most frequently asked is as follows: If a mixture of x moles of
element A, y moles of element B, . . . , is confined at a temperature Ti
and a pressure Pi, in what chemical form will the atoms most stably
coexist? If free energies (at Ti, Pi) were available for all conceivable
combinations of the elements present, it would be possible to calculate
the relative free energies for all possible combinations of these elements
which would use up the available atoms and see which combination
yielded the lowest free energy. In essence this is what the chemist does.

Two practical problems immediately arise in connection with such
a procedure. First, absolute free energies cannot be measured for any
element or compound. The only measurable quantities are the differ
ences in free energy between chemical compounds. Second, tabulation
of free energies for all compounds at all conceivable combinations of
temperature and pressure would require tables of prohibitive bulk. The
first problem is solved by assigning arbitrary absolute free energies to 92
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w e h a v e

However, as shown in Chap. 4,

d E = T d S - P d V

a n d

yielding

(i). =
Hence, at constant temperature

d G = V d P

The free energy of any material rises with pressure in proportion to the
volume it occupies. If, as is the case for solids, V undergoes only very
small changes with pressure, then

Gp, = Gp, + V{P^ - Pi)

If Pi is the standard-state pressure, then for high pressures

P2 - Pi ^ P2
giving

C?P^(?std + PF

This result explains why those forms which occupy the smallest volume
eventually become stable as pressure rises.

For a gas, large changes in volume accompany pressure changes;
h e n c e

Gp.-Op, = f'jVdP
If the gas is ideal,

Gp,-Gp, = RTl̂;f = RTlr,̂^
Taking Pi to be 1 atm (i.e., standard conditions),

Gp = Gstd + PT In P
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compound which possesses residual entropy, this entropy must be added
to the calculated value for use in the dG = —S dT relationship.

Once entropy is known as a function of temperature, the variation of
free energy with temperature can be calculated from the relationship

Gt = (?8td - /298 S dT
We can conclude from the preceding discussion that in order to

predict the equilibrium configuration of a given system, we need the
following data for the compounds formed by ingredients of the system:

1. Their volumes at standard conditions (1 atm, 25®C) and a and ^ as a
function of T and P, which is the equation of state

2. Cp as a function of T and P
3. Their entropies at standard conditions (1 atm, 25°C)
4. Their free energies at standard conditions (1 atm, 25°C)

With this information the free energies of the various possible
chemical forms of the system can be compared at any P and T. The
assemblage yielding the lowest value for the total free energy is the stable
f o r m .

As was done for internal energy and enthalpy in Chap. 3 and for
entropy in Chap. 4, the variation of the free energies of calcite and

c - o c - 0 c - 0 c - 0

- 0 • c - o

c - 0 • 0 - 0

c - o - c - o - c - o - c - o

c - o - - c - o - o - c - - o - c

- 0 ■ 0 -

c - 0 - - c - 0 - - o - c - - c - 0 - - o - c

6 - c - c - 6 - - c - 6 - - 6 - C - - C - 0
c-6 -c-6 - - c- 6 -6-c - - 6- 6

Fig. 5.1. (a) Perfectly ordered crystal, (b)
Crystal with residual entropy due to random
o r i e n t a t i o n o f a t o m s .
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aragonite are calculated in Fig. 5.2. This is easily done by subtracting
T AS from AH. The most interesting result of this calculation is that the
sign of the free energy change is different at 5000 atm, 298®K than at the
other three sets of conditions. Aragonite replaces calcite as the stable
form under these conditions.

The ingredients in chemical reactions can be placed in two categories:
those whose free energy does not change during the course of the reaction
and those whose free energy does change. For example, during the
reaction of calcite to form aragonite the molar free energies of calcite
and of aragonite remain constant. On the other hand, if O2 gas and CO
react to form CO2 the molar free energies of the reactants fall as the reac
tion proceeds and that of CO2 rises.

In the first case it is possible for the reactant (calcite) to disappear
entirely. In the second case neither O2 nor CO2 will ever entirely disap
pear. Instead, a point will be reached when the free energy of the
reactants has fallen to a level where it equals the rising free energy of the

C A L C I T E
atm , 500* K AG ■4485—^ g ̂  ,qS ,500*K

A G - - 5 6 2 2

I atm,298-K ■ AG = -4470—298*K

A R A G O N I T E
I atm , 500*K — 5 X lo' otm ,500*K

A G - - 5 4 1 2 A G - 5 3 6 6

I a tm.298*K• K - AG --4142 5 X K)' atm ,298*K

C A L C I T E - A R A G O N I T E
I atm ,500- K A<AG)-297
A G » - 4 6 0

5X10' atm,500*K
AG =-163

A ( A G ) - - 2 I 0

I atm , 298* K
A G = - 2 5 0

A ( A G ) = - 3 2 B 5 X 1 0 a t m , 2 9 8 * K
AG = 78

Fig. 5.2. Free energy cycle for calcite-aragonite. All units are in
calories. Ttie changes in AG refer to the reaction aragonite —>
calcite. The free energies of formation at 1 atm and 298°K are
calcite: AG/° =—269,780 cal; aragonite: AG/® =—269,530 cal.
At standard conditions, AGroao" = —250 cal.



E Q U I L I B R I U M A N D I T S AT TA I N M E N T 111

product. From this point on, the concentrations of O2, CO, and CO2 will
not change. In problems involving reactants only of the first kind the
answer is of the "either-or" variety. At equilibrium either compound A
will be present or it will be absent.

If one or more of the compounds involved changes its molar free
energy during the course of the reaction, then the answer must be given
as an equilibrium constant which expresses those conditions under which
the free energy change for the reaction becomes zero. For the 200 +
O2 = 2CO2 reaction there is some fixed ratio of the square of the CO2
partial pressure divided by the product of the O2 partial pressure and the
square of the CO partial pressure for which equilibrium exists. Any
combination of these three pressures yielding this constant will constitute
a s tab le mix ture . Therefore

^ _ Pco,'~ 2
VCO^VOr

The constant K will change with temperature. Although at first glance
problems involving equilibrium constants do not appear to yield unique
solutions, as soon as the composition of the system is fixed (i.e., the num
ber of C and O2 atoms per unit volume) only one configuration can satisfy
both the equilibrium-constant and matter-conservation restrictions.

R A T E S

Thermodynamic equilibrium has not been established in many natural
systems. Reaction rates are too slow to produce the thermodynamically
stable mixture in the time available. If the predictions based on free
energy data are to be useful, we must have some criteria to judge under
what conditions rearrangement will go to completion.

Although reaction-rate theory is an extremely complex subject, one
very important generalization can be made. Equilibrium is generally
established for processes carried out at high temperature and rarely for
processes carried out at low temperature. The very strong temperature
dependence of reaction rates stems from the importance of energy bar
riers. Two main steps are necessary for all reactions: (1) The reactants
must be brought into proximity and (2) they must collide with sufficient
vigor to combine. In solids, for example, it is the mixing step which
generally limits the rate of reaction. The reactants can move through
the crystal only by molecular diffusion. In order to move from one
lattice site to another, a diffusing atom must shoulder aside the intervening
atoms. It can do so only if it has a kinetic energy greater than some
minimum value. An analogy is rolling a marble over a hill. In order to
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achieve this feat the marble must leave the valley with a kinetic energy at
least as great as the gravitational energy corresponding to that released
if the marble were dropped from the hilltop to the valley floor. A marble
with less than the critical energy would come to a halt and roll back
before reaching the crest. Similarly a diffusing atom is forced back to its
initial position unless it has more than the so-called barrier energy.

If the reactants are rapidly mixed, as is the case in a gas, the reaction
itself becomes the rate-limiting step. In order to react, two colliding
molecules must merge their outer electronic shells. Because of the
mutual repulsion between electrons, this merger requires an energetic
collision. In general, only a very small fraction of collisions between
molecules are sufficiently energetic to result in reaction.

Thus, regardless of which step in the reaction is rate-limiting, the rate
of reaction depends on the fraction of the molecules with energies in excess
of that of some energy barrier. As we shall see, this fraction rises rapidlj'
with temperature; hence reaction rates rise rapidly with temperature.

The fraction of molecules with an energy exceeding the barrier energy
can be calculated as follows: According to the Boltzmann distribution law,
the fraction of the molecules in an energy level is given by

^ exp (- Ej/RT)
S e x p ( - . E , / / 2 r )

where Ei is the energy of a mole of molecules in the given state. If the
energy states are closely spaced, then

- { \ / R T ) ^ x i p { - E i / R T )

2 exp (- E,/RT)
Thus the fraction of molecules with energies between E and E + dE is

i \ /RT )&x^ { - E /RT )dE

Integrating from the barrier energy to infinity, we get

C O =

/■" -1- (l/RT) exp i-E/RT) dE
JBb

— exp (— E/RT)

exp (— Eb/RT)
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Hence the fraction of the atoms with energies above the barrier energy,
Eb, is proportional to exp (— Eb/RT). If surmounting this barrier con
stitutes the rate-limiting step for the reaction, then the rate, A, must be
given by

4=fcexp(-̂ )
where k is the proportionality constant. In logarithmic form it states

, , , , E b II n = i n f c —
R T

Thus, when the log of the reaction rate is plotted against the reciprocal of
the absolute temperature, a straight line whose slope is —Eb/R should
result. This relationship was first proposed by Arrhenius in 1889.

When this relationship is used, the ratio of the reaction rate at tem
perature T + AT to the rate at temperature T is

Ar+AT _ exp [— Eb/R{T -j- AT)] _ /Eb AT\
A t ~ exp ( - Eb /RT) ~ \ RT ' )

With a typical barrier energy of 18,000 cal/mole, an increase in tempera
ture of 10 deg from 300 to 310°K would produce an increase in reaction
rate given by

A 3 1 0 . K / 1 8 , 0 0 0 1 0 \ .= exp I —— J = e' = 2.76
A B O C K \ 3 0 0 i 2 3 0 0 /

A temperature increase of 200 deg would raise the reaction rate by a
factor of an increase of about 1 billion times the 300''K rate. Figure
5.3 shows a plot of the factor by which the reaction rate is increased per
10-deg temperature increase as a function of Eb.

In deahng with the reaction mechanisms, the role of catalysts must
be considered. A catalyst is a substance which participates in a reaction
but is not consumed. By combining in the presence of a catalyst, the
reactants can merge more easily. In other words, by providing an alter
native path which has a lower activation energy, the catalyst increases the
r a t e o f t h e r e a c t i o n .

Consider the example given above. If the introduction of the
catalyst were to reduce the barrier energy by a factor of 2, the increase in
r e a c t i o n r a t e w o u l d b e

^ ^ exp [- 9000/(2 X 300)1 ^ / 9000 \ ^ ^ 3 3 „
iJi8.ooo exp (- 18,000/(2 X 300)] \.2 X 300/



Eq, (cal / mole)

Rg. 5.3. R{T + ^T)lR{T) as a function of barrier energy. A7' =
10 deg in both cases. The curves are labeled with the appropriate
values of the initial temperature.

In natural systems, living organisms provide the most important cata
lysts. Using enzymes (organic catalysts) they are able to carry out
reactions which normally would take place at negligible rates. With this
concept of energy barriers in mind, we will consider two examples.

REACTION BETWEEN TWO GASES

First let us consider the reaction between two gas molecules X and Y to
form a third molecule XY. It is assumed that the speed of the reaction is
equal to the number of collisions per second between reacting molecules
times the fraction of these collisions which are successful in producing
a r e a c t i o n .

The number of collisions per second in 1 cm® of gas involving one
molecule of X and one of Y can be shown to be

z =

where Yx and Yy are the number of molecules of X and Y per cubic
centimeter, dx and dy are their molecular diameters (in centimeters),
U 4
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M is their reduced mass [mxmy/(wix + wy)] in grams, k is the Boltzmann
constant, and T is the absolute temperature; the quantity "s/SkT/irfi is
the average speed of molecules of type X relative to molecules of type Y.
The mean collision cross section is given by

/dx + drY''v 2 )
since (dx + dy)/2 is the mean molecular diameter. The collision rate is
thus equal to the number of molecules of X times the number of molecules
of Y times their relative average speed times the average collision cross
section. For most reactions Z is of the order of 10" to 10*®.

Only a fraction of the collisions occurring in a gas are successful in
producing a reaction. This is because the energy associated with col
lisions depends on the kinetic energy of the molecules involved. Since
the molecular kinetic energies follow a Boltzmann distribution law, the
collision energies must have a similar distribution. In order to combine,
the collision energy of X and Y must be at least £Jb. This requirement is
shown schematically in Fig. 5.4. The number of XY molecules formed
per unit time, dNxY/dt, is given by

d N x Y ^ ( E a \

This is also the rate of disappearance of X and Y. This rate may be
converted into units of moles per liter of substance reacting per second.

Fig. 5.4. Schemat ic d iagram
showing the energy changes
taking place during a reaction.
I n o r d e r f o r t h e r e a c t a n t s t o
combine, they must collide with
sufficient energy to overcome
the barrier energy, EB = Ea —
Er.
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The number of moles per liter of X, Cx, is given by iNx/No)10^, where
iVo is Avogadro's number. Thus

d N x N o d C x
dt ~ 103 dt

The rate law for our hypothetical reaction is

~ = k C x C y
d t

S i n c e

1 n 1 N X N Y 1 0 ® r y / N B \

we can so l ve fo r k :

N o ^
iVx.VylO' ®'''' \ Rt)

Substituting for Z,

, TrAo/dx + dyV

It is easily seen that, since the collision rate, Z, varies as the square root
of T, its contribution to the increase of reaction rate with temperature is
negligible.

R E A C T I O N T A K I N G P L A C E W I T H I N A S O L I D

Although often exceedingly slow, the random diffusive mixing of atoms
and molecules takes place in all materials. Where chemical gradients
exist, this process can lead to net transport of constituents and hence can
promote chemical reactions. Thus, where all other mechanisms of mixing
fail, diffusion can always be called on. Its rate provides a minimum
estimate for any process. Thus it is of considerable importance to under
stand how diffusion operates.

As convective motion almost always dominates molecular diffusion
in liquids and gases, we will confine our discussion to solids. Just as
the game of checkers would become impossible if all the squares were
occupied, so diffusion would not take place in a perfect solid. Unoc
cupied positions must be available if movement is to be possible. All
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sol ids contain such vacant sites. These so-called defects can arise in
many ways. Simple thermal agitation causes the volume of the solid to
be slightly greater than the ideal volume by forcing atoms onto the sur
face. This leads to more available sites than atoms, resulting in unoc
cupied positions. Chemical substitution of a doubly charged cation for
two singly charged cations leads to a hole. The former is an example of
a nonpermanent hole (all such holes would disappear at absolute zero)
and the latter, of a permanent hole (their number remains constant with
temperature). Since the generation of a thermally induced hole requires
a certain energy, e//, the number will be proportional to the number of
atoms with energies more than €//. Thus the total number of defects
w i l l b e

Ntot = Npetm + A exp

o r

^tot ~ ^perm ~l~ A OXp

Obviously the rate of diffusion will depend on the number of holes
a v a i l a b l e .

The next problem is to define the probability that any given atom
adjacent to a hole will make the jump from its lattice site into the vacant
position. The atom can move only if by chance it achieves a high
enough energy to force its way between the intervening atoms. The
probability, p, of a successful jump is then given by the product of the
number of attempts, B, per unit time by the atoms present (the vibration
rate, C, times the number of holes) and the fractions of the atoms with
a sufficiently high energy to shoulder aside the atoms which partially
block the path to the hole:

p = B exp (-̂) = B exp (-fi)
Since B is given by

B = C iVperm + A eXp

we get

/ E s \ , ( E n ^ E „ \V = e x p e x p ^ J
( E b \ , / E B + E H \= mexp(̂ --j + „exp(̂

V BT)
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]Buoijo9Jipiun B oj pB9i UBO ssooojd uiopuBj B qous A\oq jopisuoo 'jsnui
9A\ 'S9|0q o-jui durnf S0ino9{oui qoiqAv ̂^b 0JBj oqj pgqsqqBijso Suiabjj

6TI iNHWNiviiv sii ONV wfiiaaninOa



•uoissnosjp JOi JX91 005 -MBI UOIS
-n«!p 01|1 0AU0P oj P0sn |0pouj 3u;0UJO03 -g g -ay

z

7^^ _ = Y—^ \/e/ xje) \nie)
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But we know from Pick's law that

(S),-(S),
This means that the change in concentration of the diffusing species with
time at any given point is proportional to the second derivative of con
centration with respect to distance at the time of interest.

The diffusion coefficient, D, is proportional to the probability of an
atom moving into a vacancy. Hence

where in the low-temperature range Ed is the barrier energy and in the
high-temperature range is the sum of the barrier energy and the energy
required to generate a hole.

No general solution can be given for the diffusion equation since the
solution depends on the boundary conditions. This difficulty can be
overcome as follows: In the one-dimensional case (material homogeneous
in the y and z directions, gradient along x only) the diffusing material can
be treated as a large series of planar units each of width dx. The
diffusion of material away from each of these planes can be treated sep
arately. The concentration of diffusing material at any given distance,
X, and time, t, can then be obtained by summing the contributions of
material diffused to x from each of the planar units.

Let us first consider the distribution of material diffusing away from
one such plane. If the coordinate of the plane is taken to be zero, the
concentration of diffusing material as a function of x and t will be

That this is a solution of the differential equation can be shown as follows:

a n d s o

T h u s
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Taking the derivative of the solution with respect to t,

( d C \ 1 6 / \ h x ^ / x ^ \\ T t ) . = - i i i i " m )
and the first and second derivatives with respect to x,

/ a C \ b - 2 x ( a : 2 \
\ dx/t -y/t 4:Dt \ 4:Dt)
1 6 / x ^ \ , b x ^ ( x ^ \

proving that our solution is valid.
The constant of integration, 6, can be evaluated by noting that

M = C d x

which states that the sum of all the diffused material must equal the
amount, M, on the plane initially. Substituting for C,

S O U R C E

Fig. 5.7. Schematic diffusion diagram showing the concen
tration of a substance diffusing from a plane as a function
of distance from the plane for various times after the start
of diffusion, h < <.< U.

a n d

W / .
H e n c e
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Hence the time required for the maximum to be reached is proportional
to the square of the distance and inversely proportional to the value of
the diffusion constant. If at room temperature D = 1 X IQ-^s cmVsec,
then 10^' years will be required for the maximum to be achieved at a
distance of ^ mm and 10^® years for a distance of 1 cm. If the value of
Ed is 20,000 cal/mole, the diffusion rate will rise initially by the factor
given in Fig. 5.3 for each 10°C. As the temperature becomes higher, the
gain in diffusion rate for a 10-deg temperature increase becomes smaller.
At 425°C, 10^ years would pass before the concentration reached its
maximum at 1 cm. At 625®C, the time would be 5 X 10® years.

Beyond this elementary treatment, the ramifications of diffusion
problems become endless. Solutions of the diffusion equation have been
worked out for many different geometries. For some problems the
appropriate geometry is a sphere; for others, cylinders are useful; for
still others, the infinite-slab solution is applicable. Fortunately, the
solutions for different geometries and initial conditions are available in
specialized books.

R A T E L A W S A N D R E A C T I O N O R D E R

Experimental studies of reaction rates all take the same general form.
The reaction is carried out in the laboratory at a fixed temperature and
pressure. A known quantity of reactants is mixed, and the concentra
tions of reactants and/or products are measured (by following the change
in some property of the system) at appropriate intervals of time. This
gives the basic data of rate studies, the change in concentration of a
given species with time. The experiment is then repeated at a series of
different temperatures and pressures. From these data one attempts to
determine the order of the reaction.

The order of a reaction is defined as the sum of the exponents in the
rate law. For the reaction A + B —C the rate law would take the form

d C— = kp[A - CJ-IB - C]"

This equation states that the increase in concentration of C with time
(dC/dt) is equal to a constant, kp, times the instantaneous concentration
of A (which is A — C) raised to the 7/ith power times the instantaneous
concentration of B (given by B — C) raised to the 7ith power. The
subscript P generally indicates the order of the reaction, which is m + n.
The constants, m and n, may be any number, including fractions. A
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negative exponent indicates that a substance retards the reaction. The
exponent may also be zero; in this case the reaction is independent of the
concentration of that species. It is important to realize that the stoichio
metric equation for a reaction generally gives no clue to its rate law.
The rate-law exponents may be the same as the stoichiometric coef
ficients, but this is by no means necessarily, or even generally, true.
The only case where rate-law exponents may be deduced from stoichi-
ometry is for reactions which take place in one step. This would be true
for a gaseous reaction which occurred as the result of a single collision.

A few examples will help to clarify the concepts of reaction order and
rate laws. A process of considerable significance in geologic systems is
the spontaneous decay of naturally occurring radioactive isotopes. The
decay of any radioactive nuclide is a first-order process. It depends only
on the amount of the radioactive substance present. For the decay of
U238 to Th"*, the rate law is

dNxstu ^
: — = X A u i J s

d t

where N is the number of nuclei present and X is the decay constant
(i.e., rate constant) for decay. Since the first power of N appears in
the equation, the reaction is first order.

The decomposition of NO2 follows the reaction

2 N O 2 2 N 0 - f - O 2

The experimental rate law is

d[N02]
d t

= u m ,

T h u s t h e r e a c t i o n i s s e c o n d o r d e r.
The photodecomposition of O3 is an important process in shielding

the earth f rom harmful ul t raviolet radiat ion. The react ion is

2 O 3 3 O 2

The experimental rate law is
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i n i t i a l v a l u e . W h e n

^ _ 1
No ~ 2

In I = —
In 2 = X/}

o r

0 . 6 9 3

For X = 1.54 X IQ-^" year-i and /j = 4.51 X 10» years.
Similar equations hold for any first-order process. If we have

experimental rate data for a chemical reaction and wish to test whether
the reaction is first order, we would plot the logarithm of the instantane
ous concentration of the reactive species versus time. If this plot gives
a straight line of negative slope, the reaction is first order with respect
to that species.

Second- and higher-order rate law^s may be integrated in an analogous
fashion; however, the mathematics becomes considerably more cumber
some. Once the integrated rate law is obtained, the appropriate con
centration expression can be plotted against time to determine the order
of any reaction.

P R O B L E M S

5.1 One mole of Ar at 7" = 300°K, P = 1 atm is mixed with 2 moles of
Ne at T = 400®K, P = 1 atm. No heat is allowed to escape to the
surroundings. If the gases are assumed to be ideal, what are the entropy
and free energy changes for this process?

5.2 Using the data given in Fig. 5.2 and Table 3.6, calculate the free
energy change for the reaction calcite aragonite at T = 400®K,
P = 1 kbar and for T = 400®K, P = 10 kbars.

5 . 3 H a n s o n a n d G a s t h a v e s h o w n t h a t A r d i f f u s e s f r o m b i o t i t e w i t h a n
activation energy of approximately 50 kcal/mole for volume diffusion.
If Do = 1 X 10® cm^/sec, calculate D for T = 100, 200, 300, and 400®C.

5.4 A z i rcon conta ins 100 ppm of U = 137.8) and 100 ppm
of Pb^®®. No Pb''®^ is present. What is the age of the zircon? How
would your answer change if 1 ppm of Pb'^®^ were present?
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*5.5 A globigerina ooze mth uniform sedimentation rate has a C /̂C'̂
ratio at a depth of 30 cm equal to 0,125 that at its top. If Th^yu^^s =
44, Ra"VU"8 = 0.25, and = 1.00 (all in terms of activity)
at the top of the core, what will these ratios be at a depth of 150 cm?

5.6 A simplified model of gas exchange between air and water assumes
that the main barrier to gas transfer is a stagnant water film at the inter
face through which gases pass only by molecular diffusion. The air
above and the water below this film are assumed to be uniformly mixed.
The thickness of the film is inversely related to the wind stress on the
w a t e r s u r f a c e .

Let us consider the oxygen balance in a stream of mean depth
100 cm. In this stream the consumption of O2 by animal life exceeds
the production by plants so that a net consumption of 10 moles of O2
per cubic meter per year occurs. If the udnd stress on this stream is
such that the boundary layer is 50 microns thick, what is the degree of
O2 saturation ([O2] stream/apo, air) at steady state? The solubility of
O2 in the stream water is 1.4 moles/m®-atm, and the partial pressure
of O2 in the air is 0.2 atm. The diffusion constant for O2 in water is
1 X 10~® cmVsec at the stream temperature.

5.7 Strontium 90, a product of nuclear testing, has been largely trans
ferred by rainfall from the atmosphere to the surface of the earth. That
portion reaching the oceans remains in dissolved form. If vertical mixing
in the surface oceans is accomplished by the diffusion of turbulent eddies,
it should be possible to determine the appropriate diffusion constant
from the extent to which vertical mixing of Sr®° has taken place. If as
of 1970 it is found that the mean depth of penetration is 200 m, taking
the mean deposition date to be 1960, what is the diffusion constant?
Sr®° has a half-life of 30 years for radioactive decay. How will the
decrease in abundance of Sr®° in the upper 200 m of surface water between
1970 and 2000, resulting from downward mixing, compare with the
decrease due to radioactive decay during this time?
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Equilibria involving gases are important in many natural systems. The
compositions of the planetary atmospheres depend on the proportions
of the chemical elements present and on the reactions which they undergo.
In magmatic processes a gaseous phase is often important, particularly
in the late stages of differentiated intrusions. In metamorphic processes
a gaseous phase may provide the medium for transporting chemical
species.

Reactions among gases could be discussed entirely in terms of the
Gibbs free energy. However, it is useful to use instead the concept of
chemical potential. For a pure substance the standard chemical poten
tial, m®(298), is the Gibbs free energ>* at standard conditions (1 atm,
298®K) per mole of substance. We will first discuss the properties of
the chemical potential and other partial molal variables and then use the
concept of chemical potential to discuss equilibria in ideal gaseous mix
tures. Finally, we will consider the problems of treating equilibria
involving real gases which do not follow the ideal gas law.

1 3 0
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T H E C H E M I C A L P O T E N T I A L

The chemical potential, n, of a pure substance is defined as the change
in free energy of the substance as the number of moles, «, of substance
is changed. Thus

\ d n / r . p

For a pure substance, n is merely the Gibbs free energy per mole.
This definition may seem unnecessary. However, it allows us to extend
the concept of free energy to mixtures. For substance i in a multicom-
ponent system the chemical potential, is given by

= (f)
\oW,/r,P.n,

where G is the total free energy of the mixture, ??,• is the number of moles
of substance i, and the subscript indicates that the amount of all
other substances in the system remains constant.

In addition to chemical potential, a whole group of special quantities
are defined for problems involving mixtures. These variables are called
■partial inolal quantities. For example, the partial molal volume of sub
stance i in a mixture is defined by

\dni/T.P,nf
In general, for any variable X, the partial molal X of species i is

= (?)
XdUi/T.P.nj

Partial molal quantities have the convenient property that they may
be summed to give the total value of the variable for the system. Thus
the total volume, V, is equal to the sum of the partial molal volumes
multiplied by the appropriate number of moles of each substance:

V = Sn.-Ff

The partial molal volume of such a substance is also the response of the
total system to a change in the amount of this substance alone. It
should be noted that the partial molal volume need not bear any direct
relationship to the molar volume of the pure substance. In some cases.
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the partial molal volume of real gases may actually be negative; however,
for the special case of ideal gases the partial molal volume is identical
t o t h e m o l a r v o l u m e .

The chemical potential was defined in such a way that it is also the
partial molal free energy. This allows us to write the variation in total
free energy of a mixture as

d G = - S d T + V d P S m . - d r i i

It is a theorem of calculus that crossed partial derivatives are equal.
We may thus find the variation of the chemical potential with tempera
ture and pressure:

( ' j h \ = ^
\dP/T,ni,nj \dni/T,P,nj

( d j ^ \ ^ ^ _ o .
\ d T / p , n i . n i \ d n i / T, P, n i

It is interesting to note that the variation in chemical potential for a
single member of a mixture (despite any nonideality) is analogous to the
variation of free energy for a pure substance.

EQUILIBRIA INVOLVING IDEAL GASES

We have shown in Chap. 5 that the free energy of a substance at any
temperature and pressure can be expressed in terms of a standard fre
energy plus terms representing the variation of free energy with tempera
ture and pressure:

G{T,P) = G îl atm, 298°K) - T S dT-\- T V dP
J 2 v o J I

F o r a n i d e a l g a s t h e l a s t t e r m b e c o m e s 

V d P = R T I n P 
The chemical potential of a pure substance is its Gibbs free energy per 
m o l e . H e n c e

f^(T,P) = a t m , 2 9 8 ° K )
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The first two terms on the right-hand side of this equation are combined
to give a standard chemical potential, It should be noted that
the standard chemical potential is a function of temperature, whereas
the standard free energy is defined for a single specific temperature. The
final result for the chemical potential of an ideal gas is

j u ( T , P ) = R T I n P

Before a chemical reaction can occur, the reactants must become
intimately mixed. For this reason we must concern ourselves with
gaseous mixtures. Ideal gases may be components in ideal gaseous mix
tures. Each gas in the mixture will be characterized by a partial pres
sure, Pi. Since ideal gases undergo no intermolecular collisions, each
gas will exert a pressure which will not depend on the other gases in the
mixture. We may thus use the ideal gas law for each component
separately:

R T
P i = n o

where rii is the number of moles of i and V is the total volume. For the
whole system

where P is the total pressure and N the total number of moles of gas.
Combining the above two relations,

f ' - f f

The quantity iii/N is the mole fraction, Xi, of substance i in the mixture:

Pi = XiP

For each gas in the mixture

a n d h e n c e
/ i i = + RT In P i

Hi = n°i +RT In Xi -\-RT\nP

Since is a function only of temperature (and hence independent of
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composition), we may evaluate fi° when X,- = 1. Under these conditions
i is a pure gas, and /x® must be /x® for the pure gas.

We now have the necessary tools to solve problems involving mix
tures of ideal gases. An example will best illustrate the nature of such
problems. Consider the reaction of nitrogen with hydrogen to give
a m m o n i a :

Na -f- 3H2 ^ 2NH3

The double arrows indicate that the reaction may proceed in either direc
tion. The total free energy of the system is

G = nNjMN, + + WNH,/^NH,

Using the expression above for /x,

G = nNjMNs "I" + ^nHjMnh, + RT(ntit + wh, + In P

+ RT(nNj In Xnj + wh. In Xh, + nNH, In Xnh,)

Let us assume that the reaction was started by mixing some H2 gas with
N2 gas. The number of moles of NH3 present at any later time will be
equal to twice the number of moles of N2 which have disappeared. We
can then calculate the total free energy of any mixture of the three gases.
The minimum value found for G will correspond to the equilibrium con
centrations of the three gases. We could carry out this calculation for
any initial amounts of H2 and N2, but to simplify the arithmetic we will
a s s u m e t h a t

Whi = 3 moles
= 1 m o l e

i n t h e i n i t i a l m i x t u r e . T h u s

WHJ = 3wnj

wnh, = 2(1 — WN,)

at any time, since for every N2 molecule which disappears, two NH3
molecules are formed and three H2 molecules disappear. Substituting
in the expression for G,

G = WN,MN, + 3nN,MH, + 2(1 — WN,)/xnh,
-}- jRT[nN, + 3nN, + 2(1 — wn,)] In P

-|- i2r[nNi In Xn, + 3nN, In Xh, 2(1 — riN,) In Xnh,]
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T h e m o l e f r a c t i o n s a r e

Xn, = /'Nj + 3«N2 + 2(1 — «N,) 2(1 + 7lyi^)

X u , =

Z v H . =

2(1 + nN.)
1 - Mn,
1 +

G = WN,(MN, + 3MH, — 2;znh,) + 2MNH, + /27'(2 + 271Nj) In -P

+ «?■ ["N, In 3«.n. InL 2 ( 1 + W N , ) 2 ( 1 + n N , )

+ 2(1 — Wnj) In
1 - Wn/
1 + ?iN,.

Setting the total pressure P = 1 atm and combining terms in the final
bracket, we have

G = - 2 M ? , h , ) + 2 M ^ H .

-j- PP[3nN, In 3 -j- 47iMj In ?in, — 2(1 -f- ?inj) In 2(1 -|- 71n,)
+ 2(1 - wn^) In 2(1 - Wn.)]

The terms each have a definite physical meaning. Thus 2^inh, is the
free energy of a system consisting only of NH3. The term nN,(iUNj +
3/xhj — 2iUNH,) is equal to for the reaction. The final term

9/1T'., 1 + 1 +2 ( 1 + n x , ) 2 ( 1 + 7 1 N , ) 1 + W N J

is the free energy of mixing the three gases together. This term is zero
only if pure NH3 is present \\ithout any N2 or H2. For all other cases
this term is negative. This is because entropy increases when the gases
are mixed, and thus free energy decreases. It is the free energy of mixing
which causes a mixture of three gases to have a lower free energy than
the product NH3 alone.

Figure 6.1 shows the variation of G as the reaction proceeds.
The free energy of the system is a minimum when tin, = 0.03 mole,
wh, = 0.09 mole, and 7?nh, = 1.94 moles.
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For the NH3 reaction we have

2».hh. - Mn. - = - f t r In
Ph.'PN,

The term is simply A(r® for the reaction carried out at tempera
ture T. The product of partial pressures is defined to be the equilibrium
constant, Kp. Hence

AG" = -RT In Kp
a n d

(- ©
This expression allows us to calculate equilibrium constants from tabu
lated values of the free energy of reactants and products.

Since is a function only of temperature, Kp must also be a function
only of temperature and is independent of the total pressure of the system.
(This statement is strictly true only for gases which follow the ideal gas
law.)

The temperature dependence of Kp can be found as follows:

G = H - T S
B u t

T h u s

a n d

^ ^ _ iT2 J>2 rp \dT/p,„^
B u t

d ( G / T ) ^ ^
d T T d T T 2

T h u s

d{G/T) _ _H
d T ~

The change in In Kp with temperature is

d l n K p 1 d ( A G y T )
d T ~ R d T
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H e n c e
d In Kp AH"

d T ~ R T ^

This equation may also be written

d i n K p A H "
d { l / T ) ~ R

If the In Kp is plotted against 1/T, & straight line mth slope —AH"/R
results. For reactions where the concentrations of species present at
equilibrium can be measured, this method is used to determine experi
mentally the enthalpy of reaction.

EQUILIBRIUM INVOLVING MANY GASES

The gases Hz, HzO, CHiCmethane), CO, CO2, N2, and NH3 are present
in many planetary atmospheres. An understanding of the equilibria
involving these gases will aid us in investigating atmospheric properties.
Many chemical reactions may be written relating the gases listed above;
however, if it is assumed no other compounds can form, only three of
these equations will be linearly independent. One set of three equations
i s

( 1 ) 4 H 2 + C O 2 C H 4 + 2 H 2 O
( 2 ) H 2 + C O 2 H 2 O + C O
( 3 ) 3 H 2 + N 2 ; : ± 2 N H 3

The equilibrium constants for these reactions at T = 298°K are

K i = = 6 X 1 0 » 9
PcOtPHt

= PMPS^ = 9.7 X 10<
PHtPCOt

K z = = 6 . 1 7 X 1 0 ®

We have three equations and seven unknown concentrations. The other
four equations necessary to completely specify the system are mass-
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balance requirements. They are

(4)' Total N = wn = 2nNj + wnh,
(5)' Total H = fiH = 4ncH4 + + 2nHjO + 3mnh,
(b)' Total 0 = no = WHjO ~I~ nco + 2nco,
(7)' Total C = nc = ncHi + nco + ^icoi

Since we are assuming all the gases to be ideal, we may express the mass
balance in terms of partial pressures:

(4) N : 2pN, + PNH, = c o n s t

(5) H : 4pCH4 + 2pH, + 2PH2O + 3pNH, = c o n s t

(6) 0 : Ph,o + Pco + 2pco, = c o n s t

(7) C : PCH4 + Pco + Pco, — • c o n s t

In order to proceed we must specify the temperature, total pressure, and
starting mixture of gases. Let the total pressure = 1 atm. The start
ing mixture will consist of CH4, H2O, CO, and NHg, with

Pco = 0.1 atm

PcH; = 0.1 atm

Pnh, = 0.4 atm

Ph,o = 0.4 atm

We can now calculate the concentration of each gas in the final mixture.
The mass-balance equations become

2pNi + pNH, = 0.4 atm

4pcH4 + 2pHt + 2pH,o + 3pNH, = 2.4 atm

Ph,o + Pco + 2pco, = 0.5 atm

PCH4 + Pco + Pco, = 0.2 atm

Now we have seven simultaneous equations in seven unknowns. There
are rather intricate methods for solving a system of seven equations, but
it is at best a grizzly task. A great deal of effort can be avoided by
applying a bit of common sense and intuition. Since iCi is so large, let
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US assume that essentially all the C is present as CH4 and essentially all
the O2 as H2O. Thus

pcH, = 0.2 atm

PhjO = 0.5 atm

Assuming pn to be negligible,

Pnh, = i(2.4 atm - 2pH,o - 4pchJ
= i(2.4 - 1.0 - 0.8)

= 0 . 2 a t m

Then pw, follows immediately:

7>n, = i(0.4 atm — Pnh,)
= 0 . 1 a t m

We may now check our assumptions by calculating the amounts of H2,
CO, and CO2 from the equilibrium constants:

PH.'pN, PH.^O.I)

Ph,' = 6.48 X 10-

Ph, = 4.0 X 10-3

The CO2 content is calculated from Ki i

= 6 . 1 7 X 1 0 ®

Pch.PH,O' ^ (0.2)(0.5)'̂
PcojpH,'* Poo,(4.0 X 10-3)4

pco, = 3.26 X 10-12

= 6 X 1013

The final CO concentration, pco, may be calculated from K^:

P h , o P c o ( 0 . 5 ) p c o
PHjico, ~ (4.0 X 10-3)(3.26 X lO'î )

pco = 2.53 X 10-3

= 9 . 7 X 1 0 4

Our original guesses concerning the major components are entirely
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justified. The final mixture will contain

PcHi = 0.2 atm

Ph,o = 0.5 atm

Pnh, = 0.2 atm

Pn, = 0.1 atm

Ph, = 4.0 X 10"' atm

Poo, = 3.26 X 10"'^ atm

pco = 2.53 X 10-9 atm

NONIDEAL GASES

The behavior of real gases can be approximated for low pressures by the
ideal gas law, but as the pressure increases real gases become more and
more nonideal. The accuracy of equilibrium calculations involving
water vapor at 50 atm is seriously impaired if ideal gas behavior is
assumed. Problems encountered in igneous and metamorphic petrology
require accurate calculations of equilibria involving gases such as CO2
and H2O at high pressures. To treat such systems we must use the
concept of fugacity.

The fugacity, or escaping tendency, of a gas is defined by the equation

H = R T l n f

where n is the chemical potential of the pure gas at temperature T and
pressure P, n° is the chemical potential of the pure gas at temperature T
when / = 1, and f is the fugacity.

To relate fugacity to pressure we require that

|-^1 as P->0
so that the fugacity equals the pressure under conditions where the gas
behaves ideally.

For this relationship to be useful, we must be able to calculate the
fugacity from either experimental data or an equation of state. This
may be done as follows: At constant temperature

dfi = VdP
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Let Vi = volume of gas when P = 1. Then

J Vi

The symbols outside the brackets mean that the expression is evaluated
at Vp and at Fi. The desired result (In/) is the value at Vp minus the
value at Fi.

We have used this expression to calculate the fugacity of water
vapor at 400°C (673®K) at pressures up to 200 atm. The results are
given in Table 6.1. (We have tabulated//p, which is called the activity

TA B L E 6 . 1

Activity Coefficient for Water Vapor at 400°C
Volume, Pressure, f / p

l i t e r s a t m (calculated)

2 0 2 . 7 5 0 . 9 9 2 6
5 1 0 . 8 8 0 . 9 8 3
2 2 6 . 6 5 0 . 9 6 4
1 5 1 . 4 3 0 . 9 3 3
0 . 8 6 3 . 1 3 0 . 9 1 8
0 . 6 8 1 . 6 4 0 . 8 9 7

' ^ 0 . 5 9 8 . 7 0 . 8 7 6
0 . 4 11 5 . 0 0 . 8 5 6
0 . 3 143 .7 0 . 8 2 1
0 . 2 1 8 8 . 0 0 . 7 6 3
0 . 1 8 1 9 9 . 3 0 . 7 5 1

(measured)

t Data from W. T. Holser, J. Phya. Chcm., 68: 310 (1954).

coefficient.) Experimental values at 100 and 200 bars taken from tiie
data of Holser are shown. Since 1 bar = 0.9SG9 atm, the.se points cor
respond to 98./ and 197.9 atm. At 99 atm the agreement is almost
perfect; at 198 atm an error of only 1̂  percent would result from using
the calculated values. Above 200 atm the error would continue to
increase, and so at very high pre.ssures experimental values must be used.
It should be noted that the deviation from ideality for water is already
7 percent at 50 atm. T his could produce large errors in calculating tiic
equilibrium composition of a mixture containing H2O at 50 atm.
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MIXTURES OF NONIDEAL GASES

The fugacity of a nonideal gas in a mixture can be defined in a manner
analogous to that for pure nonideal gas. The chemical potential of the
gas in a mixture is defined as

M t = + RT I n / ,

The quantity is the chemical potential of pure gas, at unit fugacity.
S i n c e

dm = ?i dP

where T, is the partial molal volume of i and

dm = RT d\nfi
w e h a v e

RT d X n fi = F. d P

Subtracting RT d\n pi from both sides,

RT d In/, - RT din. pi = 7, dP - RT d In pi

But pi = XiP, and since the mole fraction, X„ of i is constant

din Pi = dIn P
T h u s

RTdliJ-̂  = {Vi - ̂pjdP
a n d

Under certain conditions the fugacities of real gases follow a law
similar to the law of partial pressures. This law was first postulated by
G. N. Lewis and M. Randall and is known as Lewis and Randall's rule.
It states that the fugacity of i in a mixture equals the fugacity of pure i
at the same temperature and total pressure multiplied by the mole frac
t i o n o f i i n t h e m i x t u r e . T h u s

Ji (at T,XiP) = Xif, (at T,P)

The physical requirement for gases to follow this rule is that the chief
source of nonideality must stem from interaction between like molecules
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oouĵ oiqiĵs 0Ai?q ig put? 'zjj '̂N 'O 'S '̂0 M^ns s^uauiaia 'jqgq jiijoAog

seseijcj BufisjxsoQ
U33M)3q S8dO).OS|

aoBjj. io uo!).nqij).s|aU8Aes J



D I S TA N C E O F S E PA R AT I O N

Fig. 7.1. Schematic diagram showing the relat ionship
between the zero-point energy and molecular mass for
hydrogen (H2), deuterium (D2), and HD. The fundamental
vibration frequencies are H2: 4405 cm-', HD: 3817 cm-', D2:
3119 cm-'. The zero-point energy of H2 is greater than that
for HD which is greater than that for D2.

In addition to equilibrium fractionations, other kinetic separations
may also occur. For example, in a gas the molecules containing the light
isotope move more rapidly than those with the heavy isotope. This
velocity difference leads to isotope separation during diffusion.

Variations in the isotopic composition of the elements in natural
materials result from both equilibrium and kinetic fractionations. In
this chapter we will discuss the calculation of equilibrium-fractionation
factors. Kinetic fractionation, which can be derived only from measure
ments on natural systems, will be discussed only briefly.

EQUILIBRIUM FRACTIONATION FOR REACTIONS
I N V O L V I N G D I A T O M I C G A S E S

In order to understand the nature of equilibrium isotopic separations,
let us consider an example. Two moles of carbon monoxide gas, CO, are
equilibrated with 1 mole of oxygen gas, O2. Assume that no chemical
reaction takes place between the two molecular species and that the trace
amount of 0^® present (1 atom in 500) achieves an equilibrium distri
bution between the two molecular types. A separation constant, a, can

1 5 1
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[9I09I0][8T08I0] _ J
sfgiOsiO] ^

pU'B
[siOOjfgiOsiO] _ J
[siOOJUiOsiO]

:sA\o[ioj SB 8JB s:jub:)suoo uinTjqipnb0 sqx

81O91OS = 91O91O + siOsiO
pUB

91O91O + 81OO = 9x08x0 + 9X00

:suoi(jOB0j oidoijGSi SuiAvopoj 0q̂^ joj s(̂uB̂JSuoo
uinuqiimb0 0q(j .Cq p0!jB[0j 0jb S0io8ds 0AIJ 0S0qf̂ jo suoîb̂j!̂u0ouod 0qx
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and, rearranging terms,

a = 2 K i
2[0160^®] + [016018]

2[016016] + (4/ii:2)([0160l8])

The value of K2 vill turn out to be almost exactly 4 at all temperatures
(to be proved below); hence the separation factor is equal to twice the
equilibrium constant for the isotopic reaction between CO and O2 (that is,
a = 2Kx).

The problem is then to establish this equilibrium constant. As for
all reactions at equilibrium, the free energy of the reactants must equal
the free energy of the products:

AG = 0 = Go»o'» H" Gco>» — Go>90" Gco>«

The free energy for each gas can be written

G{T,P) = G^iT) + RT\nv

Using this relationship.

A G ° = - R T \ n P0'>0>»PC0"

P0i>0'»PC0"

Since the isotopic reaction does not alter the number of molecules present,
concentrations can be directly substituted for partial pressures:

,^0 [0^«016][C018]

Solving for Ki,

Ki — exp ( - ©
The next step is to determine the free energies for the isotopic

species. As always,

A G = A Z ^ - T A S

Since there is no volume change in connection with isotopic reactions, the
enthalpy change, AiZ, must be the same as the internal-energy change,
A & . T h u s

A G = A E - T A S
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In Chap. 4 we showed from statistical mechanics that

S = ̂  + Rluq
H e n c e

T A S = A E R T l n
5o"o '«?co '«

Final ly

A ( ; ° =
\?o"o'«3co'v r

The equilibrium constant becomes

The subscript T indicates that the equilibrium constant holds only for
the specific temperature used in the calculation. This is because the
partition functions vary mth temperature. Since

_ eQ 3trans ̂  Qrot Qvib

we can calculate separately the fractionations due to translation, rotation,
a n d v i b r a t i o n .

TRANSLATIONAL COMPONENT

As shown in Chap. 4, the partition function for translation is given by

/ 2 ^ f c n i ,

Thus, since V is the same for each species,

/gC0"\ _ /
\ ? C 0 ' V t r a n s \ ? W c 0 > « / \ 2 8 /

(go'«o'*\ _ /wioi«o»*Y _ ̂^̂Y? 0 " 0 « V t r a n s \ m o i « O u / \ 3 4 /
F ina l ly

i ^ ^ t r a n s = ( f f I D * = = 1 . 0 1 2 6
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Were the difference in translational energy modes the only source of
fractionation, the trace isotope O'® would be 13 per mil more abundant
in the CO (the light molecule) than in the O2 (the heavier molecule).
This fractionation would not change with temperature.

ROTATIONAL COMPONENT

For rotation the partition function is given by

SirW^kT

Thus, since the QieQi® and bond lengths are identical,
/ gpupuN _ 1 M0"0'«
Vgpupis/rot 2 jUpupJS

_ 1 (16 X 16)/(16 + 16) ̂ 117~ 2 (16 X 18)/(16 + 18) 2 18

The factor of ̂  is necessary because symmetric molecules have only half
the rotational modes of asymmetric molecules. This factor of | cancels
the factor of 2 in the relationship a = 2Ki.

For CO,

(qcoA ^ ^ (12 X 18)7(12 + 18) _ ^
\9co"Aot Mcou (12 X 16)/(12 + 16) 20

T h u s

/^rot = ^f^H = iii# = i(0.9916)

Were the difference in the rotational energy modes the only source of
fractionation, would be 8 per mil more abundant in the O2 than in the
CO. Again, the fractionation does not depend on temperature.

Talung the rotational and translational effects together, the two
effects oppose each other, giving

= iVtfi = i(1.0042)

V I B R A T I O N A L C O M P O N E N T

The vibrational partition function is given by

exp (—hv/2kT)~ 1 - exp i-hv/kT)



156 CHEMICAL EQUILIBRIA IN THE EARTH

At temperatures well below hvjk^ the partition function can be approx
imated by

g-vib = exp I —f -—)V 2kT)
Thus, for CO,

a n d f o r 0

Final ly

(o'ccX r ^ / \I - e x p — { v c o i » — v c o i t )
? C 0 " / v i b 2 / C i

O2

(9o'»o"\ r /goWvib ~'''P L ~ 2^

Kyib = exp j -h [(fCQi' — fcois) — (voiSQH — ĴC'D's)]!
Since the fractionations are in general only a few percent, we may approx
imate the vibrational equilibrium constant by

Avib ^ 1 + [(fCO"" — ''CO") ~ ("OKO" — Voi»0'»)]

For an ideal harmonic oscillator

= -i~ 2ir'V/i

Since the force constants, k, do not differ for the isotopically substituted
molecules.

" C O " = " C O ' i - V / = \ / — " C O "' A t c o " ^ 2 1
Imco" /2= Vo

' A t c o " ^ 2

VM0"0" /=

U n i i n t s *
" 0 " 0 " = " 0 " 0 " - V / = " 0 " 0 "* M O ' ^ O " ' l b

^ 1 + — (0.0244"co" - 0.0282"o"O")
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Laboratory measurements give

fco.e = 6.50 X 10" sec-i
VQitQu = 4.74 X 10" sec-i

Since h/2k = 2.4 X 10~" deg-sec, we have

9 4 y 1 0 " ' ^
i f v i b = 1 + ( 1 5 . 8 6 - 1 3 . 3 7 )

= 1 +

At room temperature the separation factor for vibration becomes

Were the difference in vibrational energy modes the only source of
fractionation, the trace isotope 0" would, at room temperature, be 20 per
mil enriched in the CO, the molecule with the higher vibrational fre
quency. This fractionation would increase by roughly 0.06 per mil for
each degree the temperature was decreased and would fall by the same
amount for each degree the temperature increased.

The overall separation factor becomes, at room temperature,

a = 2 K i
~ 2iiCtran8-^rot-^vib

= (2)a)(1.0042)(1.0199) = 1.024

At equilibrium, there would be a 24 per mil enrichment of 0" in the CO
relative to the O2.

Let us now check our assumption that K2 = 4. The translational
c o n t r i b u t i o n w i l l b e

(Woieots)^ '
_WlO>«Oi«7Moi«0".

(34)(34)1*
(32) (36).

_ /289Y~ \288/

T h e r o t a t i o n a l c o n t r i b u t i o n w i l l b e

Kro t = (mo"0'»)^
(̂ Mo»«o>0 (YM0>«0>»)

= (32) (36) ^ ^
(34) (34) ~ 289
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The product of these two components will be

Ktr.nsKrot = 4\/fff = 4(1.0017)

Finally the vibrational contribution will be

_ r ^ / 1rvvib — exp 9^^ (2i'oi«oi' — — j'oho's)
S i n c e

n o t i o n 1 8= I ' O H Q H \ ~ V r t
> / i 0 1 8 0 1 8 ^ 9

w e h a v e

/jLlonO" /17j /OUQia — I 'OI 'OH-v / = J 'OfO"* ynQuo" ' 18

iiCvib = exp - ̂  ,o..o.a(2 Vu - 1 -
= e x p - O.OOOSAj'oi

= 1 - O.OOOS/ij'ono"

= 1 -

If T = 300°K,
/Cvib = 0.9972

The final value of K at 300°K is

^ I^transl^rotl^vib
= 4(1.0017) (0.9972)

= 3 . 9 9 6

Returning to the relationship between a and K, we have

a = 2 K i 2[0i60i6] + [Qiepis]
2[0^s0'8] + (4.00/3.996)[0»80'8]

Since in natural systems there is roughly one molecule per 500
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016016 mo lecu les

1,001,000~ ' 1,001,001

The correction is only 1 ppm and hence can be neglected.
As mentioned above, the translational and rotational components of

the fractionation do not vary with temperature. At low temperatures
the vibrational component varies inversely with the absolute temperature.
As the temperature increases, the 1 — exp ( — hu/kT) term in the denom
inator of the partition function becomes important. The equilibrium
constant, K, is then given by

h Av [1 — exp ( — hvoi,on/kT)][l — exp ( —/tycc/feT)])Kvib = I - ̂  [1 - exp {-/t̂ o..o..AT)][l - exp (-hpco^kT)]}

The temperature dependence of the equilibrium constant is shown in
Fig. 7.2. The contribution of the 1 — exp { — hv/kT) term to the frac
tionation is zero at absolute zero, rises to a broad maximum centered at
about 2500®K, and then gradually decreases. At infinite temperature the
vibrational fractionation just balances the translation and rotation term.

The question arises as to why O'® is concentrated in the CO as a
result of translational and vibrational motion and in the O2 as a result of
rotational motion. Although the answer must certainly be that these
concentrations- lead to a higher entropy for the universe than would be
the case if the O'® were uniformly distributed, it is not so obvious why
this is true. We made the calculation as follows: The free energy
d i f f e rence be tween the reac tan ts + CO '®) and the p roduc ts
(016016 _|_ CO'®) was determined for the case when all four gases were
present in equal amounts. Under these conditions we found that the
number of translational states available to the products was proportional
to the product of their masses to the f power. The same was, of course,
true for the reactants. As the product of the masses of the reactants
[that is, (28) (34) = 952] was smaller than that for the products [that is,
(30)(32) = 960], the entropy of the products was slightly [(960/952)']
greater than that for the reactants. Under these conditions CO'® +
G'SQie ^vould react to yield additional CO'® and 0'®0'®. The reaction
would cause the partial pressure of the reactants to fall slightly and that
of the products to rise slightly. As the density of CO'® and 0'®0'®
molecules increased, their entropy would decrease. Similarly, entropy
of the reactants would rise. This change would continue until the
original entropy difference between the products and reactants was
e l i m i n a t e d .
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Fig. 7.2. Variation of isotopic fractionation of an ideal diatomic gas
as a function of temperature. The contribution of the 1/[1 — exp(—

part of the vibration term is zero at absolute zero, rises to a
broad maximum, and then slowly decreases to approach a con
stant value at infinite temperature. At infinite temperature the
vibrational fractionation exactly balances the translation and
rotation components.

EQUILIBRIUM FRACTIONATION BETWEEN COEXISTING SILICATES

The isotope distribution between coexisting solid phases is controlled
entirely by the vibrational frequencies in the solids. Translational and
rotational motions do not, in general, take place in solids. Unfortunately
the atoms in solids vibrate at many different frequencies. For most
solids the exact spectrum of these frequencies is unknown. For this
reason, separation factors cannot, in general, be calculated.

A rough approximation of separation factors can, however, be made.
As pointed out in Chap. 3, the room-temperature heat capacity of any
solid provides a measure of its "average" vibrational frequency. Quartz,
whose heat capacity per atom is 3.54 cal/mole-atom, must be character
ized by higher vibrational frequencies than hematite {Cpjn = 4.96 cal/
mole-atom). It was further shown that the heat capacities of oxides

1 6 0
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were additive. Quartz and silica glass have heat capacities differing by
less than 1 percent. The heat capacity of enstatite (MgSiOa) is 19.62
compared with the sum 19.65(10.62 + 9.03) for quartz (Si02) and peri-
clase (MgO). Since little difference exists in the average vibration fre
quency, no isotope separation should be expected if pairs such as quartz-
silica glass or enstatite-periclase quartz were equilibrated.

The significance of this is as follows: No matter what complex oxides
are involved, the calculation of separation factors can be made for the
sum of the constituent oxides. Thus, if the separation factor between
sanidine (KAlSiaOs) and enstatite (MgSiOa) were desired, the calculation
would be made by assuming that a mixture of 1 part K2O, 1 part AI2O3,
and 6 parts SiOg was equilibrated with a mixture of 1 part MgO and 1
part Si02. The Si02 portion of each batch would have the same isotopic
composition. If the fractionation factors for the pairs Si02-K20,
Si02-Mg0, and Si02-Al203 were known, the total separation factor could
be quickly calculated.

Although this does not completely solve the problem, it greatly
reduces the work necessary. At each temperature of interest, instead of
one measurement for each mineral, only one measurement need be made
for each metal oxide. Given the results for the oxides of Na, JC, Ca, Mg,
Fe++, Fe3+, Si, Al, and Ti, a large fraction of the rock-forming minerals
would be covered (hydrous minerals and carbonates would be the main
exceptions).

A rough estimate of the relative fractionations between these
minerals can be obtained by assuming that each metal-oxygen pair acts
as a diatomic molecule. A typical reaction could then be written

AlQie + SiQis = AIO'8 + SiQie

The separation constant can be written

^ (O'V0̂ )̂si.o" (0'VO'«)AUO
h r / m a i o > » \^ 1 ~ " S i O " I 1 - V I - " A I D " I 1 - \ J

2 k T \ _ \ ^ M S i O ' s / \ ^ A t A l Q i a / .

where, for example,

Ws iWlQ i#
M s i o " = ;

W ls i "T WIqh

The vibration frequency is taken to be that which would yield the
observed room-temperature heat capacity for the metal oxide were it
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characterized by a single frequency of oscillation. By using Fig. 3.4 the
corresponding value of Be can be found. Then

k
V = - Be

n

Values of v computed in this way for each of the nine important oxides are
given in Table 7.1, as are the values of juo" and 1 — nn/nu. The
product of 1*16 and 1 — VaWmis should then be a measure of the tendency
of each oxide to concentrate O^®. The difference between this product
for two different oxides should be a measure of the equilibrium fractiona
tion. By using quartz (i.e., that mineral with the highest vibrational
frequency and hence the strongest tendency to enrich 0'®) as a reference,
the last column gives the calculated room-temperature equilibrium
enrichment of 0'® in quartz relative to each of the other oxides.

TA B L E 7 . 1

Calculated Fractionations for Oxides Relative to Quartz

Oxide Cp/n. cai/ B^ ..10"mole-atom K sec-» zkT^ ~ yl—J X1000
X 1000

SiOa 3 . 5 4 7 7 0 1 . 6 4 1 0 . 2 0 . 0 3 6 4 7 0
AI2O3 3 . 7 8 7 1 5 1 . 5 2 9 . 9 0 . 0 3 5 4 2 - 5
T i 0 2 4 . 3 8 5 8 0 1 . 2 3 1 2 . 0 0 . 0 4 2 4 1 - 6
M g O 4 . 5 2 5 5 5 1 . 1 8 9 . 6 0 . 0 3 4 3 2 - 1 5
Fe203 4 . 9 7 4 5 0 0 . 9 6 1 2 . 7 0 . 0 4 3 3 3 - 1 4
C a O 5 . 1 2 4 2 0 0 . 8 9 1 1 . 4 0 . 0 4 0 2 9 - 1 8
F e O 5 . 2 5 3 7 5 0 . 8 0 1 2 . 7 0 . 0 4 3 2 7 - 2 0
N a 2 0 5 . 6 0 2 5 0 0 . 5 3 9 . 3 0 . 0 3 3 14 - 3 3
K 2 O 5 . 7 0 200 0 . 4 2 1 1 . 4 0 . 0 4 0 13 - 3 4
t At room temperature (300°K).

The next step is to compute similar enrichment factors for the com
bined oxides which make up rocks in the earth's crust. When oxide
separation factors are combined to give mineral separation factors, care
must be taken to balance properly the oxygen atoms. For example,

Nepheline (Na2Al2Si408) = 2Si02 + AI2O3 + Na20

Ki" = 4 KS' + f Klf' + i
= 1(0) - 1(5) - i(33)

V = - 6 . 0
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Values calculated in this way are given in Table 7.2. As is shown in
Fig. 7.3, the sequence of fractionations obtained in this way is consistent
with the sequence of oxygen isotopic compositions found in igneous rocks.

TA B L E 7 . 2
Calculated Fractionations Relative to Quartz
for Important Rock-forming Minerals

M i n e r a l Component Oxides A^."t

Quartz S iOz 0 . 0

S i l l i m a n i t e SiOj + AI2O3 - 3 . 0

Kyani te Si02 ~l~ AI2O3 - 3 . 0

A l b i t e 6Si02 + AI2O3 4" Na20 - 3 . 0

Or thoc lase 6Si02 + AI2O3 + K2O - 3 . 1

Plagioclase (albite + anorthite) - 3 . 5

A n o r t h i t e 4Si02 + 2AI2O3 + 2CaO - 4 . 1

L e u c i t e 4Si02 + AI2O3 4" K2O - 4 . 1

Nepheline 2Si02 4* AI2O3 4- Na20 - 6 . 0

Pyrope 3Si02 4- AI2O3 4- 3MgO - 5 . 0

G r o s s u l a r i t e 3Si02 4- AI2O3 4- 3CaO - 5 . 2

E n s t a t i t e SiO, + MgO - 5 . 0

Augite 2Si02 + AI2O3 4- CaO 4- MgO - 5 . 3

F o r s t e r i t e Si02 + 2MgO - 7 . 5

Fayali te Si02 4" 2FeO - 1 0 . 0

R u t i l e T i O a - 6 . 0

I l m e n i t e Ti02 -b FeO - 1 0 . 7

H e n fi a t i t e Fe203 - 1 4 . 0

Magneti te Fe203 4" FeO - 1 5 . 5

t At room temperature.

K I N E T I C F R A C T I O N A T I O N S

Isotope fractionation measurements taken during irreversible chemical
reactions always show a preferential enrichment of the lighter isotope
in the products of the reaction. is enriched relative to in the H2S
produced during bacterial reduction of CaS04. is e n r i c h e d r e l a t i v e
to C" in the organic molecules produced during photosynthesis. 0'® is
e n r i c h e d r e l a t i v e t o 0 ' ® in CO2 and H2O produced during the bacterial
oxidation of organic debris. The nature of this fractionation stems from
the lower ground-state vibration frequency of the heavy isotope. As
shown in Fig. 7.1, its zero-point energy lies closer to the bottom of the
potential-energy well than does that for the light isotope. Hence more
energy is required to destroy a molecule bearing the heavy isotope. In
Chap. 5 we demonstrated the great sensitivity of reaction rates to the
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S i n c e

For O2 at room temperature

^ (_ (6.6 X 10-")(4.74 X 10")(0.058)\ ^ ^
R l \ ( 2 ) ( 1 . 4 X 1 0 - " ' ) ( 3 0 0 ) ■

Thus molecules bearing two 0'® atoms should react about 17 percent more
rapidly than those bearing one 0^® and one 0'® atom.

The actual fractionation observed in natural irreversible processes
depends not only on the difference in reaction rate for different isotopic
species but also on the extent to which the parent reservoir is depleted.
If, for example, the reactants are entirely used there can be no net frac
tionation. The product must have exactly the same composition as the
reactants. Thus kinetic fractionations observed in nature are generally
less than that predicted by the ratio of the reaction rates.

R A Y L E I G H D I S T I L U T I O N

Any isotope reaction carried out in such a way that the products are
isolated immediately after formation from the reactants will show a
characteristic trend in isotopic composition. Examples of this type of
process are the progressive formation and removal of raindrops from a
cloud and the formation of crystals from a solution too cool to allow dif
fusive equilibrium between the crystal interior and the liquid. The
isotopic composition of residual water vapor (or of the residual liquid) is
a function of the fractionation factor between vapor and water droplets
(or between the liquid and surface layer of the growing solid) and can be
calculated as follows: Let A designate the amount of the species contain
ing the major isotope and B the amount of that containing the trace
isotope. The rate at which either species reacts is proportional to its
amount; thus

d A = U a A

a n d

d B = k s B
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between the oxygen isotopes in water vapor in clouds and the rain
drops released from the cloud. O'® is enriched by 10 per mil in the
droplets. Hence the 0^® is depleted at a rate 1.010 times faster than the
0^® (a = hoii/kou = 1.010):

5 = -1000(1 -/o-oio)

The resulting depletion of the 0^®/0^® ratio in the residual water vapor is
given as a function of the fraction of original vapor remaining in the cloud
(Fig. 7.4). As the latter closely depends on the cloud temperature, the
relationship between isotopic composition and cloud temperature is also
given (Fig. 7.5).

FRACTION REMAINING VAPOR

1 . 0 0 . 7 5 0 . 5 0 0 . 2 5 0 . 0 0

CLOUD TEMPERATURE,'C

Fig. 7.4. 5o» in cloud vapor and condensate plotted as a
function of the fraction of remaining vapor in the cloud
for a Rayleigh process. The temperature of the cloud
Is shown on the lower ax is . The increase in f rac t iona
tion with decreasing temperature is taken into account.
( A f t e r D a n s g a a r d , 1 9 6 4 . ) S M O W s t a n d s f o r s t a n d a r d
m e a n o c e a n w a t e r .
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Fig. 7.5. Observed 6o'» concentration in average annual precipita
tion as a function of mean annual air temperature. {After Dans-
gaard, 1964.)

SURFACE EQUILIBRIUM VERSUS INTERIOR EQUILIBRIUM

Because the atoms residing in the first few molecular layers of a crystal
are not subject to the infinite series of regularly spaced electrostatic forces
which act on interior atoms, they have somewhat different internal and
free energies. Isotopic equilibria involving surface atoms may have dif
ferent fractionations than those involving interior atoms. Thus the
fractionation occurring in a natural process could depend on whether
diffusion is fast enough to maintain equilibrium between atoms buried
in the interiors of the solid phases present. For most reactions there will
be a temperature above which this equilibrium will always be maintained
and a temperature below which it will never be achieved. Between these
two limits there exists a zone of uncertainty where the equilibrium may
or may not have been achieved or even where it was partially achieved.
Unfortunately, most metamorphic processes probably take place within
this shadow zone; consequently, isotope separation observed in such rocks
must be interpreted with great caution.

1 6 8
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P R O B L E M S

7.1 Consider a sediment composed of 50 mole percent detrital igneous
quartz (8 = +10 %o) and 50 mole percent marine calcite (5 = +30 %o)-
Determine the oxygen isotopic composition of each mineral after meta-
morphic equilibration at 500®C (acaco, = 1-002 at 500°C).

7.2 A sediment composed of 50 percent quartz and 50 percent calcite as in
Prob. 7.1 is gradually decarbonated at 500®C to produce wollastonite.
Apply the Rayleigh equation to calculate the composition of the rock
after complete conversion. Use acS3o, = 1-007, and assume that equi
librium fractionations among the condensed phases are negligible.

7.3 The 0^® content of shells grown from sea water is larger than that in
t h e w a t e r . I f

Agg®' = 30 %o at T = 25°C
= 3 4 a t r = 5 ° C

(a) What is the temperature coefficient of the fractionation?
(b) Calculate the expected O'® content of surface-dwelling fora-

minifera at T = 15®C and T = 20®C Avith respect to standard
mfean ocean water (SMOW). If the 20°C sample were mixed
with 10 percent bottom-dwelling forams {T = 2®C), what would
the average 0^® content be?

(c) The water currently locked up in the Greenland and Antarctic
ice caps has 25 per mil less 0^® than mean seawater. If during
the maximum of the last glacial period the amount of additional
ice equaled 4 percent of the water now in the oceans, and if this
ice had the same O" deficiency as the current ice caps, what
average apparent temperature change would be induced in the
average foram shell living in the glacial ocean, because of the
change in isotopic composition of the residual water?

7.4 It is possible to separate U"® from U"® by successive gaseous dif
fusion of UFe through a series of small orifices. Each orifice is a separate
stage. The natural U2®®/U^®® is 137.8. If a = 1.0004 for each stage,
h o w m a n y s t a g e s w l l b e r e q u i r e d t o p r o d u c e ( a ) = 1 . 0 ;
(6) U2®®/U2®® = 10.0; (c) U2®®/U2®® = 100.0. Consider that only the
light fraction from each stage passes on to the next stage.

7.5 The isotopic composition of the element Sr is measured in a mass
spectrometer. The Sr is placed on a ribbon of refractory metal such as
rhenium. The ribbon is then heated by passing a current through it to
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vaporize Sr as Sr". The Sr" is ionized to Sr+ by passing over a filament at
a temperature of 1400°C. The vaporization step occurs at a temperature
of about 500®C in vacuo. Which of the two steps is most likely to pro
duce an isotopic fractionation? If (Sr^VSr")vapor = l-002(Sr8VSr")8oUd,
calculate the change in isotopic composition of the residual solid (for
Rayleigh distillation) as a function of the amount of solid remaining.

7.6 A small closed-basin lake receives 90 percent of its water from river
inflow (8o'« = —16) and the remaining 10 percent from direct rainfall
(5oi» = —5). This input is exactly balanced by evaporation from the
lake surface. If the steady-state fio" value for the lake water is —6, what
is a = (O^VO^®)vapor/(O^VO^®)iake for the evaporating vapor?
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c h a p t e r e i g h t D i s t r i b u t i o n o f T r a c e
E l e m e n t s b e t w e e n

Coex is t ing Phases

The elements O, Si, Al, Fe, Ca, Na, K, Mg, and Ti make up 99 percent of
the earth's crust and mantle. The other SO elements together contribute
only 1 percent to the weight of the earth; these elements are collectively
referred to as trace elements. Trace elements occasionally form minerals
in which they are a major constituent, but more frequently a trace
element occurs as an intruder in the minerals formed by the major
elements. For example, all calcite contains a small amount of strontium.
The strontium occiqnes lattice positions normally belonging to calcium
ions. We may consider the carbonate mineral as consisting of a dilute
s o l u t i o n o f s t r o n t i u m c a r b o n a t e i n c a l c i u m c a r b o n a t e . W h e n e v e r a t r a c e
element occurs as a minor constituent in a mineral or liquid phase, we may
describe the behavior of the trace clement by the laws of dilute solutions.
We will first consider the behavior of dilute solutions of solids in liquids
and of solids in solids and then examine several api)lications of trace-
element distribution in natural sj'stems.

1 7 1
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T H E L A W S O F D I L U T E S O L U T I O N S

In dealing with dilute solutions we have two problems to consider.
First, what is the effect of a small amount of added trace material on the
properties of the host liquid and, second, what is the effect of the host
liquid on the properties of the dissolved trace element? We will first
consider the change in the host's properties.

When a small amount of sugar is added to water, the solid phase
disappears. The particles of solid sugar interact with the liquid water
molecules, and a single phase, a dilute solution of sugar (the solute) in
water (the solvent), results. If the solution is very dilute, the fugacity of
the water will change only because its mole fraction is lowered, and not
because of any interactions with the sugar molecules. Thus, for the
s o l v e n t

h = fiX .

where /i is the fugacity of the solvent in the dilute solution, jl is the
fugacity of pure solvent at the same temperature and pressure, and Xi is
the mole fraction of solvent. The fugacity is proportional to the mole
fraction because interactions between water molecules are so much more
frequent than interactions between water and solute molecules. This
result is an extension of Raoult's law which states that the vapor pressure
of the solvent over a solution is proportional to the mole fraction of
solvent. At low pressures, where fugacity and vapor pressure are
identical, Raoult's law states

V i =

If only one solute is present, with mole fraction X2,

Pi = p?(l - X2)

which may be rearranged as

This is the original form of Raoult's law. It states that the lowering of
the vapor pressure of a solvent in a solution with respect to the vapor
pressure of pure solvent is proportional to the mole fraction of solute.
As the so lut ion becomes more concentrated and solvent-so lute in ter
actions become important, the solvent will no longer follow Raoult's law.
However, as we are considering trace-element properties and dilute
solutions, Raoult's law will suffice.
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together with the ideal gas reference state. We have shown in Chap. 6
that the fugacity of a real gas approaches the pressure as the pressure
becomes very small. In the limit of very low pressure, the activity of a
real gas is therefore equal to its pressure.

2 . S o l v e n t s

The standard state for a solvent is the pure liquid or solid at the same
temperature and 1 atm pressure. Thus the activity approaches the
mole fraction as the mole fraction approaches unity:

® i 1
> 1 a s I

X

3 . S o l u t e s

For dilute solutions it is convenient to choose the standard state so
that in the limit of infinite dilution the activity of a solute will equal its
m o l e f r a c t i o n . T h u s

o — » a ; a s x — > 0

In order to find a reference state to fit our demands, we must again
resort to a hypothetical standard state. Since the fugacity of the refer
ence state must satisfy the identity

and since we require that a —» a: as x —> 0, we find that

= l i m -
i - O X

The limit of the ratio f/x as a solution becomes very dilute is simply the
Henry's law constant, as shown earlier in this chapter. If the state of
infinite dilution itself were taken to be the reference state, the standard
chemical potential, n°, would be minus infinity. This is clearly an unde
sirable result. To avoid this complication the Henry's law line is
extrapolated from zero mole fraction to unit mole fraction. The reference
state is then taken as a solute with unit mole fraction, yet which obeys
Henry's law. This state, which is clearly hypothetical, is illustrated
in Fig. 8.2.
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Since the chemical potential of the reference state, depends on tem
perature, we have that

tii(T,x,P = 1 atm) = fXi(T,P = 1 atm) + RT in yiXi

In order to treat solutions at elevated pressures we must include the
effect of pressure on the chemical potential. Most American textbooks
do this in a rather circuitous fashion by introducing another variable
under the logarithm. European textbooks use a more convenient
approach which includes the effect of pressure in the evaluation of the
chemical potential of the reference state. This reserves the logarithm
term for dealing with the effects of concentration and nonideality. Thus

^(T,x,P) = iJit(T,P) + RT In yiXi

To avoid confusion we will use iP for reference states at 1 atm, and n* for
reference states at arbitrary pressures.

DISTRIBUTION OF A TRACE ELEMENT BETWEEN TWO SOLIDS

Let us consider the distribution of a trace element between two coexisting
phases with which it forms dilute solutions. The chemical potentials of
the trace element in phases I and II are given by

fii = fi* RT In ai
Mil = M*i + In ail

The quantities /xf and m*i are the chemical potential of the trace element
in its standard state (see Fig. 8.2) at the temperature and pressure of
interest. At equilibrium we must have

M l = M i l

Since nt and are constants at fixed T and P, it follows that

— = c o n s t = K '
a u

This constant is sometimes called the distribution coefficient. For dilute
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solutions which follow Henry's law we may replace the activity ratio by

= c o n s t

— = K

It can be shown (see Appendix I) that the distribution coefficient
varies with temperature according to the relation

( m -
K H + B

R T

where AH represents the difference between the heats of solution for the
trace element in phases I and II, and B is a constant of integration.

An interesting application of these concepts has been made by
Hakli and Wright. They measured the distribution of nickel (present
in trace quantities) between the phases olivine, clinopyroxene, and glass
for samples collected from the Makaopuhi lava lake in Hawaii. They
hoped to use the distribution of Ni between coexisting phases to
determine the temperature of crystallization of igneous bodies.

In order to use Ni distribution as a geothermometer, the phases most
sensitive to temperature changes must be identified and the temperature
scale must be calibrated. It was hoped that the work on the Hawaiian
lava lake would accomplish this. To avoid the complications involved
by changes in composition of the olivine and pyroxene phases, only sam
ples of constant bulk composition were used.

Samples were taken from the lava lake after varying degrees of
crystallization had occurred. The temperature was measured at the
time of collection and then the sample was quenched (cooled rapidly)
to convert any liquid present to glass. The Ni content of the phases
olivine, clinopyroxene, and glass were measured, and the distribution
coe ffic ien ts were ca lcu la ted . The resu l t s o f the i r measurements a re
given in Table 8.1. The distribution of Ni between the mineral pair
olivine-clinopyroxene appears to be fairly sensitive to temperature,
particularly in the high-temperature range.

By plotting the distribution coefficients against 1/T, a value of AH
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TA B L E 8 . 2

Parameters Needed to Calculate the Variation
of Nickel Distribution Coefficient as a
Function of Temperaturef

A H , c a l / m o i e S

O F V G P " - 7 , 4 0 0 ^
P y N i / G l N i - 2 4 , 8 0 0 - 7 . 8 5
O l N i / P y N i 1 6 , 8 0 0 + 7 . 6 5
t Data taken from T. A. Hakli and T. L. Wright,
The Fractionation of Nickel between Olivine and
Augite as a Geothermometer, Geochim. Cosmochim.
Acta, 31: 877-884 (1967).

FACTORS WHICH INFLUENCE DISTRIBUTION COEFFICIENTS

A great deal of data is available on the mutual solubility of the alkali
halides under various conditions. By examining the distribution coef
ficients for different cation pairs with a constant anion we may gain some
insight into the factors which influence distribution coefficients. Table
8.3 gives the ratio of the substituting ion to the major ion in the crystal
divided by the same ratio for the solution or melt. For example, the
distribution coefficient for RbCl between a crystal of KCl and a solution
of KCl (or KCl melt at high temperatures) would be

^ (RbCl/KCl)e.y.t''''' (RbCl/KCl)soi

TA B L E 8 . 3

Distribution Coefficients for Alkali Halides between Crystals and
Aqueous Solution at 40X and between Crystals and Melts

R a d i u s
o f

C a t i o n

Distribution Coefficientsf

K C l a n d
A q u e o u s
Solut ion,

40°C

K C l

Crystals
and Mel t ,

775®C

N a C I
Crystals

and Mel t ,
800°C

R b C I
Crys ta ls

and Mel t ,
715°C

R b C l 1 . 4 7 0 . 1 0 0 . 6 5 0 . 0 1 2
C s C l 1 . 6 7 1 . 1 4 X 1 0 - ' ' 0 . 2 7 0 . 0 0 5 0 . 5 6

t Data taken from Jorg Reichert, Verteilung anorganischer Fremdionen bei der Kristal-
lisation von Alkalichlouden, Contrib. Mineral. Petrol., 13: 134-160 (1966) and Hans
Hartmut Schock, Bestimmung sehr kleiner Verteiiungskoeffizienten von Cs, Na und Ba
zwischen Losung und KCi-Einkristallen mit HUfe radioaktiver Isotope, Contrib. Mineral.
Petrol., 13: 161-180 (1966).
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By comparing the data for KCl crystals grown at low temperatures
with those for crystals grown from melts, it is obvious that ionic substi
tution is much more prevalent at high temperatures. The increased solu
bility at high temperatures stems from two causes, both of which are
related to the vibration of atoms within the lattice. First, the increased
vibrational amplitude and asymmetry at high temperatures result in
expansion of the crystal structure, allowing easier substitution of the
larger Rb and Cs ions for the smaller K ion. Second, the increased
vibration amplitude tends to make smaller ions, such as Na, appear
larger because the extremes of vibration carry the ions farther from their
equilibrium positions. Although the effects of ionic size are greatly
reduced at high temperature, they are not completely removed. The
ion most similar to the host in size (Rb in this case) still has the greatest
solubility in KCl crystals grown from a melt at 775®C.

As the difference in size between the major cation and the sub
stituting ion becomes large, the control of size becomes important even
at high temperatures. The effect is particularly important for a large
ion substituting into the lattice of a small ion. Thus the distribution
coefficient for CsCl in NaCl is very small even in crystals grown from
a NaCl melt. For a similar difference in ionic radius where one ion is
larger and one smaller than the major ion, such as the case for K and
Cs substituting in RbCl, the smaller ion will have the larger distribution
c o e f fi c i e n t .

BROMINE AND THE DEPOSITIONAL HISTORY OF EVAPORITES

Seawater has an average salt content of 3.5 percent by weight. If
seawater is placed in a beaker and the water is allowed to evaporate,
the salinity of the solution will obviously increase as the water content
decreases. Eventually a very concentrated salt soluton, called a brine,
will result. The first salts to precipitate from the brine will be aragonite
and gypsum. When the volume of the brine reaches approximately 13
percent of the volume of the original seawater solution, halite (NaCl)
will start to precipitate. If evaporation is continued further, sylvite
will precipitate when the volume of brine is 5 percent of the original
volume. Other complex salts such as KMgClj-ffHzO (carnallite) and
MgCl2'6Il20 (bischofite) may also form in cases of extreme evaporation.

Seawater contains a small amount of bromine in the form of Br~
(bromide ion). Since the bromide concentration is low, no pure bromide
minerals form. All the bromide is taken up as a dispersed element in
the chloride salts. The concentrations of bromide, even in brines, are
low enough so that Henry's law is obeyed.
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Braitsch and Herrmann measured the distribution coefficient for
Br ion between seawater and NaCI. They found that at 25®C the value
of the distribution coefficient at the beginning of halite precipitation was

K n = = 0 . 1 5
l-Or Jseawater

This means that the bromide content of the brine increases more rapidly
than the salinity of the brine once halite begins to precipitate. The
value of Kd remains constant up to very high bromide concentrations.
(It does depend on the MgCl2 content of the solution at high salinities.)
If we find a halite bed in a sequence of evaporite salts we may use the
bromide content in the NaCl to infer the salinity of the brine from which
the halite formed.

This might at first seem a trivial result; however, the history of
evaporite basins can be very comphcated. For instance, in some places
very thick sequences of evaporites are found. The thicknesses are so
great that simple evaporation of a closed basin of water is thoroughly

BROMIDE IN HALITE, ppm

Rg. 8.4. Bromine content In halite plotted
as a function of thickness of the salt
deposited from a basin for two cases of
water balance. The upper curve is for a
case where the inflow of seawater just
balances the loss due to evaporatioh.
The lower curve is for simple evaporation
of a closed basin. (After Holser.)
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*8.4 Assume that the distribution coefficients for K in the plagioclases
a r e

A l b i t e : = 0 . 9
A n o r t h i t e ; = 0 . 1

Starting from a liquid containing 1% KAlSiaOs, by varying the
NaAlSiaOs/CaAhSizOs ratio in the liquid calculate the K content of the
first feldspars to crystallize as a function of the plagioclase composition.
Assume that the distribution coefficients do not vary with temperature.
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c h a p t e r n i n e S o l i d - s t a t e M i n e r a l
T r a n s f o r m a t i o n s

The problem of discovering what chemical reactions take place in the
earth's mantle occupies the attention of a large number of geophysicists
and geochemists. From seismic data it is clear that the earth's mantle
increases its density more rapidly mth depth than would be expected
from the compressibilities of oxide minerals. This excessively rapid
increase could represent either the rearrangement of the atoms present
into new, more compact crystalline phases or increase in the FeO or Fe
content of mantle material. Thus solid-solid phase transformations have
become a subject of considerable interest to the geophysicist.

S O L I D - S O L I D P H A S E T R A N S F O R M A T I O N S

i\Iany chemical compounds can exist in more than one crystalline form.
Such substances are said to display polymorphism. For example, six
polymorphs of Si02 are found in rocks exposed at the surface of the earth.
These polymorphic forms are low quartz (a), high quartz (/3), tridymite,
cristobalite, coesite, and stishovite. Each is characterized by a different
three-dimensional array of Si and 0 atoms. Silica glass is also found.
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Of these seven solid phases, only one is stable at room temperature
and pressure; the other phases are metastable. The stable phase is the
one with the lowest free energy under these conditions. This phase is
low quartz. The occurrence of six other solid forms of silica in surface
rocks reflects the extremely low rates of reaction at surface temperatures.

If the free energy of each of the phases is determined for other tem
perature and pressure combinations, not only will the values be different
from those at room temperature and pressure, but also their order will
change. At 1 atm and 600®C high quartz will have the lowest free energy,
whereas at 30,000 atm and 600®C coesite will be the stable phase.

By determining the relative free energies of these silica phases over
a wide range of temperatures and pressures, the fields of stability of each
phase can be mapped. A phase diagram constructed in this manner for
silica is shown in Fig. 9.1. In addition to the fields for five of the seven
solids the field for liquid silica is shown. Stishovite forms at higher
pressures than shown in the diagram. Silica glass is the only phase
which never possesses the lowest relative free energy. It is metastable
at all temperatures and pressures.

The boundaries separating the stability field of any two phases are
smooth curves. They constitute the locus of P, T points at which the

Fig. 9.1. Phase diagram for Si02, showing the stability fields of the
polymorphic forms of SiOo and liquid SiOj. (Data from Boyd and
England.)
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(/ = 3 — 3 = 0). The coexistence of four or more phases leads to a
negative value for / and is not possible. For one-component systems
the phase rule merely states the obvious; however, this rule becomes
extremely useful in dealing with multicomponent chemical systems.

The arrangement of stability fields for the phases of a given com
pound is closely related to their respective volumes and entropies. We
have already shown that

These relationships require that along any traverse across a phase dia
gram with increasing temperature at constant pressure, phases of succes
sively higher entropy will be encountered, and along any constant-tem
perature traverse with increasing pressure, phases with successively lower
volume will be encountered. Figures 9.2 and 9.3 make clear the reason
for these progressions. Conservation of volume becomes more and more
important with increasing pressure, and randomness more and more
important with increasing temperature.

The nature of the boundaries separating the stability fields of phases
reveals some important relationships between entropy and volume. In

T — ^

Fig. 9.3. Change in free energy with temperature for
two phases of the same compound. At low tem
peratures phase 1 has the lowest free energy. How
ever, phase 2 has the larger entropy and, as the
temperature increases, its free energy drops more
rapidly than that of phase 1. At high temperatures,
after the two free energy curves cross, phase 2 will
b e s t a b l e .
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order to appreciate this we must derive the Clapeyron equation which
relates the slope of a phase boundary to the volume and the entropy
change for the transformation represented by the boundary.

Consider two closely spaced points on a phase boundary. For
each the free energy of phase A must equal that of phase B. Hence the
change in the free energy of phase A in going from one point to the other
will be equal to that for phase B, or

dG^. — dG^
We have already shown that

d G = V d P - S d T
H e n c e

7a dP -S^dT = 7b dP - S3 dT
Rearranging,

/ d P \ S 3 - S j , A S
Vdr/p.B. 7b - 7a A7

The slope of the boundary must equal the ratio of the entropy change
to the volume change for the reaction.

Phase boundaries generally have positive slopes. Thus phases with
larger volumes generally have higher degrees of randomness. Although
this relationship is intuitively clear for transitions involving liquids and
vapors, it is not obvious that it should apply to solid-solid transitions.
For example, the various crystalline forms of silica all have identical
entropies at absolute zero. If the phase with largest volume (i.e.,
tridymite) is to have highest entropy at some finite temperature, T, then
its integral

f ' ^dTJ o f

must be the greatest. This can be true only if tridymite (the least dense
form of silica) also has the highest heat capacity.

Before explaining why more open crystal structures have higher
heat capacities than their more dense counterparts, let us consider another
aspect of solid-solid phase boundaries. Above room temperature these
boundaries generally are almost straight lines. This implies that AS/AV
remains constant with increasing temperature. Because of low compres
sibilities and low coefficients of thermal expansion, the volume of solids
changes very slowly with changing P and T. If the A 7 for the reaction
of interest is greater than a few percent of the volume of the phases
involved, the A 7 will not change greatly between 300 and 700°K. This
is shown in Fig. 9.4 for the reaction calcite-aragonite.



V CALCITE

V abagonHS-

Fig. 9.4. Volumes of calcite and aragonite, and the difference in
volume between the two phases, as a function of temperature.

If AF does not change appreciably along the phase boundary, the
boundary can be a straight line only if AS does not change (above room
temperature). As shown in Chap. 4, the entropy change at constant
pressure is

A plot of ACpfT versus T for the polymorphic pair sillimanite and
kyanite is shown in Fig. 9.5. Clearly the major contribution to the
entropy difference is generated below 300°K. This reflects both the
convergence of the heat capacities of the two phases mth increasing
temperature and the fact that heat added at high temperature affects
the entropy far less than that added at low temperatures. The addi-
tivity of room-temperature heat capacities discussed in Chap. 3 demon
strates that for oxide reactions in general ACp is small above room
temperature.

Figure 9.5 also sheds some light on the question raised regarding
the sense of phase boundaries. The convergence of the heat capacities
of sillimanite and kyanite with increasing temperature indicates that the
high-frequency portion of the vibrational spectrum must be nearly identi
cal for the two polymorphs and that the low-frequency portion must be

1 9 1
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boundary are much more important and could lead to considerable curva
ture. Also the relationship between compactness and the vibration
spectrum is not so perfect as to rule out an inverse relationship between
volume change and entropy change in these cases (i.e., negative slopes
for phase boundaries). In Table 9.1 are listed examples of solid-solid
reactions which may take place in the earth's crust and mantle. For
each reaction the appropriate entropy data (as computed from measured
heat capacities) are given. The differences in entropy for the reaction
computed in this way are compared with those based on phase-boundary
slopes (determined experimentally) and volume differences (based on
densities computed from x-ray diffraction data). Hence the entropy
change based on

is compared with the AS based on

VdT/p.B.
Significant differences are not uncommon, especially as AS becomes a
small fraction of the total entropy.

Perhaps the most interesting feature of these results is that all reac
tions for which AT is greater than 5 percent of the total volume of the
reactants have phase-boundary slopes of 18 ± 6 atm/deg. This con
stancy suggests that the relationship between volume change and entropy
change is more than just similarity in sense. The entropy change appears
to be roughly proportional to the volume change. This is not unreason
able in light of the above discussion.

So far we have restricted the discussion to the slopes for solid-solid-
reaction phase boundaries. Nothing has been said regarding their
location in a pressure versus temperature diagram. For example, at
25®C at what pressure do calcite and aragonite have the same free energy?
S i n c e

GL̂ u. = G':it.iu. + l,''VcdP
d P

t h e n f o r = G ^ m „ ,

A O ' " = - ^ Y d P
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Assuming AF to remain nearly constant with P and that Pequii 1,

Since AG = AH - T AS,

pu'o _ ^ + (298) ^ = ^i8±^) J_ = 3700 atm^ e q u . 1 ^ ^ 2 . 8 X 1 0 - » 2 4 . 2

Further we have shown that AiS^^/AF"*'' is nearly equal to the slope of
the phase boundary, so that

A S ' ^ ^
Piuu = nS, + iT- 298) —

A phase boundary can be determined in two different ways. It can
be directly fixed by experimentally determining which phases are stable
at a series of P, T conditions. Alternatively, heats of solution of the
various minerals can be measured in a calorimeter at 1 atm, 25®C. The
difference between the heat of solution of the reactants and of the prod
ucts is equal to the AP®"^ for the reaction. Enthalpy differences for the
reactions mentioned above are shown in Table 9.2 along with values of
Pequil-

TA B L E 9 . 2

Enthalpy Differences and Equilibrium Pressure at Room
Temperature for Several Solid-Solid Reactions

R e a c t i o n

G r a p h i t e d i a m o n d
Calcite —♦ aragonite
Sillimanite —> kyanitef
Nepheline + albite —> jadeitet
A lb i t e j ade i te + qua r t z f

kcal/mole

15,100
3 ,720
4 ,370

- 3 , 3 4 0
4 ,270

t David R. Waldbaum, Thermodynamic Properties of Mullite, Andalusite,
Kyanite and Sillimanite, Am. Mineralogist, 50: 186-195 (1965).
t F. C. Kracek, N. J. Neuvonen, and Gordon Burley, J. Wash. Acad. Sci.,
41: 373 (1951) .

Let US next consider the stability fields in terms of depths in the earth
rather than P and T. To do this we must first establish the average
pressure and temperature gradient for the earth. Since the densities of
rocks in the earth's crust average very close to 2.8 g/cm®, the pressure



1 9 8 C H E M I C A L E Q U I L I B R I A I N T H E E A R T H

rises 280 atm/km. The mean thermal gradient near the earth's surface
averages 20 deg/km. Since the heat generated by the radioactive ele
ments within the crust accounts for about one-half of that reaching the
surface, the gradient at the base of the crust (i.e., at about 30-km depth)
should be about one-half the surface value, or 10 deg/km. These
gradients correspond to 14 and 28 atm/deg, respectively. Thus the
thermal gradient in the earth's crust is of a similar magnitude to that of
the phase-boundary slopes for a number of the reactions listed in Table 9.1.

In Fig. 9.6 the normal crustal gradient is compared with the phase
boundary for calcite and aragonite. As the locus of temperature and
pressure within the crust up to 12 kbars falls within the stability field of
calcite, the presence of aragonite in crustal rocks suggests either that the
aragonite formed metastably or that it formed in the crust in an area of
unusually low thermal gradient (i.e., low temperature). Most of the
aragonite found at the earth's surface was precipitated by marine organ
isms which for some unknown reason find it more convenient to precipi
tate the metastable form of CaCOs rather than calcite.

The presence of the mineral aragonite in the Franciscan metamorphic
rocks found in California cannot be due to direct organic precipitation.
Detailed studies of these rocks by Ernst (1965) show that aragonite was
formed from calcite during the metamorphism of sedimentary rocks. 
Ernst postulates rapid accumulation of sediment in an oceanic trench

T ® C

Fig. 9.6. Phase boundary for the transformation calcite-aragonite
compared with a normal geothermal gradient.
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ajnssajd ŝqxJBa aqx 'xv 'XJispnnoq asBqd aq̂j jo q-jdap aqĉ ui aSuBqo aq(̂
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From the Clapeyron equation,

AS^AVm)\dT/p,u_

Hence complete conversion from the low- to the high-density phase will
lead to a temperature rise AT given by

^ T(dP/dT)p.p. AV
C p / V V

Taking T to be SOO K̂, {dP/dT)p.p, to be 18 atm/km, and Cp/V to be40 atm/deg (since the volume and high-temperature heat capacities of
atoms in silicates are similar, this ratio does not vary by more than
± 10 percent), we obtain

AT = 360 — deg

For a reaction where AV/V is 0.10 the temperature will rise by 36 deg.
As shown in Fig. 9.7, such an increase in temperature would cause

the phase boundary to be recrossed. What will happen then is that the
conversion of low- to high-density material at any depth will proceed
until the temperature increase returns the material to the phase bound
ary. At this point the reaction will cease and the high- and low-density
phases will coexist at equilibrium. The zone between the original and
final position calculated above will then show a gradation from 100 per
cent low-densit}' phase at the top (calculated position of new boundary)
to some fraction, /, at the base (position of old boundary). The value
of / is given by the following equation

, ^ -A.x{dP/dx){dT/dP)p.p.
[T{dP/dT)p.pXAV/V)]/{Cp/V)

where the numerator is the temperature increase required to reach the
phase boundary and the denominator the temperature increase for
100 percent conversion of low- to high-density material. Rearranging
terms, / becomes

. _ jCp/V) AxjdP/dx)
T{dP/dT)p.p}{AV/V)



S O L I D - S TAT E M I N E R A L T R A N S F O R M AT I O N S 1 9 9

Substituting the expression for Ax,

-{Cp/V){dP/dx)Pa^ ~ T{̂ V/V){dP/dT)p.̂ }[{dP/dT)v.B.dT/dx - dP/dx]

For transformation at depths where dP/dxy> {dP/dT)¥.B.{dT/dx) we
h a v e

{Cp/V)Pg
T{dP/dT)v.^.\^V/V)

Using the values given above,

A F / 7

Thus for any phase transformation having a large enough AF/F to fall
into the 18-atm/deg category, / will be less than unity. In such cases the
lowering of the earth's surface, A^, is given by

/ A F
A ? = A x

2 F

Substituting for / we get

{Cp /V )Po ,
A s = A x

2T{dP/dT)v.B.^

Finally, substituting the limiting relationship for Ax, we obtain

_ { C p / V ) P a '
2T{dP/dT)p.u.KdP/dx)

H e n c e f o r t h e v a l u e s u s e d a b o v e

A 2 = 1 4 m

This result is independent of the magnitude of the volume change. The
corresponding displacement of the phase-boundary position will be

2T{dP/dT)p.^.'' ,
A x = A ?

Pg{Cp/V)
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Fig. 9.7. (c) The initial and final earth-temperature gradients are
compared with that which would be produced by the self-heating
created by complete transformation of the low- to the high-density
phase in the depth region between the initial- and final-temperature
curve intersections, (d) Comparison of the initial and final depth
versus phase-transformation temperature curves. Those portions
of the earth-temperature curve in regions where the phase stability
remains unchanged as the result of glacial loading are also shown.
Their terminations with the phase-transformation curves define the
base and top of the mixed-phase zone (width Ax). The upward
displacement of the phase-transformation curve is given by the
pressure increase, Pa, divided by the earth pressure gradient,
dPIdx .

order of 1 min. They also showed that the activation energy at this pres
sure is about 100 kcal/mole. Thus the response time at room tempera
ture would be 4 X 10" years and at 250®C, 20,000 years. It was also
shown that by increasing the pressure to 8 kbars the conversion rate was
decreased by more than an order of magnitude.

REACTIONS INVOLVING THE RELEASE OF A GAS

Kot all reactions taking place between minerals in the earth's crust and
mantle are of the simple solid-solid variety we have just described. The

2 0 1



pibS'86S - Pi«S'j; = IPi£ J

X|duiis SI pjsS' JO |ĵ30;)ut aqx
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Substituting into the equation for free energy,

G = G'td + 2985'"'' - - JJg AS dT + V dP
For the overall reaction,

AG = AG"''' + 298 AS"'̂  - T AS"'̂  - A{AS) dT + // AF dP
The manner in which the free energy difference will change with

pressure and temperature can be easily computed if the following simpli-
fjdng assumptions are made:

1. The volume change for the reaction, AV, is approximately equal to the
volume of the gas phase, Fco,-

2. CO2 behaves as an ideal gas.
3. ACp for the reaction is zero at all temperatures, making AS constant with

temperature.

If these conditions are met, the free energy change for the reaction will be

AG = AH" ' ^ - T AS" " ' + Fco , dP

If CO2 behaves as an ideal gas.

F r o . =

AG = AH"'" - T AS"'" + RT In poo,

At equilibrium, AC? will be zero and the partial pressure of CO2 vdll be

/ A S " ' " \ / A H " ' " \Pco, = exp j exp — j
The entropies and enthalpies for the reactants and products of the two
reactions are given in Table 9.3. For both reactions the entropy change
is positive (reflecting the higher entropy of the gas phase) and the enthalpy
change is positive (heat is released when CO2 becomes bound into the
oxide phase). This leads to an increase in CO2 pressure with rising tem
perature because the entropy change of the system caused by the gain
of heat by the system adds to the entropy change in the system due
to the generation of a gas.
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TA B L E 9 . 3

Thermodynamic Data for the Possible Reactions
Involving CaCOa and SiOj

F;". cmVmole

C a O 1 6 . 6 7 1 0 . 2 3 9 . 5 4 . 7
CO2 9 . 0 2 5 1 . 1 1 7 . 1
2prod 1 6 . 6 7 1 9 . 2 5 6 0 . 6
CaCOs 3 9 . 9 4 1 9 . 5 7 2 2 . 2 4 . 4
2reae 3 9 . 9 4 19 .57 2 2 . 2
A - 2 3 . 1 7 - 0 . 3 2 3 8 . 4

CaS iOa 3 9 . 7 5 2 0 . 3 8 1 9 . 6 3 . 9
CO2 9 . 0 2 5 1 . 1 1 7 . 1
2prod 3 9 . 7 5 2 9 . 4 0 6 0 . 7
CaCOs 3 9 . 9 4 1 9 . 5 7 2 2 . 2 4 . 4
Si02 2 2 . 6 9 1 0 . 6 2 1 0 . 1 3 . 4
2roac 6 2 . 6 3 3 0 . 1 9 3 2 . 3
A - 2 2 . 8 8 - 0 . 7 9 3 8 . 4

CaSiOa 3 9 . 7 5 2 0 . 3 8 1 9 . 6 3 . 9
2 prod 3 9 . 7 5 2 0 . 3 8 1 9 . 6
C a O 1 6 . 6 7 1 0 . 2 3 9 . 5 4 . 7
S iOz 2 7 . 6 9 1 0 . 6 2 1 0 . 1 3 . 4
r̂cac 3 9 . 3 6 2 0 . 8 5 1 9 . 6

A 0 . 3 9 - 0 . 4 7 0 . 0

21,060

- 2 1 , 2 5 0

For the first reaction,

/ 2 1 , 1 5 0 \Poo, = exp ̂  —j
and the second reaction

Poo. =e'"exp(-li|̂ )
The predicted pressures are shown as a function of temperature in
Table 9.4. At all temperatures the partial pressure of CO2 due to CaCOa
decomposition to CaO is much less than that due to the reaction involving
SiOa. Hence in the presence of quartz CaO is always an unstable phase.
In other words, the free energy of CaSiOs is always lower than the free
energy of CaO + Si02. At standard conditions the free energy change
for the reaction CaO + Si02 CaSiOs is -21,150 cal/mole.
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ajnssajd uinuqqinba aqij uaqAV q^O o% «00'̂0 ̂q-̂ Jo uoTijisoduiooap 0!j
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TA B L E 9 . 7

Equilibrium Pressure oT CO2 for Reaction of
CaCOj with SlOt as In Table 9.4 Compared
with Equilibrium Pressure Including
the Entropy Correction

T e m p , p c o , P c o j
°K

t Data taken from A. Danielsson, Geochim. Cosmochim. Acta, 1: 55-69
(1950 ) .
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When this term is incorporated into the CO2 equation, we obtain

//A(A5) dT\ ( AF-tdpt'oAPco. = exp j exp j exp ) exp [- —^)
Using Pco, the approximate pressure,

P c o , ~ P c o , 6 x p

As shown in Table 9.9, the correction becomes important only above
800®K (300 atm). It leads to an equilibrium CO2 pressure higher than
that given by the simple model.

TA B L E 9 . 9
Effect of Volume Change of Sol ids on the
Reaction of CaCOs with SIO2

T e m p , A T " ' , A F " ' / i ? r , A T " ' p c o , / « 7 ' _ / A F " ' p ' c o A° K 1 0 - 2 l i t e r / m o l e i o - < a t m - » ^ R T )

RT )



212 CHEMICAL EQUILIBRIA IN THE EARTH

At equilibrium

/ A/^»td\ / rp,,, = exp(̂ —jexp(-— A(A5) dT

Aystd _|. 5

In terms of Pco»»

Pco, = Vcor exp
/ a F ' "

V m

Values for pcoj can be obtained by successive approximation (see Table
9.10). As the finite volume of the CO2 molecules (28 cmVmole) nearly
balances the volume change of the solids (23 cm'/mole) the net correction
is small. Thus the result obtained using the ideal gas law and neglecting
the volume change of the solids is not so bad after all. As long as the
volume of the gas molecules approximates the net volume change of the
solids, this approach is valid. In the example chosen here it works all
the way up to 3000 atm.

TA B L E 9 . 1 0

Equilibrium Pressure of CO2 for Reaction of CaCOs with
SiOz inciuding Effects of Entropy, Nonideaiity of 002,
and Voiume Change by Soiids

Temp, AF""' + h, AF«o' + h
° K 1 0 - 2 l i t e r / — ^ — '

mole 10-4 atm- i

AF" " ' + h AF'"! + h

First Estimate,
Pcoj

Second Estimate,
P c o i

Having established the equilibrium pressure of CO2 gas over a mix
ture of quartz and calcite as a function of temperature, we turn to the
question of where in the earth's crust we might expect quartz and calcite
to combine to form wollastonite. We might compare any unit of rock
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to a pressure cooker. Below some critical pressure it will act as a closed
system, retaining any CO2 produced by this reaction. Since the free
volume (porosity) of earth rocks is extremely small, the CO 2 required to
generate the equilibrium pressure will not measurably deplete the supply
of quartz and calcite. For all practical purposes, we can say that until a
critical temperature is achieved the reaction does not occur. When the
equilibrium CO2 pressure exceeds the venting pressure of the rocks, CO2
will escape and the reaction will proceed until either the quartz or calcite
is entirely consumed. In this sense the reaction is an "either-or" proposi
tion; only when the equilibrium partial pressure of CO2 exceeds the con
fining pressure of the rock will the reaction proceed to a significant extent.

The CO2 pressure required to cause venting depends not only on the
depth to which a rock is buried but also on other more subtle variables.
Two extreme situations will demonstrate why this is the case. First,
consider a situation where the rock of interest is buried under 1000 m of
unlithified sand. The pores in the sand are water-saturated. In order
for CO2 generated at the base of the sand to escape, it would have to be
able to lift a column of water 1000 m high. Bubbles could then form and
migrate to the surface. If the density of the water is assumed to be uni
formly 1 g/cm®, a pressure of 100 atm would be necessary.

Next consider a water-filled void completely enclosed in a compact
siliceous limestone. In order for the CO2 to escape, the pressure would
have to rise to the point where the vesicle would rupture. This could
certainly not occur until the pressure reached the level where it balanced
the weight of the overlying rock. Until this point the vesicle would be
under compressional stress. As the rock would have some finite tensile
strength, additional pressure would be required to induce rupture. Even
if this overpressure were considered small, the release pressure would be
roughly 2.5 times (the ratio of rock to water density) as high as in the
case of the water-saturated sand.

Most natural systems probably lie somewhere between these
extremes. More pressure is needed than that required to lift a column
of water equal in length to the depth of burial and less than is necessary
to lift a column of rock. Other factors to be considered are the friction
to the flow of the discharged fluids and the contribution of water vapor
to the total pressure of the gas phase. The former leads to higher critical
CO2 pressures and the latter to lower pressures.

Situations could certainly arise where the pressure exerted on the
solid phases exceeded that exerted on the included gases. The sand
grains at the base of the hypothetical column discussed above would be
supporting the weight of the overlying sand whereas adjacent water
molecules would be supporting the much lower weight of the overlying
water co lumn. For such cases th is d i f fe rence shou ld be taken in to
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account in the free energy calculations. The volume change for the
solids should be multiplied by the lithostatic pressure rather than the
ambient CO 2 pressure. Hence the free energy equation would be
r e v i s e d t o r e a d

AG = AH-" - T AS'" - A(AS) dT + AF'"P,uh + bpco, + flrin pco.

We are now in a position to estimate under what conditions in the
earth's crust calcite and quartz would react to yield woUastonite. In
Fig. 9.9 a plot of a typical geothermal gradient for the earth's crust is
compared with curves for the minimum temperature (release pressure
equals weight of equivalent water column) and maximum temperature
(release pressure equals weight of equivalent rock column) required for
woUastonite production. Clearly this reaction does not take place as the
result of normal geothermal heating. Abnormally high temperatures as
would be generated, for example, adjacent to igneous intrusions would
be required.

In Table 9.11 the thermodynamic data for several CO2 release reac
tions are compared. Despite the fact that the decomposition tempera
tures show an extremely large range (that is, 1000®K), the standard
entropy, volume, and heat-capacity changes are all fairly similar. The

CaSiOs + ^
CoCO, or SiOj

T̂AbSjTY Pifth Ph.O^ ^ I M I T *
m ^ \ - 1 5 0 0 5 0 0

L O W E R
S T A B I L I T Y

L I M I T
3 0 0 0 1 0 0 0

CoCO,+8102 >^4500 1500
N O R M A L
E A R T H

T E M P E R A T U R E 6 0 0 0 2 0 0 0

7 5 0 0 2 5 0 0

. ^ 0 0 3 0 0 0

Fig. 9.9. Location in the earth's crust where the reaction calcite +
quartz -> woUastonite might occur.
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big difference in their tendencies toward decomposition arises from the
var iat ion in f rom react ion to react ion.

The question comes to mind whether the tendency of a given car
bonate to decompose can be predicted from its properties and those of the
oxide produced by its breakdown. In Table 9.11 it is shown those car
bonate-oxide transformations showing the largest decrease in heat capac
ity decompose most easily. The magnitude of the heat-capacity decrease
is related to the relative strengths of the metal oxide bond in the carbonate
versus that in the oxide. A large decrease reflects enhanced bond
strength in the oxide relative to the carbonate. Such an enhanced bond
strength should lead to a larger oxide stability field and a lower decom
position temperature.

It is of interest to note that the decomposition temperature rise is in
accordance with the degree of covalency of the metal oxygen bonds. A
high degree of covalency (Zn, for example) leads to easy decomposition,
whereas a high degree of ionic character (Ba, for example) leads to diffi
cult decomposition.

P R O B L E M S

9.1 A phase transition occurs at P = 4 kbars, T = 0°C. The entropy
change for the transition is —2 cal/deg-mole, and the volume decrease
is 6 cmVmole. Assuming a normal geothermal gradient, at what
pressure in the earth will the transition occur?

*9.2 Oldhamite, CaS, is found only in enstatite-rich meteorites. Larimer
has studied the reaction

^CaS + 02 = ^CaS04

and found that log po, = 8.58 - 25,350/P°K for T between 800 and
1000°C. Using free energy and entropy data, calculate the theoretical
O2 pressure as a function of temperature. Compare theoretical and
experimental results.

*9.3 The Moho under oceanic regions occurs at a depth of about 12 km
below sea level. If the seismic discontinuity were due to a phase change,
at what depth below the surface of the moon would a similar phase change
occur? If identical chemical composition is assumed, would there be
any difference in the thermal effects of the transition in the moon as
compared with those in the earth?
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9.4 A detailed study of a large alkali feldspar erystal reveals a fluid
inclusion. The feldspar consists of two phases, one rich in K (as
KAlSisOs), the other rich in Na (as NaAISiaOs). The fluid inclusion
contains H2O, K+, and Na+.

(a) What is the number of components necessary to define the
system?

(b) How many phases are present?
(c) How many independent equations can be written connecting

the components and the phases?
(d) If the pressure and composition of all the phases are given, is

the system completely defined? If not, what additional infor
mation is necessary?

(e) Would simple application of the phase rule, in the form
/ = C 4- 2 — P, be likely to illuminate or confuse the essential
nature of the problem?
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% chapter ten Melt ing Phenomena

Evidence of present and past igneous activity testifies to the fact that
silicate material in the earth's mantle, and possibly in the lower crust, is
continuously being subjected to partial melting. Since the crust and
mantle both transmit shear waves which would not travel in fluids, we
k n o w t h a t m o s t o f t h e c r u s t a n d m a n t l e i s s o l i d . To u n d e r s t a n d t h e

process of magma formation we would like to know under what conditions
the solid phases present will melt.

The melting point of any given mineral depends in a rather complex
way on its environment. Not only does the fusion temperature depend
on the pressure to which the mineral is subjected but also on the minerals
and fluids with which it is associated. In this chapter we will deal with
the factors which influence the melting of solids.

P R E S S U R E D E P E N D E N C E O F M E LT I N G P O I N T S

The melting points of most materials of interest in earth science rise with
increasing confining pressure. Ice is a notable exception. Since the
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thermodynamic properties of silicate materials at high temperature and
pressures are not well known, information concerning the behavior of
melting points with changing pressure must be derived from experimental
data. Observed melting points for several geologically important mate
rials are given as a function of pressure in Table 10.1. The gradients
average about 10 deg/kbar. However, it should be noted that the
gradients are decidedly nonlinear at high pressures.

TABLE 10 .1

Melting Temperature as a Function of Pressure for Several Solids

M i n e r a l Temperature, °C Average
P = 0 P = 10 I I P = 30 Grad ien t ,

k b a r k b a r s k b a r s k b a r s deg/kbar
0 - 1 0 k b a r s

Diopside (CaMgSi206)t 1390 1 5 2 0 1 6 3 0 1 7 1 0 1 3
Albite (NaAlSisOs)! 1 1 2 0 1240 1 3 2 0 1 4 0 0 1 2
Enstatite (MgSiOj)! 1557 § 1670 1760 1 8 4 0 ( i i ) §
ForsteriteH 1 9 0 0 1 9 5 0 1 9 9 0 2040 5

t F. R. Boyd and J. L. England, J. Geophya. Res., 68: 311 (1963).
t F. II. Boyd, J. L. England, and B. T. C. Davis, J. Geophys. Res., 69: 2101 (1964).
§ Incongruent melting of clinoenstatite; thus, gradient is average of two curves with
di f ferent s lopes.
H B. T. C. Davis and J. L. England, J. Geophys. Res., 69: 1113 (1964).

From the Clapeyron equation, discussed in Chap. 9, we know that
the melting-point gradient is related to the entropy of fusion, AS/, and
volume change on fusion, AF/:

d T ^ A F /
d P A S f

Thus the approximate entropy of fusion may be calculated from the
measured gradients and the volumes of the solid and melt for the small
number of cases where the molar volume of the melt is known. The
percentage entropy change for melting averages about 5 times larger than
for solid-solid transformations. Since the volume changes occurring
during the two types of transitions are about the same, the melting-point
gradient (dTm/dP) must be about 5 times less steep than the slope of the
phase boundary for comparable solid-solid transitions.

The slope of any melting curve will change if it is intersected by a
solid-solid-transition phase boundary. This can be seen by referring to
Fig. 9.1, the phase diagram for SiOa. The melting-point gradient,
dTm/dP, is much higher for /S quartz, the high-density phase, than it is
for cristobalite, the low-density phase. From the positive slope of the
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cristobalite-j8-quartz phase boundary we can conclude that the entropy
of cristobalite is higher than that of jS quartz. Since the entropy of SiOa
liquid is higher than that of either solid, we can conclude that the entropy
of fusion for /3 quartz is higher than that for cristobalite. The volume
change on fusion of 18 quartz is also larger. The reason that the melting-
point gradient increases on passing from cristobahte to jS quartz is that
the percentage entropy difference between the two solids, as compared
with the difference between either solid and the liquid, is less than the
percentage volume difference.

To see this point more clearly, let us assume we are dealing with the
/3-quartz-cristobalite-liquid Si02 triple point. We may then express the
volume and entropy changes on fusion of quartz as the sum of the
changes in going from /3 quartz to cristobalite and thence to the liquid:

(dTn\ AVjSqtz—liq ATcrist—liq ~H AVff gtz—cristdP A qts qtz—liq A*Scrist—liq 4" A»S/3 qtz—Crist

For melting of cristobalite

/dTm\ AFcrist—liq
\dP / Crist AScrist—liq

The terms ATcrist-uq and AF^qtz-crist are approximately the same; how
ever, the term A<Scrist-iiq is much larger than AS^ qtz-crist- Thus,

( d TA ( d TA\dP Aqtz \dPArist
Because of this phenomenon, care must be taken not to extrapolate

experimental data on fusion curves beyond the intersection of the fusion
curve with any solid-solid-transition phase boundary.

For a liquid to form in the mantle, the earth's pressure-temperature
curve (the geothermal gradient) must cross the composite melting curve
for the solid phases present. As will be shown later in this chapter, the
presence of more than one solid phase may lower the temperature at
which a liquid first appears to a point below the melting point of the pure
solids. Nevertheless, it is interesting to compare the melting curve of a
mineral which might be found as a major phase in the mantle with the
geothermal gradient. Figure 10.1 shows the pressure dependence of the
melting point of diopside, a pyroxene, as measured by Boyd and England,
together with a geothermal gradient calculated by Clark and Ring wood
from consideration of measured terrestrial heat flow. If diopside were
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Xjuouiiuoo qiAi pmbq v 'pgjBgq pu^ pgxiui gj'B sgŝqd pqos om!j ugq^w
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the H2O molecules in the liquid by Na+ and CI" ions would cause fewer
H2O molecules to hit the ice crystal and hence fewer to be captured. The
result would be that the ice would lose H2O molecules faster than it
gained them, and the ice cube would begin to shrink. However, as the
melting proceeded, cooling would ensue [to remove H2O molecules from
ice requires 1436/(6 X lO^') cal/molecule]. As the ice and salt solution
cooled, both the rate of escape and capture would fall. However, the
rate of escape would be most affected. Eventually a temperature would
be reached where the two rates would again become equal. This melting-
point lowering would occur provided two conditions were met: (1) that
the melt of the two solids formed a single homogeneous liquid (i.e., liquids
miscible) and (2) that the solid contaminant in the liquid phase was not
able to dissolve in the solid of interest (i.e., solids immiscible).

These conditions are met for a wide variety of silicate-mineral pairs.
In such cases we can calculate the melting-point depression caused by
the contaminant in the following way. The free energies of the two solid
phases A and B can be written as follows, provided that their entropies
are essentially constant near the melting point:

Ga... = Gt, - (T - TJSL.
a n d

- i T -

where Tk and Tb are the melting points of the pure solids, and G* and S*
are their free energies and entropies at their respective melting points.
If the melt formed by these solids is ideal (hence no heat of mixing), then
the free energies of these components in their mutual melt are given by

I n

a n d
- (T - Tb)'S^„, + RT In Xb

At equilibrium
^Aii, ~ ̂ Ami

a n d

^B,i, = G'B^,
S i n c e

Gl^ = GL,
a n d

= Gi^,
w e h a v e

R T I n X ^ = ( T - - S l J
a n d

RT In Xb = (T - Tb)(S^,„ - S*J
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Consider what would happen if a melt consisting of 0.95 mole of A
and 0.05 mole of B were cooled. No crystals would appear until a tem
perature of 975®K was reached. At this point the curve for equilibrium
between the melt and compound A would be reached. Crystals of com
ponent A would form and the melt would become enriched in component
B (that is, Xb would rise). With further cooling the system would move
down equilibrium curve A toward its intersection with equilibrium curve
B (the eutectic point). At the eutectic point, B and A would simul
taneously crystallize until the liquid disappeared. Only after the liquid
completely disappeared could further cooling take place. No liquid can
stably exist below the eutectic point, 870®K in this case.

Any liquid with more than 75 percent component A would follow a
similar cooling history. Those with less than 75 percent A would first
intersect the B equilibrium curve and crystallize component B rather
than A until the eutectic point was reached.

Several general principles can be seen from this treatment. First,
because the entropy of fusion is always positive, a lowering of the melting
point always takes place when a contaminant which is immiscible in the
solid phase is added to the pure melt. When the contaminant becomes
so great as to make the original component negligible in amount, the
"apparent" melting point of the component will approach absolute zero.
The shape of the equilibrium curve in the ideal case depends on the
entropy of fusion. The initial slope (i.e., for Xa = 1) is

dT„. _ RTa
d X x A S / a

The smaller the entropy of fusion, the more rapid is the initial tempera
ture drop with the addition of a given amount of component B to the
liquid.

In all such situations there exists a minimum temperature at which
a melt can form (i.e., that temperature at which the curves intersect).
Regardless of the proportions in which the solid components are mixed,
the first liquid will have the same composition (that of the eutectic).
The so-called eutectic temperature and composition are dependent on
Ta, Tb, AS/a, and AS/b. In all cases the eutectic temperature must be
less than either Ta or Tb-

If, as is the case for most mixed silicate liquids, the solution is not
ideal, the effect of the heat of mixing must be included. Whereas this
alters the shape of the melting-point-depression curve, its main features
a r e n o t a f f e c t e d .

The melting-point-depressing contaminant need not be another
solid phase but could instead be a volatile component such as HaO or CO2.
Although volatiles do not readily dissolve in silicate liquids, if sufficient
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Similarly,
Y _ V r A S ^ B ( 2 V- - _ ^-^B,o l GXp 727*

it is readily shown that

+ Xb„, = 1

■ ^ A i i q ~ l ~ 1

^A., =
1 - exp [A5/b(Tb - T)/RT]

a n d t h a t

Xn ._ =

exp [ASmC^a - T)/RT] - exp [A5/b(Tb - T)/RT]

1 - exp [A^/A(rA - T)/RT]
exp [AS/niTji — T)/RT] - exp [AS/aCTa — T)/RT]

With Ta taken to be 1000®K, Tb to be 1500®K, and AS/a and A/S/b to be

I300h I

IIOO^ !

Ffg. 10.3. Calculated melting temperature versus mole fraction for
twocomponentswhich form a solid solution. The upper curve gives
liquid compositions in equilibrium with solid compositions on the
lowercurve at any given temperature. The dashed arrow shows the
temperature of first crystallizing, and composition of the solid phase
which would first crystallize from a liquid containing 95 percent
c o m p o n e n t A .
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4 cal/deg, the resulting equilibrium curves are shown in Fig. 10.3. The
upper curve represents the loci of liquid-composition-temperature
points at which equilibrium can exist between a liquid and solid phase,
and the lower curve represents the loci of solid-composition-temperature
points at which this equilibrium can exist. Above the upper curve the
material is molten, and below the lower curve the material is solid.
Points lying between the two curves represent two phase systems of
liquid and solid in equilibrium.

If a 95% A-5% B mixture is cooled from 1500®K, the first solid
will appear at 1045°K. Its composition will be 86% A and 14% B.
Upon further cooling, if equilibrium is maintained, the composition of
both the liquid and the solid will move toward A until finally, as the
last drop of liquid crystallizes, the solid will have the same composition
as the initial liquid.

This calculation allows some generalizations to be made regarding
systems involving ideal solid solutions. The solid forming at any given
time will always have a greater percentage of the high-melting-point
component than the crystallizing liquid. The separation between the
liquidus (upper curve) and solidus (lower curve) depends on the magni
tude of the fusion entropies. The larger the entropies of fusion, the
more separation will there be. Crystallization always takes place at
temperatures between the melting points of the pure components. Again,
nonidealities as reflected by a finite heat of mixing for either the liquid
or the solid solution alter the shape of the curves.

I N C O N G R U E N T M E L T I N G

Most solids melt to give a liquid which has the same composition as the
original solid. A number of geologically important minerals have the
interesting property that on melting they produce a liquid and another
solid phase, neither of which has the composition of the original solid.
This is known as incongruent melting.

Figure 10.4 shows the phase diagram for the system Mg0-Si02 at 1
atm. In this system, clinoenstatite, MgSiOs, is an intermediate com
pound which melts incongruently. If pure MgSiOs is heated, a liquid
will first appear at 1557®. This liquid will consist (in weight percent)
of approximately 39% MgO, 61% Si02 whereas MgSiOs is approximately
41% MgO, 59% Si02. Thus the liquid is slightly richer in Si02 than
the original solid. To compensate for the excess Si02 in the liquid, some
Mg2Si04 (olivine) forms which has a composition of 42% Si02, 58%
MgO. After all the clinoenstatite has disappeared, the olivine will begin
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saîBjidioajd auiAqo ajom puB '̂OIS "I paqoi-nî ̂Joui sauiooaq pmbq aqij
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Xq u9at3 si gjn̂x̂ira oîôâjna v ui jaquiaui pu9 ajnd -e joj 9Ajno
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In other words, small amounts of A can be dissolved in B, and vice versa.
A sequence of generalized melting diagrams for increasing miscibility
is shown in Fig. 10.6. It can be seen that as long as either solid is in
contact with the mixed liquid, the amount of the contaminant it dissolves
will increase with decreasing temperature, because the liquid becomes
ever richer in the contaminant as the system cools. Once the eutectic
temperature is reached and the liquid disappears, the opposite trend
ensues. As the two solids cool, their ability to dissolve the contaminant
decreases until at absolute zero a mixture of pure A and pure B becomes
stable. The reason for this unmixing will be given in the next chapter.

On the other hand, most solid solutions are not ideal. Heat is
absorbed during mixing (i.e., the bonds holding the mixture together are
not as strong as the average bond strength for the pure end members).
This nonideality leads to a downward bulge in the liquidus and solidus
curves. If this bulge is sufficiently great to bring the liquidus below
both the melting points, the solidus and liquidus must meet at the
minimum point. This change due to increasing nonideality is depicted
in Fig. 10.7.

As shown in this figure, a nonideality in the solid solution may lead
to the additional complication that the solids unmix when cooled to a
sufficiently low temperature. At absolute zero, unmixing would be com
plete and the pure phases A and B would be stable.

It is easy to see how the sequence from complete immiscibility to
ideal solid solution is completed. If in Fig. 10.7 the nonideality were
increased to the point where the exsolution dome penetrated the liquidus,
then the eutectic situation depicted in Fig. 10.6c would result. The
greater the degree of overlap, the closer the diagram would approach
extreme immiscibility (Fig. 10.6a).

P R O B L E M S

10.1 A liquid has a composition of 55 percent by weight MgO and 45
percent Si02. Using the MgO-SiOa phase diagram, determine the com
position and amounts of each phase present after crystallization of 10,
20, 30, 40, 50, 60, and 70 percent of the liquid by equilibrium crystalliza
tion. How would your results change if only surface equilibrium were
m a i n t a i n e d ?

10.2 Determine the phase diagram for the following hypothetical
m a t e r i a l .
P h a s e s :

Solids, sol A and sol B
Liquid, liq
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Transition parameters:

= — 2.0 cal/deg-mole

= —36.0 cal/deg-mole

= +200 cal/mole

A^^h*^-.8oia = -40,000 cal/mole
= -6.0 X 10-3 liter/mole

AT^ff-»8oiA = -4.0 X 10-3 liter/mole
Assume AS and AV remain nearly constant with T and P. Give the
coordinates of the triple point and slopes of the three phase boundaries.
At what pressure does sol A become stable at room temperatures? What
is the 1-atm melting point of sol A? Which phase would be stable at
the Moho under a typical continent?

*10.3 Use the results of Prob. 6.2 and the sources of data given there.
Additional abundance data required for this problem (from Suess and
Urey) are

Si = 10^ Mg = 9100
A 1 = 9 5 0 C a = 4 9 0

K = 3 2 F e = 6 0 0 0

N a = 4 4 0

Are any metallic elements present as solids at 1500®C? At 1200®C?
Calculate condensation temperatures for MgAl204, AhSiOs, CaAl2Si208,
Ca2Si04, CaSiOs, CaMgSi206, KAlSisOg, MgSiOa, Si02, and MgSi04.
What solid phases are present at 1200°C? Remember that previously
condensed solids may react with the gas to produce new solids. Will
any solid present at 1200®C react with the gas to produce a liquid?
10.4 Dry peridotite melts at 1500®C at 30 kbars. Peridotite mixed with
30 weight percent H2O begins to melt at 1050®C [1. Kushiro et al, J.
Geophys. Res., 73 : 6023 (1968)]. Calculate the mole fraction of H2O in
the hydrous system. Assuming that the depression of the melting point
of peridotite depends linearly on the mole fraction of H2O in the system,
plot melting-point depression versus mole fraction of H2O. A reasonable
concentration of H2O in the mantle is 0.1 percent by weight. Estimate
the temperature at which a 2-percent partial melt occurring as a eutectic
melt would occur at P = 30 kbars, assuming that all the H2O goes into
the melt phase.
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*10.5 A volume element of mantle material consisting of 60% olivine,
20% orthopyroxene, 15% clinopyroxene, and 5% garnet is raised adiabat-
ically from 60 to 20 km. If it is on the solidus at 60 km, how much melt
ing vdll take place during its ascent? How will the density change if
there are no phase changes other than melting? Useful hints: See Green
and Ringwood for the solidus pressure gradient. Neglect the effect of
water. You may have to estimate some of the parameters, such as
compressibility of basaltic liquid.
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Two minerals with the same basic anion framework but different balancing
cations generally show mutual solubility. In some cases, such as Fe
and Alg olivines, complete mutual solubility exists and a single homo
geneous phase results. In other cases, the solubility is rather limited.
For example, in coexisting siderite (FeCOs) and calcite (CaCOj) only a
few percent of the Fe will be replaced by Ca in siderite and a few percent
of the Ca by Fe in the calcite.

The degree of solid solution depends on the temperature of forma
tion of the solution and on the cooling history of the solid. This is
because the degree of mutual solubility decreases with decreasing tem
perature. A mineral pair which shows complete solubility at the crys
tallization temperature might exsolve into two separate phases on cooling.
Since this cxsolution proceeds by diffusion and since diffusion rates fall
dramatically with decreasing temperature, there is a temperature below
which perceptible exsolution no longer can occur. The extent of total
exsolution depends strongly on the rate of cooling from crystallization
to the "freeze-in" temperature. Although often the result of a complex
interplay between equilibrium and kinetic factors, cxsolution phenomena
offer the opportunity to investigate the thermal history of a rock.

2 3 6
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U-B SI UOÎn̂|OS pT|OS -B JI •UOT̂'BZI|'BJ8U02 ̂^U'B:̂JOC[xUT U'B JO ajduiBXa UB
ST S0jn!JBJ0dUI9^J MOJ XTUIUn SJ'Bdspj0J pUB >I 01j;j (^0BJ 0l[X

■dmionxp otfiiifudd p0pBO si jBdspj0j
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mixture of A and B is simply given by

Gmcch. mix. = XaGa. + XhGb

where Ga is the free energy of the pure phase A at the temperature and
pressure of interest. For 1 mole of total molecules we may express the
same relationship using the chemical potential of the pure phases:

Gmcch. mix. = XAfJ-A +

If we plot the free energy of the mixture as a function of composition, a
straight line connecting Ga and Gb is found. This is the simplest form
of a free energy-composition diagram and is shown in Fig. 11.2a.

In an ideal solution the chemical potential of each component is
given by

fii = + RT In Xi

where n° is the chemical potential of pure i at the temperature and
pressure of interest. Let us consider an ideal solution of two components,
A and B, which share a common anion and in which the cations have the
same charge. We may then define 1 mole of solution as the quantity of
solution which contains the same number of anions as 1 mole of one of
the pure components. The molar free energy of the solution would be

Gsoln ~ ̂  XiHi
i

o r

Gsoin = XahI + In Xa + XbuI + ^bRT In Xb

X o — X b — X B —

( a ) ( b ) ( c )

Fig. 11.2. (a) Free energy-composition diagram for a mechanical
mixture of components A and B; (b) free energy-composition
diagram at 3C0°K for components A and 8 which form an ideal
homogeneous solution; (c) free energy-composition diagram at
constant temperature for components A and 8 which are totally
i n s o l u b l e .
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It is evident that the ideal solution can be related to a mechanical
mixture of A and B by

f̂ aoln ~ G'mech. mix. + XaRT In xa, + XtiRT In x̂

Since both xa and Xb are less than 1, both of the logarithm terms will be
negative. Consequently an ideal solution of A and B will always have
a lower free energy than a mechanical mixture of A and B. This is
because a mechanical mixture does not significantly alter the entropy of
the system, since the particles being mixed are large. One mole of NaCl
consisting of particles 10 microns in size contains only 10" particles but
has 10®' molecules. Mixing on the molecular scale, such as occurs when
an ideal solution is formed, increases the entropy by an amount

AiSgoin = —R{xa In Xa + xb In Xb)

Thus the free energy of the solution is lowered. The free energy-com
position diagram for an ideal solution is shown in Fig. 11.26; the mechan
ical-mixing line is shown for comparison.

From the free energy relationship for an ideal solution we may
easily derive the other thermodynamic functions for the ideal solution.
The molar volume is found by differentiating the free energy mth respect
to pressure at constant temperature and composition of the solution:

Vsoln —̂ /dggolnX" \ dP )r.s,

= XaVI + XbVI

where are the molar volumes of pure A and B. Thus there
is no volume change when the components mix to form an ideal solution.

The entropy of 1 mole of solution is similarly found by differentiating
the free energy with respect to temperature at constant pressure and
composition:

SsoID —_ _ /dGsolnN
\dT Jp,.,

X a - X B \ d T j i
— xbR In

= Xa^I + XbSb — R{xa In Xa + Xb In Xb)
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The term —R(xa In Xa + xb In xb) is called the entropy of mixing, because
it is the amount by which the entropy of the solution exceeds the entropy
of the pure separated components.

The molar enthalpy of the solution is found by using the relationship

H = G + T S

and the results already found for (jsoin and /Ssoin:

Hsoin = (xamI + Wl) + XaRT In Xa + XbRT In Xb
+ T[xaSa + Xb^b - In Xa + Xb In Xb)]

= ^AifiA + 1"^!) + XB(I*B + '^^B)

= XaHI + XBHI

Although both the entropy and free energy of the solution have terms
arising from the formation of the solution, the enthalpy of the ideal solu
tion is simply the sum of the contributions of the pure end members.

Some of the properties of an ideal solution are the same as a mechan
ical mixture of the components. Enthalpy and volume are properties of
this type. Thus when two components form a solution for which there
is a volume change and an enthalpy change, the solution cannot be
i d e a l .

Some phases which form nonideal solutions at high temperatures
unmix completely to a mechanical mixture at low temperatures. This
is because at low temperatures the free energy of a homogeneous solution
is always greater than the free energy of a mechanical mixture. This
case is shown in Fig. 11.2c. If a solution formed at high temperatures
is rapidly cooled to a temperature where the solution is unstable, however,
the solution may persist if diffusion cannot allow unmixing to occur.

Most solids have properties falling somewhere between those of an
ideal solution and those of a system such as shown in Fig. 11.2c. For
these solids we may express the free energy of a solid solution of com
ponents A and B as

Gsoin = XamI + XbMb + ^aRT In Xa + xbRT In Xb
-|- xaRT In 7a "b XbRT In 73

where 7a and 7b are the activity coefficients of phases A and B in the
solution. The real solution described by the equation above is related
to the ideal solution by

Gsoia = Gideal + XaRT In 7a + XbRT In 7b
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homogeneous-solution curve. Only between Bi and B2 will a mixing
l i n e f a l l b e l o w t h e c u r v e .

It is sometimes possible to synthesize solutions with compositions
lying between Bi and B2. The degree of instability of such solutions is
governed by their position with respect to the inflection points on the
free energy curve. These inflection points are noted with arrows in
Fig. 11.3. For compositions lying between 2:13 = Bi and the left-hand
arrow and between xn = B2 and the right-hand arrow, the solutions are
metastable. Thus they may persist for extended periods of time. Solu
tions with compositions lying between the two arrows are unstable and
will unmix by diffusion, generally in relatively short periods of time.

T H E A L K A L I F E L D S P A R S

The alkali feldspars form a geologically important solid-solution series.
They are present as major constituents in granitic rocks and in the
differentiation products of alkali basalts. The existence of perthite
indicates that the solution is extremely nonideal. There are other,
more subtle, indications of nonideality in alkali feldspar solutions. For
example, there is a positive heat of mixing when the two components
combine to form a solut ion. An ideal solut ion would have no heat of
mixing.

Orville studied the equilibrium between alkali feldspars and 2 m
alkali chloride solutions in order to find the extent to which ion exchange
between crystals and fluid could occur. His experiments were conducted
at 2000-bars pressure and at temperatures between 500 and 700®C. The
reaction studied can be written

KAlSisOsCxl) -I- Na+(fl) = NaAlSigOaCxl) -i- K+(fl)

The crystals used were sanidine and high-albite structural states. The
thermodynamic properties of the feldspars depend on their structural
state or the degree of ordering in the Al-Si-0 framework, and so it is
necessary to have uniform starting materials. At equilibrium,

MNs''' + Mk" = Mk''' + MXa"
o r

Thompson and Waldbaum used Orville's data to calculate a theoretical
free energy-composition relationship for the alkali feldspar solid solu-
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tions. As discussed above, the free energy for a nonideal solution is

Gsoln = Gideal + XfJiT In 7a + X^RT In 7b

The activity-coefficient terms may also be written

XaRT In 7a + XbRT In 7b = WaXkXb^ + WbXbXa}

where Wa and Wb are functions of temperature and pressure but are
independent of composition. Solutions which follow this rule are called
regular solutions. (For a derivation of this relationship see Denbigh, f)
The molar free energy of the solid phase is then

Gaoin = "h MNa%a RT(xk In a^K + In a;Na)

If we perturb the system by removing an infinitesimal amount of
KAlSisOs and replacing it by NaAlSisOs, the molar free energy will
change by

Afjooln = MNa "" MK

But the change in G caused by changing the composition by an infini
tesimal amount is simply the partial molal free energy of the solution:

AGaoln =_ /dGaoln\
\ dXtia. )l

-I- /2T[(1 — a:Na) In (1 — xno) + x^a In XNa]
+ lFKa;Na^(l — XNa) + Î NaXNaCl — XNq)^}

= MSra-M| + I2Tln^"+TFNa
X k

+ (2irK — 4WNa)XNa + 3(TFNa " IFK)XNa^

The free energy of the fluid phase is given by

MNa — MK = /XNa — Mk + In ^iNa^Na — RT In mK7K

t K. Denbigh, "The Principles of Chemical Equilibrium," p. 430 ff., Cambridge University-
Press , New York , 1964 .
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where n* is the chemical potential of the pure component at the tempera
ture and pressure of interest, using the solute standard state. In this
case the standard state is defined in terms of molality so that molal con
centrations (m) in the fluid phase may be used. (Aim solution contains
1 mole of solute in 1000 g of solvent.)

Combining the results for the solid and fluid phases,

mL - Mk + In — -f- T^Na + {2Wk - 4TfNa)a;Na
X k

+ = mS. - mS + BT In ^ + KT In ^
/ / t K / K

Rearranging terms gives

R T \ n
X K m n o .

X n a f r i K T N a

"h lÎ Na "b (2irK — 41FNa)XNa ~l~ 3(H^Na irK)2JNa^

This expression is a quadratic equation of the form

w h e r e

y = RThi

y = 0,0 dlXiia +

g K ^ N a

X t i a V l K

ao = (M&a - M°k - 4. + 4) +
7 N a

ai = 2WK — 4irNa

a2 = 3(lfNa - Wk)

The last two equations can be solved to give values of ITk and ITNa once
ai and 02 are known:

Wk = —^1 ~ f®2

IP^Na = —^1 7^2

Thompson and Waldbaum calculated values of y from Orville's ion-
exchange data and fitted the ion-exchange data at each temperature to
the polynomial equations. Then they calculated values of ITk and TTNa
for each temperature. The result gives the free energy-composition
relationship for 2000-bars pressure and temperatures equal to 500, 600,
650, 670, 680, and 700°C. In order to extend the equation of state to
other P, T conditions, more data are needed.



2 4 6 C H E M I C A L E Q U I L I B R I A I N T H E E A R T H

The extension of the free energy relationship to other P, T conditions
can most conveniently be made if we use the concept of excess functions.
The excess function for a thermodynamic variable, F, is defined as the
value of Y for the real solution minus the value for an ideal solution:

Freal Fjdeal

By this definition Fxa contains all the nonideal behavior for the variable
F. In the alkali feldspar problem the following excess functions are
u s e f u l :

= GaoXa — (̂ Na^Na + A^K^K + lu ̂ Na + XkRT lu XK)
Fx8 = Faoln - (XNaFSra + XkV )̂
Sxa = /Ssoln — (â Na'SNa + — PXNB IH ajNa — RXk IH ̂ K)

= H,oln - (a^Na^Na +

Pxs ~ Psoln (a^Na^Na "f"

We may manipulate the excess functions in exactly the same way as the
standard thermodynamic functions. For example,

KdTjp,,

Similarly,

dCfjsoln f?ideal)
d T

= —'Ssoln + 'Sideal

= - s . .

GXS = ^X3 - TS,
— (jxs

Each of the excess functions may be written in a symmetric form, as
was done for free energy above:

FX8 = lFKN.a:Naa:K^ + Wvk̂ KXUB.'̂

Hjcb = TFjŷ ^arNaaJK^ + wH^X^X-Stî

*5x8 ~l~ IFsjjXKaJNa^
Px8 = IF̂ N^XNaaJK^ + WE^XviXiiB?̂

The constants TFs, Wv, and TF r̂ are assumed to be independent of tem-
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perature and pressure. This is equivalent to saying that there is no
nonideal contribution to heat capacity, compressibility, and thermal
expansion. The free energy constant, W, is a function of temperature
and pressure; the enthalpy constant, Wn = We + PWv, is a function
of only pressure. Ultimately, the free energy equation will be written
in terms of We, Wv, and Ws to avoid the problems of variation of the
"constants" with temperature and pressure.

The first step in extending the free energy relationship is to find the
value of Wvti„ and Wvk- Since

d P

this will allow us to extend the equation of state to other pressures.
Waldbaum measured the volume of a series of microcline-low-albite
feldspars. His results are shown in Fig. 11.4. The upper curve shows

0 0 . 9 1 . 0

MOLE FRACTION NaAISiaOe

Fig. 11.4. Molar volumes of synthetic microcline-low-
albite crystalline solution as a function of composition
(upper curve). Straight line below gives theoretical
v a l u e s f o r a n i d e a l s o l u t i o n . T h e d a s h e d l i n e s s h o w
the graphical evaluation of Wv- To obtain volume in
liters per mole, divide by 23.9; the units of calories per
bar-mole are suitable for direct use in the free energy
equation. (After Waldbaum.)
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auipojoira puB
gjiqiB 9jnd jo souinjoA jbjoui jBn(jOB gq?̂ puB sgranjoA jbjoui avbj s/juoh
9sgq!j uggAv^^gq sgougjgjjip gqx ('pgjgpjo itjjogjjgd gjB ig puB jy qoiqM

®0®ISTV>I JO oiJOj gq̂ si 9iiipojoi];\r) -guqoojoiui 0!j pgppB ĝt̂qjB jo
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For sanidine-high-albite feldspars, Waldbaum estimated

= 0.0787 + 0.0048 cal/bar-mole

Wvk = 0.0787 ± 0.0048 cal/bar-mole

The extension of the free energy equation to variable temperature
requi res ca lcu la t ion of and s ince

^ = - s
d T

From the relationship

5x3 =
Hx3 - Gx

we have

=
Wh.. - T^Na

W s . =
- W K

The values of TTwa and Wk are known at six temperatures. Knowledge
of Whh^ and Wat these temperatures would permit calculation of

a n d
To evaluate Wh, Waldbaum measured the heats of solution for alkali

feldspars of various compositions in HF. His results are shown in Fig.
11.5. The upper curve is the best fit to the experimental data, using a
quadratic equation. The lower line is the expected result for an ideal
solid solution. Wh may be found by extending the Henry's law slope
from infinite dilution up to unit mole fraction and subtracting AH^, the
heat of solution of the pure phase. For example,

W„, = Aiil - AHl
T h e v a l u e s f o u n d w e r e

- 8426 ± 43 cal/mole

Whk = 6244 ± 43 cal/mole

The values of may be calculated immediately, since

W e = W h - P W v



*NaAISi3pQ
Fig. 11.5. Heats of solution for microcline-low-albite crystalline
solutions, showing least-squares fit to data. Lower line shows
h e a t s o f s o l u t i o n f o r m e c h a n i c a l m i x t u r e s . T h e d a s h e d l i n e s
show graphical evaluation of Wh- (After Waldbaum.)

At 1 atm, where the heat-of-solution data were obtained, PWv is negligible
a n d

W e ^ W H

For sanidine-high-albite solutions there are no direct heat-of-solu
tion data from which Wh may be calculated. However, by comparing
Wji for microcline-low-albite solutions with Wh for NaCl-KCl solu
tions, Waldbaum concluded that Wh (sanidine) ~Wh (microcline) and
Wh (high albite) = Wh (low albite). At 2000 bars, Wh^ = 8583 cal/
mole for sanidine and = 6401 cal/mole for high albite. The values
of Ws found by using the expression Ws = {Wh — W)fT for each of the
e n d m e m b e r s w e r e

Wsk = 4.484 cal/deg-mole sanidine
= 3.702 cal/deg-mole high albite

The values found so far are tabulated in Table 11.1. Unfortunately,
no data are available to calculate Ws for microcline-low-albite solutions.

2 5 0
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San id i ne H igh A ib l t e
K N a

TABLE l l . l t
Constant for MIcrocllne Low Aiblte Sanidine High Albite

E x c e s s F u n c t i o n K N a K N a
a t 1 a t m

Tfy, cal/bar-gfw 0.0888 0.1114 0.0787 0.0787
W h , c a l / g f w 8 4 2 6 6 2 4 4 ( 8 4 2 6 ) ( 6 2 4 4 )
W e , c a l / g f w 8 4 2 6 6 2 4 4 ( 8 4 2 6 ) ( 6 2 4 4 )
W s , c a l / d e g - g f w 4 . 4 8 4 3 . 7 0 2
t Data from D. R. Waldbaum, Unpublished Ph.D. thesis. Harvard Uni
versity, Cambridge, Mass., 1966. More recent data on Sanidine-high-albite
solutions are given in: J. B. Thompson, Jr., and D. R. Waldbaum, Mixing
Properties of Sandine Crystalline Solutions III, Amer. Mineral.

0 . 0 8 8 8
8426
8 4 2 6

0 . 111 4
6244
6 2 4 4

0 . 0 7 8 7
(8426)
(8426)

4 . 4 8 4

0 . 0 7 8 7

(6244)
(6244)

3 . 7 0 2

We now have a complete equation for the free energy for sanidine-
high-albite solutions:

^ ~ MNa^Na "t" "l" ^T{x Ma In XMa "H lu 4" 4~
TWsJa^NaXK^ + {Wee + - TWS^)xkXI,O.''

The first three terms are the ideal mixing terms:

(?ideal " ANâ Na 4" Ak̂ K 4~ /2T'(XNa In XNa 4~ Xk In Xk)

The last two terms arise from the nonideality in the solution and are
equivalent to terms involving the activity coefficients,

{We,, 4- PWy^a - TWs^Jx .̂Xk' 4- {We^ + PWv, - TWsJXKXNa^= i2T(xNa In 7Na 4" Xk In 7k)

The values of the constants We, Wv, and Ws may be found in Table 11,1.
However, we have not yet determined the conditions under which a
single homogeneous solution is stable. To do this, we must use the free
energy-composition diagram. We shall plot the equation for the free
energy of a homogeneous solution and then determine under what condi
tions this solution is more stable than a mixture of two other solutions,
one of which is rich in K and the other rich in Na.

Figure 11.6 shows the free energy function for sanidine-high albite
evaluated at several constant temperatures. By using this diagram we
may determine the fields of stability of the various phases and find the
solvus curve needed to determine the subsolidus temperature-composition
relationships. At 800®C a single homogeneous solution is stable over the
entire composition range. At 691°C there is still one homogeneous phase
at every composition. On the 600®C isotherm it is possible to draw a line
of double tangency to the free energy curve; at this temperature there



Fig. 11.6. Gibbs free ener^ of mixing, at constant
temperature, as a function of composition, for
s e v e r a l t e m p e r a t u r e s a t 2 0 0 0 b a r s . C r i t i c a l t e m
perature at this pressure is 690.3°C and critical
composition is 62.3 mole percent NaAISisOg (ab).
The light solid curve gives the binodal curve; the
dashed curve is the spinodal curve. See text for
further explanation. (After Wafdbaum.)

is a wide composition range over which the coexistence of two phases is
more stable than a single homogeneous solution. The extent of solid
solution further decreases as the temperature drops. At 0®K there would
be no solution at all, and the G ~ x curve would be like that shown in
Fig. 11.2c.

The solid line joining the points of double tangency to the free energy
curve is called the hinodal curve. The dotted line joining the inflection
points on the free energy curve is called the spinodal curve. Composi
tions lying inside the spinodal curve are unstable with respect to diffusion
of Na and K. Compositions lying between the spinodal and binodal
curves are metastable. Compositions outside the binodal are stable.
The binodal and spinodal curves determined in this diagram may be trans
posed to the more famiUar temperature-composition diagram, as shown

2 5 2
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Fig. 11.7. Temperature versus composition
projection of binoda! and spinodal curves
for sanidine-high-albite crystalline solutions
at 2000 bars . (A f te r Waldbaum.)

in Fig. 11.7. The shaded area lying between the spinodal and binodal
curves is the region of a metastable homogeneous solution.

By using Waldbaum's equation of state, it is possible to calculate
solvus curves for a series of pressures. His results are shown in Fig. 11.8.
The experimental data of Bowen and Tuttle obtained at 981 bars of water
pressure are shown for comparison. The agreement between theoretical
and experimental data is good. The effect of pressure on solid solutions
is clearly seen in this diagram. At high pressures, where the lattice is
very compressed, the ability of sanidine and high albite to form a solid
solution is reduced. A higher temperature is required to reach a given
extent of mutual solubility at high pressure than at low pressure. The
temperature at which a single homogeneous phase becomes stable over
the entire composition range is called the critical mixing temperature; this
critical mixing temperature increases by about 9 deg/kbar of pressure.

THE ADVANTAGES OF EQUATIONS OF STATE

Waldbaum's development of an equation of state for the alkali feldspars
is an excellent example of the power of thermodynamics to describe com
plicated physical-chemical systems, using a minimum amount of experi
mental data. The field of phase equilibrium, particularly concerning

2 5 3
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pasn puB sjBdspjaj qBqjB jgj suGîjiqos jg sjBaq puB sauinjoA aq-j pajnsBaui
uinBqpjB^V 'sjBdspjaj qBqjB aq!j jg asBO aq(j uj -BĵBp jg ̂junouiB uinui
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•UA\GUq
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EXSOLUTION OF IRON-NICKEL ALLOYS AND THE
COOLING RATES OF IRON METEORITES

The distribution of the elements Ni and Te in iron meteorites provides a
good example of the role of kinetics in exsolution phenomena. In the early
nineteenth century, Widmanstatten noticed that the polished surface of
iron meteorites commonly showed a pattern of intersecting bands such as
shown in Fig. 11.9. These bands are actually the surface expression of
plates of the metallic phase, kamacite. The Widmanstiitten structure is
due to the arrangement of four sets of kamacite plates in an octahedral
pattern. The meteorites which show this Widmanstatten structure are
c a l l e d o c t a h e d r i t e s .

Kamacite is a low-nickel alloy, with about G percent Ni. Since iron
meteorites have up to 1"> percent Ni, the space between kamacite plates
must contain a substance with higher Ni content. Actually, the space is
filled by two sub.stanccs. A thin rim next to the kamacite is a high-
nickel alloy called taenite (Ni = 30 to oO percent). The bulk of the

Fig. 11.9. Widmanstatten pattern in the Edmonton, Kentucky, iron
me teo r i t e . The bands a re f o rmed by t he i n te r sec t i on o f p l a tes o f
k a m a c i t e w i t h t h e c u t s u r f a c e o f t h e m e t e o r i t e . T h e s m a l l r e f e r
e n c e o c t a h e d r o n s h o w s s c h e m a t i c a l l y t h e o r i e n t a t i o n o f k a m a c i t e
p la tes. (Af ter Wood, 1968.)
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space between kamacite plates is a fine-grained mixture of kamacite and
taenite called plessite.

The recent development of the electron microprobe allows investi
gators to measure the Ni content of the different metallic phases on a very

( a )

DISTANCE , microns

{i>)
Fig. 11.10. (a) Microscopic view of Widmanstatten structure in the
Anoka octahedrite, viewed in reflected light. Dark plessite areas
are thinly rimmed by taenite; the remaining broad bands of light
material are kamacite. (b) Electron-microprobe profile from P to
P' showing variation in Ni content. (After Wood. 1964 and 1968.)
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small scale. The microprobe beam can be focused on a spot about 1
micron in diameter. With a polished thin section of meteorite cut per
pendicular to one set of kamacite plates, a series of spot measurements
is made along a line which cuts across several kamacite bands and
plessite areas. A typical microscopic view of Widmanstatten structure
and the resulting Ni profile are shown in Fig. 11.10. The M-shaped
profiles with irregular interiors are characteristic of the Ni distribution in
iron meteorites. Another feature of the Ni distribution which is always
observed is the variation of the magnitude of the Ni minimum in the
plessite areas as the width of the M changes.

We may understand the formation of Widmanstatten structure by
referring to the phase diagram for Fe-Ni alloys. Figure 11.11 shows the
subsolidus phases for Fe-Ni alloys; these alloys would have crystallized
at about 1400®C. Above 900®C the single homogeneous phase taenite
is stable. Below 900°C kamacite is the stable phase for low Ni contents
and taenite for high Ni contents. A two-phase region exists between the
stability fields of kamacite and taenite. Suppose an iron meteorite with
10 percent Ni was slowly cooled from 900®C. From 900 to 700°C a single
homogeneous phase (taenite) would be present. At 700®C the meteorite
would enter the two-phase (kamacite plus taenite) field, and if equilib
rium were maintained, kamacite would begin to grow at the expense of
taenite. In the iron meteorites, kamacite growth was initiated along the
octahedral lattice planes of the original taenite crystals.

As the meteorite cools further, the Ni content in both the kamacite
and taenite phases must increase. But since the Ni content in the

N i . w t %

Fig. 11.11. Subsolidus phase diagram for
Fe-Ni at 1 atm. (After Goldstein and Ogilvle.)
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Below this temperature the kamacite boundary changes slope, and the
Ni content starts to decrease. The centers of kamacite crystals show
higher Ni content than the edges, indicating that diffusion failed to keep
pace with cooling only after the temperature fell beneath 500°C. Wood
and several other workers used the diffusion of Ni in taenite to determine
the cooling rates of iron meteorites in the temperature range from 600 to
400®C. Using measured diffusion coefficients for Ni in taenite and
kamacite, they calculated theoretical Ni profiles for various cooling rates.
They found that the Ni distribution in most iron meteorites can be
explained by cooling rates of between 1 and 10®C per million years.

The slow cooling rates found for iron meteorites indicate that they
must have been shielded by silicate material in their parent bodies. How
ever, the inferred cooling rates are much faster than that for the center
of a body the size of the moon. The cooling models calculated by Wood
indicate that the iron meteorites were within 100 to 200 km of the surface
of their parent "planet."

P R O B L E M S

11.1 Calculate the free energy of mixing for sanidine-high-albite solid
solutions at 2000-bars pressure and 400, 600, and 800°C. Plot free
energy of mixing versus mole fraction of high albite for each isotherm.
Give the composition of the stable phases for a system containing 30
mole percent NaAlSisOs at each temperature.

11.2 Calculate the free energy of mixing at 700®C for pressures of 1 bar,
5000 bars, and 10,000 bars for sanidine-high-albite solutions. Plot the
free energy of mixing versus mole fraction of high albite for each isobar.
Give the composition of the stable phases for a system containing 30
mole percent NaAlSisOs at each pressure.

11.3 Estimate the effect of an error of 10 percent in Wj? for sanidine (no
error in high albite We) on the critical mixing temperature at 1 atm in
sanidine-high-albite solutions.

11.4 Solids AX and BX form a nonideal solid-solution series. The heat
of mixing (P = 1 atm) for AX = 0.2 mole fraction is 2.0 kcal/mole and
for AX = 0.8 is 1 kcal/mole. The volume change on mixing is 0.1
cal/bar-mole at AX = 0.8 and 0.08 at AX = 0.2. It is known that
Ws(AX) = 3.5 cal/deg-mole and Ws(BX) = 2.8. What is the critical
mixing temperature at 1 atm?
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c h a p t e r t w e l v e R e a c t i o n s i n N a t u r a l
W a t e r s

Many of the chemical transformations which take place within the earth's
crust and at its surface involve dissolution by and redeposition from
meteoric waters. Rainwater falling on the continents combines with
soil acids and dissolves silicate minerals. Much of this dissolved matter
is carried to the ocean and is eventually reprecipitated as new mineral
matter. In order to understand these processes, it is necessary to define
the equilibria between mineral matter and aqueous media. As for all
chemical reactions, those involving solutions proceed spontaneously if
they lead to an entropy increase for the universe. In order to deal with
these reactions, we must obtain free energies for ions in solution.

Dissolved matter in water acts much like the molecules in a gas.
Discrete units consisting of from one to ten atoms move about chaotically.
When these units are well separated from one another, they act independ
ently. However, when they are packed more closely, mutual interactions
complicate the situation. Thus, as for gases, one major source of non-
ideality stems from electrical interactions between the particles, and the
other stems from the occupation by the particles of an appreciable frac
t i o n o f t h e a v a i l a b l e v o l u m e .
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•J9jq J9d S9pui UI UOIJ
-BJJU90U09 8JI O-J JBUbO XqB0TJ9UinU S9UI009q UOI UB JO ̂JIAIJOB 9qj |B9pi 9q
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By assigning an arbitrary standard free energy to the CO3 ion we would
fix the free energy of the Ca++ ion.

We could repeat this experiment for compounds bearing all the ions
of interest. By studying CaS04 we could obtain the free energy of the
SO4— ion; by studying MgS04, the free energy of the Mg++ ion; and so
forth. Instead of defining the free energy of the CO3 ion, the chemist
selected the hydrogen ion. Its standard free energy was designated to
be zero. As in the selection of the 92 arbitrary constants mentioned in
Chap. 5 necessary to fix the free energies of the solid, liquid, and gaseous
compounds, it does not matter what value was chosen for the hydrogen
ion. In any calculation we make, the arbitrary value chosen will cancel.
Hence the assignment of zero is merely a matter of convenience. In this
way our free energy tables can be extended to include species dissolved
i n w a t e r .

Once the standard free energies are in hand, it is easy to deal with
reactions for ideal (highly dilute) solutions. Free energy can be expressed
in terms of the standard free energy and the numerical value of the
concent ra t ion ;

G i = + R T I n [ i ]

Since significant nonidealities set in at very low concentrations, vir
tually all solutions of interest in earth science are nonideal. Thus we
must face the problem of how to relate the thermodynamic property of
interest, activity, to the property the chemist measures, concentration.

A quantity 7, the activity coefficient, is defined as the ratio of the
actual activity of an ion in the solution of interest to that it would have
were the solution ideal. Hence 7 = a/aideai- Since the ideal activity
is numerically equal to the concentration of the ion,

a .
7i = 77,

b]

Our problem is then to establish activity coefficients for the ions of inter
est as a function of the composition of the solution. The activity of any
given ion depends not only on its own concentration in the solution but
also on the concentration of all the other ions present. This is because
the electrical forces which influence the movements of an ion are gen
erated by all the charged particles in the solution. The degree of non-
ideality generated by an ion is proportional to the square of its charge.
A doubly charged ion creates 4 times the nonideality induced by a singly
charged ion. A measure of the nonideality of a solution is thus the sum
of the concentrations of each of the ionic species present times the square
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At 25°C this minimum limit would be approximately 0.1 for Ca++ and
0.4 for Na+. Actually the activity coefficients never reach the limits
predicted by this equation. Instead, the trend reverses and they begin
to rise toward unity. The minimum activity coefficient for most ions is
achieved at about the ionic strength of seawater {n = 0.7). Curves for
several ions are shown in Fig. 12.1.

The mention of experimentally determined activity coefficients for
single ions is looked down upon by the purist. In actuality, it is impossi
ble to determine single-ion coefficients. In any experiment only the
product of the activity coefficient of one or more positive ions and that
of one or more negative ions can be measured. Only by making a special
assumption can these products be separated. One way to do this is to
assume the activities of K"*" and Cl~ ions are identical (both ions have
the same mass, size, and charge). Whereas separation leads to the
definite advantage that only values for individual ions need be tabulated
(rather than values for each of the innumerable combinations of ions),
it has its pitfalls. For the problems considered here we will be safe in
using the single-ion coefficients. However, the reader should be cau
tioned that there are situations where this assumption can lead to serious
d i f fi c u l t i e s .

R E A C T I O N S I N N A T U R A L W A T E R S

With this background in mind, we can now consider some of the reactions
which take place between ions in natural waters. One type of reaction

I O N I C S T R E N G T H

Fig. 12.1. Activity coefficient as a function of ionic strength for single
ions. (After Garrets and Ctirist, p. 63.)



266 CHEMICAL EQUILIBRIA IN THE EARTH

dominates all others in importance. Hydrogen (H+) and hydroxyl
(OH") ions attach themselves to other ions in the solution. As we shall
see, the so-called complex ions which form have a profound effect on
chemical reactions taking place between the water and solid material it
encounters. Hydrogen ion, of course, tends to combine with negative
ions and hydroxyl ions with positive ions.

For example, if the salt NazCOs is added to water, most of the CO3—
ions which are released will attach themselves to H+ ions to become
bicarbonate ions (H+ + C03~ ^ HCO3-). If a second H+ ion attaches
itself, carbonic acid is formed (H"̂  -j- HCOs" —> H2CO3). Finally the
H2CO3 unit can give up both one OH" and one H+ ion (hence one H2O
molecule) to become CO2 gas (H2CO3 —* CO2 ~l~ H2O). If we add a cal-
cite crystal to the solution and then ask ourselves how much calcite will
dissolve, we are immediately faced with the problem of determining how
much of the carbonate ion from the Na2C03 remains unassociated. The
smaller the fraction remaining as carbonate ion, the more solution of cal
cite will be required to saturate the solution. It is clear that the problem
cannot be solved unless the hydrogen complexing is understood.

The first step in deciphering these complexes is to understand the
dissociation of H2O molecules to produce H+ and 0H~ ions. The reac
t i o n i s

H2O ^ H+ -h OH-

The free energies can be written

G a * = + R T I n a n -

G o h - = + - K T I n O o h -

Gh,o = G^fo RT \n ttHjO
At equilibrium,

0 = G'̂ ^ -h G'̂ - - Ggfo + /2T In O H + a o H -

Since G^ is zero and since the activity of H2O does not change as the
result of the very small amount of dissociation (that is, Gh,o = G|̂ o or
OhjO = 1) we have

/eTlnamaoH- = G?JJo - GS^ -̂

flH+aoH- = exp 'CfSJo -
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Gh% is -56,700 cal/mole and is -37,600 cal/mole at room tem
perature, and so the product of the hydrogen- and hydroxyl-ion concen
trations must be 1.0 X 10-". In order to increase the activity of one
ion, that of the other must decrease by an appropriate amount. For a
"neutral" solution both concentrations are 1 X 10"^. If the hydrogen-
ion activity is increased to 1 X 10"®, the hydroxyl activity will fall to
1 X 10-®.

For convenience the chemist has defined the pH of a solution as
f o l l o w s :

pH = — logOH+

A neutral solution (an* = 1 X 10"') has a pH of 7 and one with a 100-
fold higher concentration of H""" (aH+ = 1 X 10-®), a pH of 5. A pair
of electrodes were designed which when immersed in a solution show a
difference in electric potential dependent only on the hydrogen-ion
activity. Thus the pH (that is, H+-ion activity) of natural solutions can
be directly measured.

If the hydrogen-ion activity in a solution is known, the ratio of the
activities of the various forms of dissolved inorganic carbon can be
easily calculated. For example, the dissociation of a bicarbonate ion
to form a hydrogen ion and a carbonate ion can be written

HCO3- = H+ + CO3—
The free energies are

Ghco," = f?Hco»- RT In anco,"
Gco,-" ~ ^co» + I^rinaco,--

Gh+ = T In aH+
At equilibrium,

Ghco," = Gh+ + Gco,--
T h u s

- G'&or) = RT la
flHCO,-

a n d

flco,-" ^ — (^cor- ~ f^HCOi-)
fl H C O , " O ' K * L R " ^

Since is -126,200 and GhSo,- is -140,300 cal/mole, at room tem
perature this expression becomes

acor- ^ 5 X 10-"
O H C G , -
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In a solution with a pH of 10.3 the activities of HCOs" and CO3— ions
would be equal.

The concentration ratio of these two ions is given by

[CPs""] _ 5 X 10~" THcor
[ H C O s " ] a H + 7 c o , - -

Since doubly charged ions have lower activity coefficients than singly
charged ions, the concentration ratio for the two ions is always somewhat
greater than their activity ratio.

If every negatively charged ion (anion) in natural waters partially
combined with hydrogen, our calculations would become extremely
cumbersome. Fortunately, two of the most important species, SO4—
and Cl~ ion, show hardly any tendency to combine with H+. In natural
waters (at room temperature) the concentrations of HS04~ and HCl are
always negfigible compared with those of the uncomplexed forms. Only
in concentrated solutions such as sea water does the complexing of another
anion with H+ have to be considered. In such waters the trace element
boron is often enriched to the point where it exerts an influence on the
pH of the solution. The B present can be in two forms: H3BO3 and
H2BO3-.

In natural waters isolated from the atmosphere, the SO4— ion often is
partially reduced to the S ion. This reduced S— associates with
H+ ion to form HS" and H2S. The partition between these two forms
must be considered when dealing with such solutions.

The main cations present in natural waters either have no tendency
to complex with OH- (Na+, K+, Mg++, and Ca++) or fully complex with
OH" (Si^+). Thus variable complexing of major cations with OH" does
not present a serious complication in dealing with natural waters. For
many trace constituents such as Fe and Mn it is extremely important,
h o w e v e r .

FACTORS CONTROLLING THE pH OF SURFACE WATERS

Let us first consider what controls the pH of waters exposed to the earth's
atmosphere. Observation has shown that in most cases surface waters
have a dissolved CO2 gas content near equilibrium with the CO2 partial
pressure in the overlying air. Hence the free energy of CO2 in the water
is approximately equal to the free energy of CO2 in the air (that is,
C + In pco,)- As the ratio of CO2 to N2 + O2 in the air is remark
ably constant, given the elevation and temperature of the water, we can
estimate the free energy of its dissolved CO2. Regardless of whether
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reactions take place which generate CO2 or which use up CO2, exchange
with the atmosphere will return the CO 2 gas concentration to this equilib
r ium value.

A second restriction that can be placed on any surface water is that
it must be electrically neutral (i.e., the sum of the negative charges on
its anions must exactly balance the sum of the positive charges on its
cations).

With these two restrictions we can say a great deal about how the
pH of surface waters will vary. We will consider first rainwater, then
stream water, and then waters in saline lakes.

Although rainwater contains a small component of entrained sea
salt, we can get a good idea of what controls its pH by considering it to
be distilled water. CO2 from the atmosphere dissolves in the raindrops,
and the following reaction takes place:

CO2 + H2O ^ H+ + HCO3-

At 25°C the free energies are

/ - Y _ y ^ s t d(jHjO - trH,0

Geo, = Ght = Gh1>, + In ph%,
( ? H + = I n a i i +

(?Hco,- = Ghco," + In anco,-

Since at equilibrium AG = 0,

aH+ttHco,-
K i =

P c o ,

■ - g n ^ g o A® P ^ R f s t i J
= 1 . 3 X 1 0 - 8

As the ionic strength of rainwater is close to zero, the numerical values
of the activities of H+ and HCO3- ion will be very nearly the same as
their concentrations. Furthermore, as rain will prove to be fairly acid,
the concentration of OH" ion will be so small as not to influence the charge
balance (that is, [HCO3-] = [H+]). The equilibrium equation can be
r e w r i t t e n

lH+]2
K i = =

P c o , V c o ,
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The alkalinity which the rainwater inherits during its passage
through the soils comes from the solution of carbonate and silicate min
erals. For example, when the mineral pyroxene (MgSiOs) dissolves, its
Mg becomes a doubly charged ion and its Si becomes a neutral Si (OH) 4
molecule. The two plus charges on the Mg are ultimately destined to
become balanced by bicarbonate ion. Although the charge balance
while the water is in the subsurface could in some cases be established
through OH" ions, as soon as CO2 becomes available the OH" will com
bine with the CO2 to form HCO3-. Similarly, when limestone dissolves,
the Ca will go into solution as the double-plus ion and will ultimately be
balanced by two HCOg" ions. On the other hand, solution of halite
(NaCl) or gypsum (CaS04) will not result in an increase in alkalinity.

Written in chemical form these reactions are

MgSiOs + 2CO2 + 3H2O
P y r o x e n e C a r b o n W a t e r

d i o x i d e

Mg++ -b 2HCO2- -b H4Si04
Dissolved species

CaCOs +
C a l c i t e

CaS04
A n h y d r i t e

N a C T
H a l i t e

CO2
C a r b o n
d i o x i d e

g a s

Ca++ + 2HCO3-
Dissolved species

C a + + + S 0 4 ~
Dissolved species

Na+ -b Cl-
Dissolved species

The hydrogen-ion activity of stream waters varies inversely with the
quantity of Ca, Mg, Na, and K the waters have derived from weathering
carbonate and silicate rocks and with the fraction of the water lost by
evaporation. A stream with 4 X 10~® mole of positive charge to be
balanced by HCOs" ion will have a pH of 7 and one with 4 X 10~^ mole
of positive charge a pH of 8.

The carbonate-ion content of such waters is given by the equilibrium
equation

„ _ flH+ICOs ]7co,--' ~ [RCOrhncor

Since [HCO3-] = [A], an- = 4 X lO-^Vl^], and K2 = 5 X

1 (5 X 10-")[A]27hco,-
( 4 X 1 0 - W -

= 12[A]2
7 c o , - -
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With the exception of K+ and CI", all the ions present in saline waters
participate in major-ion complexes. The job of establishing the fraction
of each element in each available complex is a cumbersome one. In
seawater, for example, dissolved Mg is partly in the form of Mg++ ions,
partly as MgS04, and partly as MgHCOs^ complexes. Dissolved C
occurs as HCOs", NaHCOs, MgHCOs"^, CaHCOs"^, CO3 , NaCOs"",
MgCOa, CaCOs, and CO2. Since the various complexes compete with
each other for the available ions, a long series of material balance and
equilibrium constant equations must be simultaneously solved. In
most cases a computer is needed to sort things out. Garrels and Thomp
son studied a chemical model for seawater. Their results for the degree
of complexing of various ions in seawater are shown in Table 12.2.

TA B L E 1 2 . 2
Seawater Complexesf

M o l e / l i t e r F r e e S O r " H C O a " C O a " "
I o n C o m p . C o m p . C o m p .

K + 0 . 0 1 0 9 9 1 0 0 . 0
N a + 0 . 4 7 5 9 9 1 0 0 . 0
M g + + 0 . 0 5 4 8 8 1 1 1 0 . 3
C a + + 0 . 0 1 0 9 1 8 1 0 . 2

F r e e
I o n

C I - 0 . 5 6 1 0 0
S O r - 0 . 0 2 8 5 4
H C O 3 - 0 . 0 0 2 4 6 9
C O 3 — 0 . 0 0 0 3 9

t Data taken from R. M. Garrels and M. E. Thompson, Am. J, Sci., 260: 57 (1962).

Once the extent of major-ion complexing is established for a given
water type, calculations involving variations in trace species (that is,
H+, COa—, etc.) can be carried out rather easily. The fraction of free
ion can be multiplied by the activity coefficient to yield an apparent
activity coefficient. For example, in seawater the fraction of free car
bonate ion is 0.10 (the remaining 0.90 resides in Ca, Mg, and Na com
plexes), and the activity coefficient is 0.20. Hence the apparent activity
coefficient is 0.10 X 0.20, or 0.02. The nonideality of the solution and
the incorporation of COa— ions into major-ion complexes cause the
effectiveness of carbonate ion to be only one-fiftieth that in a hypothetical
ideal solution of the same composition and free of major-ion complexes.
The apparent and actual activity coefficients for ions in seawater are
compared in Table 12.3.

N a + Mg++ C a + +

Comp. Comp. Comp.

0 0 0
2 1 2 2 3

8 1 9 4

1 7 6 7 7
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TA B L E 1 2 . 3

Apparent and Real Activity Coefficients
for Major Ions in Seawater

I o n R e a l A c t i v i t y A p p a r e n t A c t i v i t y
Coefficientf C o e f fi c i e n t

K + 0 . 6 4 0 . 6 4
N a + 0 . 7 6 0 . 7 5

Mg++ 0 . 3 6 0 . 3 2
Ca++ 0 . 2 8 0 . 2 5
c i - 0 . 6 4 0 . 6 4

S O 4 — 0 . 1 2 0 . 0 6 5

H C O 3 - 0 . 6 8 0 . 4 7

COa— 0 . 2 0 0 . 0 1 8

t A c t i v i t y c o e f fi c i e n t s f r o m R . M . G a r r e l s a n d
M. E. Thompson, Am. J. Sci., 260: 57 (1962).

Another complication which must be faced when dealing with highly
saline waters is that CO3 becomes an important contributor to the
charge-balance equation. In this case the alkalinity becomes

[A] = [HCO3-] + 2[C03~]

In order to find the hydrogen-ion activity, we must solve this along with
two other simultaneous equations:

[HC03~]7Hcor®H+

^ _ [CO 3
[HC03i7Scor

where 7* is the product of the activity coefficient and the fraction of the
ion free of major-ion complexing.

If we fix the CO2 partial pressure over a lake and its alkalinity, the
three remaining unknowns, HCOs"", CO3—, and an*, are fixed. Solving
for oh+ we get

Kipco. - , 1 /, , S(y*lo,.)K,[Ay
2"^2'V 7^or-^iPco, .

For alkalinities less than 1 X 10~' mole/liter, the quantity in the brackets
is close to unity. Hence the expression is reduced to that given above
for streams. For higher alkalinities the expression in the brackets
becomes greater than unity and the hydrogen-ion activity falls more
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slowly with increasing alkalinity. Using pco, = 3.2 X 10 ^ atm,
Ki = 5.0 X 10-^S and Ki = 1.3 X lO-^,

4 .2 X 1
i

T H C O j -

10-12 /I I I
AA] V2 + 2\ 100[4])^ * 7 c o > - - /

The effect of major-ion complexing is to increase the hydrogen-ion activ
ity (i.e., to make the pH rise more slowly with alkalinity than if major-ion
complexes were not present).

The final complication is due to borate. In the ocean and in saline
lakes with low alkalinity the HBOa" ion contributes significantly to the
alkal ini ty. Hence,

[A]* = [HCO3-] + 2[C0r-] + [H2BO3-]

Further, as can be seen from the following reaction, the amount of borate
ion depends on pH:

H3BO3 = H+ -1- H2BO3-

The equilibrium equation is

K n =
[H2BO3 ]7H»bo»~^H+

[H3BO3]

w e h a v e

[H3BO3] = [SB] - [H2BO3-]

K n =
[H2BO3 ]7H»bo»~^H+
[SB] - [H2BO3-]

[H2BO3-] =
K n i m

Kb + 7hiB0,-«H+

The alkalinity [A] to be inserted into the equation yielding au* is thus

[A] = [A*] -
A:b[sb]

Kb + 7h,bo,-«h+

If the total B concentration in the lake and the extent to which B forms
major-ion complexes are known, an iterative correction can be made.
The presence of B will, in general, raise the hydrogen-ion activity in the
lake over that expected if no B were present. The pH will rise more
slowly with increasing alkalinity than in the ideal case.
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FACTORS CONTROLLING THE OXIDATION STATE OF SURFACE WATERS

In addition to complexing reactions between ions in solutions, electron
transfers also take place. Several of the elements dissolved in natural
waters can exist in more than one oxidation state. Sulfur can occur in
the —2 oxidation state as H2S or HS~ or in the +6 oxidation state as
SO4 . Oxygen can occur in the neutral oxidation state as dissolved O2
gas or in the —2 oxidation state as H2O. Hydrogen occurs in the neutral
oxidation state as dissolved H2 gas and in the +1 state as H2O. Carbon
occurs in the —4 oxidation state as dissolved CH4 gas and in the +4 state
as dissolved CO2 gas or HCO3- ion. Many of the trace metals (Fe, Mn,
Cu, U, etc.) found in natural waters also have more than one oxidation
s t a t e .

Ideally, for surface waters the O2 content (fixed by the po, in the
atmosphere) should control the oxidation state of all other elements
present. Typical reactions by which this control would be accom
plished are

( 1 ) O 2 + 2 H 2 = 2 H 2 O
( 2 ) 2 O 2 . + C H 4 = C O 2 + 2 H 2 O
( 3 ) 2 O 2 + H S - = S O 4 — + H +
(4 ) O2 + 4Fe++ + 4H+ = 4Fe '+ + 2H2O

In terms of the equilibrium constants for these reactions, the following
are predicted:

P h , =

PCH, =

ItiQ J _ flmTsor-
3O4 ] POt^yns-Ks

[Fe++] ̂  1 7Fe»^ /J_Y
[Fe='+] an^po,̂  7Fe- \kJ

Since the po, and pco, are dictated by the atmosphere and the hydrogen-
ion activity by the alkalinity and pco,, the partial pressures of H2 and
CH4 in surface waters at sea level and 25°C should be constant. The
[HS~]/[S04 ] and [Fe'+]/[Fe++] ratios should decrease with increasing
pH (hence with increasing alkalinity). It turns out that O2 gas reacts
at a negligible rate with H2 and with CH4 at room temperature. These
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equilibria are never established. Although HS~ and Fe++ are oxidized
in solutions in contact with the atmosphere, O2 gas itself does not appear
to take part in the reaction. Fortunately, our understanding of the
chemistry of surface waters does not depend on the establishment of these
equilibria, but as we shall see, the chemistry of subsurface waters is
greatly complicated by the sluggishness of oxidation-reduction reactions.

Despite the fact that O2 gas rarely achieves equilibrium with low-
temperature solutions, it is still advantageous to characterize the oxida
tion state of the species in a solution by the equilibrium oxj'-gen pressure
necessary to produce the observed ratios of oxidized and reduced species.
For example, were we to measure the ratio of Fe®"^ to Fe++ in a natural
water, the equilibrium O2 gas pressure would be given by

1 / 7Fe.>[Fe'»+] y

where

/ 2G11fo + 4Gr" - GSf -K , = e x p — )
T h e o x i d a t i o n s t a t e o f a s o l u t i o n c a n a l s o b e d e fi n e d i n t e r m s o f a n

electromotive force (emf) generated between an inert platinum electrode
i m m e r s e d i n t h e s o l u t i o n a n d a s t a n d a r d c a l o m e l r e f e r e n c e e l e c t r o d e .
The oxidation potential, or so-called Eh, of the solution is related to the
generated emf by the following equation:

emf Ehgoi,, Ehpaiomel

The Eh of a standard calomel electrode is well known, and so the Eh of
the solution can be found from a single measurement of emf. This
method is customarily used in geologic studies of natural waters. The
relationship between the Eh and the equilibrium O2 partial pressure of
t h e s o l u t i o n i s

0 059Eh = 1.23 H — log poj + 0.059 log an*

The reader is referred to the text by Garrels and Christ for a complete
discussion of problems involving Eh.

D E G R E E O F S A T U R A T I O N O F C A L C I U M C A R B O N A T E I N S U R F A C E W A T E R

Once the concentrations of the various ionic species in a solution have
been defined, it is possible to predict whether the solution is supersatu
rated or undersaturated with respect to precipitation of a given mineral.
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If it is undersaturated, free energj' will be released if the mineral dissolves;
if supersaturated, free energy will be released if the mineral precipitates.
If no free energy change occurs when an infinitesimal amount of the
mineral dissolves or precipitates, the solution is exactly saturated with
respect to the mineral of interest.

As an example, let us consider the degree of saturation, S, of CaCOs
in surface seawater. S is given by the product of the activities of the
Ca++ and the CO3 ions in seawater divided by fcs.p., the solubility
product for calcite:

„ n c a + + a c o , - -
= —

fCs.P.
w h e r e

i s p . = e x p ~
= 4.7 X 10-®

Chemical analyses show surface seawater to contain 1.0 X 10"® mole/liter
of Ca. As indicated above, 10 percent of this Ca is tied up in major-ion
complexes. The activity coefficient for the free Ca++ ions is about 0.28.
Hence the Ca-ion activity is 0.25 X 10"®. Chemical analyses show aver
age surface seawater to contain 2.00 X 10"® mole of total dissolved
inorganic C per liter (that is, CO2 + HCO3- + CO3—). The CO2 gas
content of surface seawater is close to equilibrium with the partial pressure
of CO2 in the atmosphere. From data on the solubility of CO2 gas in
seawater, the corresponding amount of dissolved CO2 gas is 1 X 10"®
mole/liter. Thus the sum of the HCOa" and CO3— concentrations (all
forms including complexes) must be 1.99 X 10"® mole/liter. The carbon
ate-ion concentration can be derived from the simultaneous solution of
the following three equations:

[SCO2] - ICO2] = [HC03-]r + [C03~]r

aH+[HC03-]T7HCOi-
K i =

P c o ,

X _ Qh^ICOS jrTcor-' [HC03-]T7Scor

Solving in turn for the three unknowns, we get
= 10-8 2

[HCOa-Jr = 176 X 10~® mole/liter
[CO3—]r = 23 X 10-® mole/liter
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Thus in surface seawater about 12 percent of the dissolved inorganic
carbon is in the form of carbonate ion. Of this 12 percent only one-tenth,
or 1.2 percent, is uncomplexed. Hence the concentration of free carbonate
ions in seawater is 2.0 X 10~® mole/liter. As the activity coefficient for
carbonate ion in seawater is 0.20, the carbonate-ion activity is 0.40 X 10"^

Combining the ksp for calcite with the Ca and CO3 activities for
surface seawater, we can calculate the degree of supersaturation:

^ (2.5 X 10-=>)(0.40 X 10-̂ ) ̂  2 12
0 . 4 7 X 1 0 - 8

Thus the surface ocean has a twofold supersaturation with respect to the
mineral calcite. The failure of surface seawater to release free energy
through the spontaneous precipitation of calcite is just one of innumerable
examples of the lack of equilibrium between natural waters and mineral
phases at earth-surface temperature.

S U B S U R F A C E W A T E R S

The complexity of the chemistry of waters found below the earth's surface
becomes apparent if we consider the variations we would encounter along
a surface 5 km below sea level. In deep ocean areas this surface would
pass through seawater at 1 to 2®C and 500 atm. The CO2 gas content of
this water would be somewhat higher than its surface counterpart and its
O2 content 2 to 4 times lower. On the other hand, beneath continental
areas of normal geothermal gradient, the waters encountered would have
temperatures between 100 and 200®C and pressures between 500 and 2000
atm. They would, of course, occupy the pore space in the rock. Their
compositions would vary widely, more often than not ranging upward to
10 times the salt content of ocean waters. In general, these waters would
be 02-free and in many cases SO4—-free. Finally, in geothermal areas,
waters of even higher temperature would be found. In this chapter we
will consider some of the additional information needed in order to cope
with chemical reactions taking place in such waters.

T E M P E R A T U R E D E P E N D E N C E S

Clearly, one of the most important matters to consider is the variation
with temperature of the equilibrium constants used for aqueous equilibria.
We have already seen that the relationship between K and T can be
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obtained by integrating the expression

A T T

The for any given reaction, of course, varies with temperature.
It is convenient to write all reactions so that the products have the

higher ionic charge. For example, the dissociation of H2O may be written

H 2 O ^ H + + O H -

and the solution of a CaCOa complex

CaCOa ^ Ca"^"*" CO 3

Any reaction leading to a release of energy during dissociation will have a
negative value for For such reactions the K and hence the degree of
dissociation will decrease with rising temperature. The opposite is true
for reactions involving an uptake of energy upon dissociation.

The standard enthalpy changes for reactions of interest show a wide
range of values (see Table 12.4). The reason is that the factors controlling
the stability of a complex compared with its dissociated counterparts
depend in very complicated ways on the electronic structures of the units
involved. Thus, as temperatures are raised, the equilibrium constants
(and hence the degree of dissociation) move both up and down and at a
wide variety of rates. Since typical LH values range from 2000 to 20,000
cal/mole. In K changes by 0.1 to 1.0 per 10®C temperature change near
room temperature.

TA B L E 1 2 . 4

Thermodynamic Parameters for Several Dissociation Reactionsf

R e a c t i o n I n
(1 atm, 25°C)

H 2 0 = H + + O H - 13,335 - 1 4 . 0 0

C02(ag) = H+ + HCO3- 1,840 - 6 . 3 5
H2S = H+ + HS- 4,800 - 6 . 9 9
H C l = H + + C 1 - - 1 8 , 6 3 0 6 . 1

H C O 3 - = H + + C O 3 — 3,600 - 1 0 . 3 2
H S - = H + + S — 13,300 - 1 3 . 9 0

H S O 4 - = H + + S O 4 - - - 3 , 8 5 0 - 1 . 9 9

MgS04 = Mg++ + SO4-- - 4 , 9 2 0 - 2 . 2 5

CaCOa = Ca++ + CO3-- - 3 , 1 3 0 - 3 . 2 0

t Data taken from H. C. Helgeson, Am. J. Sci., 267: 729 (1969).
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Were AH to remain constant, the rate at which In K changed would
decrease with rising T. For example, if a 25®C K doubled for each 10®C
rise in temperature, at 325®C (twice the absolute temperature) doubling
would occur only once each 40®C. However, AH does not remain con
stant; the situation is more complicated than this.

To understand how AH varies with temperature, we must consider

T, X

Fig. 12.2. Equilibrium constants for dissociation of complex ions in
aqueous solution as a function of temperature. (After Hefgeson.)
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the heat capacities of ions in solution, since

AH = AH'' + ĵ ÂCpdT
As a general rule, the heat capacity of a solution decreases as the result
of the dissociation of any complex ions it contains. This is because the
electrical interactions of charged species with the water lead, on an average,
to higher vibration frequencies. As a result, the ACp for dissociation
reactions are negative and their AH values fall with increasing tempera
tures. For those reactions with positive room-temperature AH values, a
point is eventually achieved where AH reaches zero and becomes negative.
K (and hence In K) rises at an ever-decreasing rate until this temperature
is achieved and then begins to fall. Since the heat-capacity differences
are ordinarily fairly large for dissociation reactions (approximately —50
cal/deg-mole), a reaction with a AH° value of 5000 cal/mole would show a
reversal in trend by 125®C. At sufficiently high temperatures, >200°C,
almost all complexing reactions favor enhanced association with rising
temperature.

In Fig. 12.2 the In K values for several important dissociation reac
tions are plotted as a function of T. Of those reactions shown, only the
dissociation of water and of bisulfide ion are more complete at 300°C than
at 25°C. In the seven other cases the associated form assumes much
greater prominence.

An example will serve to demonstrate just how important these
changes are. Let us consider a solution containing 8 X 10~® mole of
MgS04 per liter. Experience tells us that at room temperature in such a
dilute solution there will be a neutral solution (pH = 7) with all the
MgS04 in dissociated form (i.e., as Mg++ and SO4 ). Were we to place
this solution in a rigid container and heat it to 300®C, complete dissocia
tion would no longer be the case. Mg++ and H+ ions would begin to
associate with SO4 ions to form MgS04° and HS04~. The degree of
association could be obtained by solving the following six equations in
which six unknowns ([H+], [OR-], [SO4—], [Mg++], [HSO4-], and [MgS04"])
a p p e a r :

^ _ [H+][S04-]^ [HS04-]

_ [Mg++][S04-]
[MgS04°]

Kw = [H+][OH-]

[SMg] = [Mg++] -b [MgS04°]
[SS] = [MgS04<'] + [S04~] + [HSO4-]

[H+] + 2[Mg++] = 2[S04~] + [HSO4-] + [0H-]
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The assumptions have been made that the MgOH+ complex is negligible
and that under these dilute conditions activities and concentrations are
equal (i.e., all 7's are unity). The results of such calculations carried
out at both 25 and 200°C are shown in Table 12.5. At 25°C the solution
is indeed neutral and the MgS04° and HS04~ complexes negligible. At
200®C half of the Mg is complexed with SO4 and four-fifths of the
SO4— with Mg++ and H+. The hydrogen-ion concentration has risen
by a factor of 1.5 and the hydroxide ion by a factor of 270.

TA B L E 1 2 . 5
Solution of MgSOf at 1 atm, ZSX and 1 atm, 200°Ct
(Concentration Units: Moles per Liter)

P a r a m e t e r 25°C 200°C

K w 10-14-00 10-11.39

K s 10-1.99 10-'.o6

K m 10-2.26 10-4.8
S S 8 X 10"® 8 X 10-®

S M g 8 X 10-® 8 X 10-®

MgS04 1.2 X 10"® 3.9 X 10-®

S O 4 - 8 X 10-® 1.5 X 10-®
HSO4- 8 X 10-'® 2.6 X 10"®

Mg++ 8 X 10-® 4.1 X 10-®
O H - 1 X 1 0 - ' 2.7 X 10-®
H + 1 X 1 0 - ' 1 . 5 X 1 0 - '

t Data for equilibrium constants taken from H. C.
Helgeson, Am. J. Sci., 267: 729 (1969).

The fact that the degree of dissociation of water and bisulfide ion
increases steadily with rising temperature whereas that of bicarbonate
falls has some interesting consequences. As a solution containing bicarbo
nate and bisulfide is heated, the 0H~ and S ion concentrations rise at
the expense of CO3—. This enhances the ability of the solution to dis
solve carbonates while reducing its capacity to hold oxides and sulfides.

Activity coefficients also change with temperature. These coeffi
cients depend strongly on the dielectric constant of the water. The
dielectric constant falls with rising temperature, causing the activity
coefficients to decrease. This effect is by no means negligible. For
example, in a 2 m NaCl solution at room temperature the product
TNa+7ci- is 0.45. At 250®C it drops to 0.15.

Finally, the solubilities of the various mineral phases of interest also
change with temperature in accordance with their heats of solution.
Although most salts show a positive heat of solution and hence become
more soluble with rising temperature, some, like CaCOa, CaS04, and most
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silicate minerals, are characterized by negative heats of solution and
become less soluble (see Table 12.6).

TA B L E 1 2 . 6

Thermodynamic Parameters for Several Solution Reactionsf

CaCOs Ca++ + CO3—
C a S 0 4 C a + + + S O "
H2O + COaCa?) + ZnS ^ Zn++ + HS" + HCO3-
2C02(a9) + 3H2O + MgSi03 —

Mg++ + 2HCO3- + H4Si04

t Data taken from H. C. Helgeson, Am. J. Sci., 267: 729 (1969).

- 3 , 1 9 0 - 8 . 3 7
- 3 , 7 5 5 - 4 . 7 0
10 ,580 -18 .17

- 1 6 , 3 7 5 - 2 7 . 9 9

P R E S S U R E D E P E N D E N C E S

Pressure changes of hundreds of atmospheres can result in important
changes in the equilibrium constants for dissociation reactions. It can
be shown (see Appendix I) that

/ d I n K \ ^ V

\ dP )t~ RT
As pressure rises, the equilibrium will gradually shift toward the state
which occupies the smallest volume.

In the room-temperature range the A7 for most dissociation and
solution reactions is negative. The dissociated ionic units occupy less
space than their associated (or solid) counterparts.

Again let us consider an example. A beaker of water to which
2.00 X 10~* mole/liter of Ca(HC03)2 has been added is allowed to
equilibrate with the air. It is then placed in a sealed container and raised
to a pressure of 500 atm. We might ask how the degree of saturation,
S, of the solution changes when the pressure is applied. Designating the
properties of the solution at atmospheric pressure with primes and those
at 500 atm with double primes, we can state the problem mathematically
a s f o l l o w s :

S" _ aL^^acor-/K'l^.
®ca^+®cor"/A^s.p.

We will assume that the activity coefficients of all the ions of interest are
unity and that only hydrogen-ion complexes form (i.e., that CaHCOa"''
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and CaCOa" complexes are negligible). Then

«CA++ = = 2Ca = 2.00 X 10-" mole/liter
a n d

^ ^ [ C O r T ^
S ' [ C 0 3 ~ ] '

Our problem becomes one of determining how the carbonate-ion content
and the calcite solubility change with pressure.

The volume decrease accompanying solution of CaCOs is about
50 X 10"® liter/mole. Remembering that at equilibrium at 1 atm

0 = Gĉ ++ + RT In aca++ + <jco,-- + In Oco,-- — ̂ caCo,
o r

0 = AG° + RT In Kip_

and since AT remains constant over the pressure range of interest, at
500 atm (P") we have

0 = AG" + RT In K'lp,
= AG" -b RT In K;.p. - (P" - P') AT

Combining these two expressions,

i ^ 8 . p . r
r p - = e x p -

= e x p

{P" - P') AT"
R T

(500 atm) X (5 X 10-^ liter/mole)
(2 cal/deg-mole) (300 deg)(8 X 10"® liter-atm/cal)

= = 1 . 6 8

Thus calcite is 1.68 times more soluble at the higher pressure.
Turning our attention to the carbonate-ion content, we can write

the following relationship:

. _ [C02][C03—]
[HG03-]®

While exposed to the air, the CO 2 content of the solution was at equilib
rium with the atmosphere:

[CO2] = (xpcot
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joj îjAvo[s ooj JBj paaoojd suoijOBaj aqj sasBO jsoui uj -paqqduiis A]!jBaj3
aq pjnoAv uiajqojd jno 'uinuqqinba qoBaj o^^ suoi(joBaj qons aja^ -aoBjd
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mixed surface layer at equilibrium with the atmosphere is effectively
isolated from a homogeneous deep reservoir which makes up the bulk of
the sea (see Fig. 12.3). Water is continuously traded back and forth
between these layers. From studies of the distribution of natural radio
carbon it has been shown that, between its relatively brief sojourns at the
surface, the average H2O molecule must reside about 1000 years at depth.

Organisms are formed by photosynthesis from dissolved components
in the surface ocean. Their remains (including CaCOs and SiOa hard
parts) sink to the deep sea where, to a large extent, they are destroyed by
solution and oxidation. The components are returned in dissolved form
to the deep ocean. This unidirectional particulate transport causes the
chemical composition of deep sea water to differ from that of surface water.
This process should lead to the enrichment of the deep sea in Ca, C, and Si
with respect to surface water and its depletion in dissolved O2. These
differences are indeed found. Deep water, on an average, contains 1.01
times more Ca, 1.20 times more dissolved inorganic C, and about 100
times more Si than surface water. Deep water shows a threefold depletion
in dissolved O2.

Of the three components falling to the deep sea, only the opal has no
effect on the pH of this isolated water. As opal goes into solution largely
in the neutral form H4Si04, it does not alter the hydrogen-ion balance.
Both the oxidation of organic tissue and the solution of CaCOs fragments
result in pH shifts.

Surface ocean water contains, on an average, about 2.06 moles of
dissolved inorganic carbon per cubic meter. This carbon must balance
2.30 moles of positive charge not balanced by the other anions present.
To do this requires that 1.80 moles be in the form of HCOa" ion and 0.25
in the form of CO3— ion. The remaining 0.01 mole is in the form of
dissolved CO2 gas. This is the water which enters the deep reservoir.
During the 1000 years or so that it remains at depth the typical cubic
meter of deep water receives 0.30 mole of CO2 released by the in situ
oxidation of organic debris and 0.10 mole of carbonate ion from the in situ
solution of CaCOs. The solution of this CaCOs raises the amount of
positive charge to be balanced by the dissolved inorganic carbon by 0.20
mole/m®. Thus the water finds itself with a total dissolved inorganic
carbon content of 2.46 moles/m® (2.06 -|- 0.30 + 0.10) and a requirement
that this carbon balance 2.50 moles/m® of positive charge [2.30 -1-
(2 X 0.10)]. In order to maintain electrical neutrality the carbonate-ion
c o n t e n t m u s t t h e n b e

[C03~]tot = 2([A] - [SCO2])
= 2(2.50 - 2.46)
= 0.08 mole/m'
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This value is 3 times lower than that of 0.25 mole/m® for surface water.
Except for a small amount of dissolved CO2, the remaining 2.38 moles
will be in the form of bicarbonate ion. Thus the ratio of [CO3—Jtot to
[HC03""]tot is slightly more than 3 times smaller in deep than in surface
waters, t Were the second dissociation constant of carbonic acid the
same in the two reservoirs, the hydrogen-ion activity would have to be
3 times higher in deep than in surface water. This can be seen as follows:

aH+ = K, [HC03-]tot' [COs—],„

However, as seen above, the higher pressures in deep water lead to dif
ferent values for K'^.

The difference in pH between surface and deep water depends then
on (1) the amount of debris returned to solution in a given unit of deep
water, (2) the ratio of carbon in the carbonate to that in the organic-
tissue form in this debris, (3) differences in the second thermodynamic
dissociation constant of carbonic acid resulting from P and T changes,
and (4) differences in apparent activity coefficients, 7*, of CO3— and
HC03~ ions due to P and T changes.

A N A E R O B I C W A T E R S

In cases where the oxygen present in the waters is entirely consumed, the
oxygen-breathing organisms are replaced by species capable of using
SO 4 as an oxidation agent. They continue to consume the available
organic fuel. In order to get a feeling for the magnitude of the resulting
changes, let us consider a hypothetical ocean identical to the real ocean
in all respects except that sulfate rather than oxygen is used to oxidize
the organic matter falling into the deep sea. The conversion of 1 mole
of SO4 to S is equivalent to consuming 2 moles of O2 gas (SO4— —»
S -|- 2O2). About 1.2 moles of O2 is required to produce 1 mole of CO2
via combustion of marine organic tissue. Hence 0.6 mole of sulfate must
be reduced to sulfide for each mole of CO2 generated. Also each mole of
sulfide generated increases by 2 moles the amount of positive charge to
be balanced by weak bases (HC03~, CO3—, HS", S—). Thus the
creation of 0.30 mole of CO2 per cubic meter of seawater would be accom
panied by the generation of 0.18 mole of S— ion and an increase of 0.36

t A rigorous formulation of this problem would require a boron correction. Since the
rise in hydrogen-ion activity results in a conversion of borate (HBOa") ion to boric acid
(H2B0a), the resulting decrease in carbonate ion is somewhat smaller than we have
c a l c u l a t e d .
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mole of the positive charge requiring balance by weak anions. In addi
tion, as before, 0.10 mole of CaCOs is dissolved in each cubic meter, rais
ing the total CO2 content by 0.10 and the charge to be balanced by 0.20
mole. The question is. By how much will these changes alter the car
bonate ion and pH of the deep water?

As the second dissociation constant of H2S is very small, the amount
of S remaining in the S form will be negligible. It will be partly in
the form of H2S and partly in the form of HS~. Thus

[H2S] -h [HS-] = 0.18 mole/m'

Assuming that the amount of dissolved CO2 gas is negligible,

[HCO3-] + [CO3—] = 2.46 moles/m®

Finally, if the solution is to be neutral,

[HS-] -I- [HCO3-] + 2[C03—] = 2.86 moles/m"

Simultaneous solution of these equations yields

[C03~] = 0.22 -f [H2S]

Depending on the proportionation of S between the H2S and HS~ form,
the carbonate-ion concentration could range from 0.22 to 0.40 mole/m®.
In this case the ratio of carbonate to bicarbonate ion will be nearly equal
to or greater than that in surface water and the hydrogen ion will be
roughly equal or lower than that in surface water. Thus the use of sulfate
rather than dissolved oxygen gas as an oxidizing agent leads to no pH
change or a pH change of the opposite sense.

Most surface waters undergo sufficiently rapid vertical mixing so as
to remain aerobic. However, especially in a situation where a more
saline water is overlain by a less saline water (the Black Sea, Dead Sea,
certain fiords, lakes fed by saline ground waters, etc.), mixing cannot keep
up with the demand for oxidizing agents, and anaerobic conditions result.

For waters trapped in the pores of sedimentary rocks the anaerobic
situation is much more common. The replenishment of O2 through
convection or diffusion cannot keep pace with the activity of organisms.

Because the sulfides of most heavy metals (Fe, Pb, Cu, Zn, etc.)
are extremel}'^ insoluble, they are rapidly precipitated under anaerobic
conditions. The occurrence of these sulfides in shales can be attributed
to the large amount of organic debris incorporated into such sediment,
the slow rates at which water flows through such fine-grained material,
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and the availability of heavy metals. Where anaerobic conditions pre
vail in metal-poor sediment, such as limestones or evaporites, native
sulfur forms rather than metallic sulfides.

The oxidation of organic material is, of course, not the only reaction
with the adjacent sediment which affects the chemistry of subsurface
waters. Solution and the precipitation of a whole host of mineral phases
can be important. As a result, each subsurface water becomes a special
case. Its chemistry depends on a complex history of additions and sub
tractions which have altered its composition since its departure from the
s u r f a c e .

B R I N E S R E C O V E R E D F R O M S E D I M E N T S

Most deep holes drilled in connection with exploration for oil encounter
waters saturated with soluble salts. The composition of one such water
is compared in Table 12.8 with that of highly saline surface waters
(Great Salt Lake, Dead Sea). Several rather important differences are
seen. For example, the HCOs" content of the brine is about 10 percent
of the total anion content. Sulfate ion, an important component of
surface water, is essentially absent in the deep brines.

TA B L E 1 2 . 8

Comparison of the Composition of Two Hypersaiine Lakes
and an Oi i«f ie id Br ine wi th That of Seawater
(All Concentrations Are Milligrams per Liter)

C o m p o n e n t Seawaterf Great Salt Lake| Dead Sea§ O i l - fi e l d

Brine^

N a + 10,600 67,500 35,000 9,400
K + 3 8 0 3,380 7,560 1 2 4
Ca++ 4 0 0 330 15,800 1 7 7

Mg++ 1,270 5,600 42,000 127
c i - 19,000 113,000 208,000 14,400
B r - 6 5 5,900 9 9

S O 4 — 2,650 13,600 5 4 0 1

H C O r 1 4 0 180 2 4 0 1,500

t H. U. Sverdrup, M. W. Johnson, and R. H. Fleming, "The Oceans," Prentice-Hall,
inc., Englewood Cliffs, N.J., 1957.
t R. Rankama and Th. G. Sahama, "Geochemistry," The University of Chicago Press,
Chicago, 1955.
§ Y. K. Bentor, Some Geochemical Aspects of the Dead Sea and the Question of Its Age,
Geochim. Cosmochim. Ada, 25 : 239 (1961).
H D. E. White, Magmatic, Connate and Metamorphic Waters, Geol. Soc. Am. Bull. 68,
p. 1659, 1957.
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P R O B L E M S

12.1 Two dilute solutions of NaOH were prepared by dissolving 0.04 g
of solid NaOH in water. For solution A, distilled water was used.
For solution B, distilled water was boiled just prior to use in making
the NaOH solution. Each solution was used to titrate 25-ml aliquots
of HCl (0.001 m). It was found that a larger quantity of solution A
was needed. Explain the result.

12.2 In concentrated HCl solution Fe++ and Fe'+ form strong chloride
complexes. Would this phenomenon affect the oxidation state of iron
in a solution open to the atmosphere? Explain your answer.

*12.3 Using free energy data for the minerals calcite and dolomite and
the activities of their constituent ions in seawater, which should be the
more stable phase in deep-sea sediments? What would the Mg/Ca
ratio in seawater have to be for the two phases to be equally stable?

12.4 If a saline lake is precipitating CaCOa and MgSiOa and is just at
saturation for both minerals, show that the Mg/Ca ratio is fixed by the
dissolved silica content of the lake. Assume that all Si in the lake is in
the neutral form H4Si04 and that the pco, for the lake water equals that
in the atmosphere.

*12.5 Given the followng information, estimate the degree of saturation
of BaS04 in the deep sea:

[SSO4] = 0.27 g/liter
[SBa] = 25 Mg/liter

KBaso, = 10"^ ® for major-ion complexing

Other necessary data may be found in Carrels and Christ.

12.6 As long as no other weak bases are present in significant amounts,
the total carbonate-ion concentration in any brine can be determined
as follows: The SCO2 and pco, of the brine are measured. A known
amount of KOH is added and the pco, is redetermined. Show that the
SCOs— content is given from the relationship

^ /[SCO2] - [SCO3—] - AV [SCO3—]
Pco, \ [2CO2] - [SCOg-i / [SCO3— + A]

where poo, and pco, are the CO2 partial pressures measured before and
after the base addition, and A is the amount of base added. The assump-
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appendix I Thermodynamic
D e r i v a t i o n s

A. THERMODYNAMIC EQUATIONS OF STATE: dE = T dS - P dV

The first law of thermodynamics states that energy can be neither created
nor lost. Consequently, the change in energy of a system is equal to the
work done on the system by outside forces plus the heat added to the
system:

dE = 8q 8w

For systems capable of only pressure-volume work, the work done on the
system can be expressed as

8 w = - P d V

If the volume of the system decreases at constant pressure and tempera
ture, work has been done on the system and 8w is positive.

The second law of thermodynamics can be stated in one of its classical
f o r m s a s

2 9 5
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are the independent variables, the crossed partial derivatives are equal
under certain conditions. The total differential of Z is

If the total differential of Z is an exact differential, the theorem of crossed
partials states that

r d ( d Z / d X ) Y l [ d ( d Z / d Y ) x ' \rd(dZ/dX)Yl _ rd(dZ/dY)x'
dY Jx L 9X .

Fortunately dE, dH, dA, and dG are exact differentials. Taking the
crossed partial derivatives of these functions gives

f r o m d B
\dV / s \dS/v

f r o m d H

f r o m d A

This set of equalities is called the Maxwell relations.

D . C H A N G E O F VA R I A B L E S

The total differential of X is

I f d Z = 0

o r

/dX\ ^ /dx \ /az \
\dY)z~ \dz)Y\dY)x
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G. TOTAL DERIVATIVE OF ENTROPY FOR T AND 7 AS VARIABLES

F r o m a b o v e
/as\ ^ Cv
XdTjv " T

From the Maxwell relations,

Changing variables,

/aP\ ^ /dP\ /dV\
{dTjv " \a Wt KdT/i

1 / d V

V \ d T j p

= _ i^ ~ F vaPA
a n d s o

= -

\ d T } y e

dS = YdT + jdV

H. TOTAL DERIVATIVE OF ENTROPY FOR T AND P AS VARIABLES

F r o m a b o v e

F r o m S e c . F

- © / " ( a
/dS\ _ Cp
X d T J p T

® r - '
a n d s o

dS = -^dT - aV dP
T
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I. ADIABATIC GRADIENT, {dT/dP)s

Changing variables

F r o m a b o v e

a n d s o

/m ^ (dT\ /ds\
\dp)s \ds)p Wa
/ d T \ 1 T

\ds)p ~ {dS/dT)p ~ Cp

© . = -
/m ^ TVa
KdP/s ~ Cp

J. TOTAL DIFFERENTIAL OF ENERGY IN TERMS OF T AND V

d E = T d S ~ P d V f r o m S e c . A

TdS = CvdT -\-̂ dV from Sec. G

dE ■- CvdT + (— - P]dV

/ d E \ T a „
(ayjr ~

K. TOTAL DIFFERENTIAL OF ENTHALPY IN TERMS OF P AND T

d H T d S - \ - V d P f r o m S e c . B

T d S = C p d T - T a V d P f r o m S e c . H

dH = CpdT + 7(1 - aT) dP

a
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L. DIFFERENCE BETWEEN PRINCIPAL HEAT CAPACITIES

F r o m a b o v e
T d S = C p d T - T a V d P

T d S = C v d T - ( f - ' )
Combining

C p d T - T a V d P = C v d T "

( C p - C v ) d T = T a V d P - d V

d T =
TaV dP _ (aT/fi - P) dV

C p — C v C p — C v

dT can be expressed as

d T =

Equating the dP terms,

T a V d P

C p - C v

a n d s o
\ d P / v < x

Cp — Cv —

from Sec. G

M. THE VALUE OF (dE/dT)p

F r o m
H = E + P V

(i),
©, -
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0. PRESSURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT

R \ n K =

R d I n K
= - S j /'V dP A

The total differential of free energy is

d G = — S d T - | - V d P " h d u i

dG = —S dT + V dP -f" dui -j- ^RT In yiXi dtii

Taking crossed partial derivatives,

/ ^ \ ^ / m ^ ^
\dP / „ . ,T \ dn i / p ,T

a I n i C fi

Sj/.y, = AV° the volume change for the reaction
i n t h e l i m i t o f i d e a l b e h a v i o r

/ a I n K \

\ d P A



appendix 11 List of Symbols

a A c c e l e r a t i o n
a Ac t i v i t y
a Concen t ra t ion
a D is tance
a Orthogonal dimension
a Frequently used for constant in equations
A Alka l in i ty
A Amount of species
A A r e a
A Arrhenius react ion rate
A Frequently used as constant in equations
A Helmholtz free energy
A Product of anion and cation charges
A To t a l w a v e f u n c t i o n
A Vi r ia l coeffic ient
b Frequently used for constant in equations
B Amount of species
B B u l k m o d u l u s
B Frequently used for constant in equations

3 0 4
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B V i r i a l c o e fl S c i e n t
c Speed of light
C Centigrade
C C o n c e n t r a t i o n
c C o n s t a n t

c Heat capacity
c Number of components in phase rule
c V i b r a t i o n r a t e
c V i r i a l c o e f fi c i e n t
d Atomic or molecular distance
D Constant related to size of ion in activity-coefficient equation
D D i f f u s i o n c o n s t a n t
D V i r i a l c o e f fi c i e n t
e Electronic charge
e Exponential function
e x p Exponential function
E Energy
E b Barrier energy for reaction
E d Barrier energy for diffusion

Efficiency factor for heat-work exchange
Fraction of free volume
Fugacity
Number of variables required to uniquely define system

fc.F. Flux through center plane
J Eg—too Fraction of molecules with E > Eb

Fraction of molecules in energy level i
F F l u x
F F o r c e

g G r a v i t a t i o n a l a c c e l e r a t i o n
G Gibbs free energy
G Molar free energy
h E l e v a t i o n
h P l a n c k ' s c o n s t a n t
H Enthalpy
H Molar enthalpy
i Energy level
i I o n
i Substance i—chemical species

3 Positive integer
3 Rotational quantum number
k B o l t z m a n n ' s c o n s t a n t
k F o r c e c o n s t a n t f o r v i b r a t i o n
k Henry's law constant
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k Proportionality constant in Arrhenius rate law
K n Dis t r ibu t ion coeffic ien t
K Kelvin, degrees absolute
K f Equilibrium constant calculated with fugacities
K , Equilibrium constant calculated with partial pressures
Ks.v. Solubility-product constant
I Length
m Constant in dilfusion equation
m Exponent in rate law
m Mass of diffusing substance
m Mola l concent ra t ion
m Molecular mass
M Amount o f mater ia l
n Any integer
n Constant in diffusion law
n Exponent in ionic force law
n Exponent in rate law
n Number of atoms
n Quantum number
U i Ionic charge on species i
r i i Number of molecules in substance i
N N u m b e r o f a t o m s
N Total number of moles in system
N o Avogadro's number
ATtot Number of defects in a solid
V M o m e n t u m

V Partial pressure
V Probability
p Number of phases in phase rule
p Order of reaction
p Pressure
pX 'C■^equil Pressure of a phase change at given temperature
Q Single-particle partition function
q c Heat transfer from cold reservoir
QH Heat transfer from hot reservoir
r Bond length
r Distance of separation of masses
r Molecu lar rad ius
R Universal gas constant
R ' R a t e
S Degree of saturation
S Entropy
s Molar entropy
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S i Partial molal entropy of substance i
t T i m e

h Half-life of radioactive species
T Temperature
TB Boyle temperature
u Potential energy
V Velocity
V Average velocity
V V o l u m e
V M o l a r v o l u m e

V B M o l a r v o l u m e o f s u b s t a n c e B

Vo Vo l u m e a t a b s o l u t e z e r o

V i P a r t i a l m o l a l v o l u m e o f s u b s t a n c e i

y . « Partial molal volume of substance i at infinite dilution
w W o r k

W Complexions
W Free energy constant
W x Constant in excess function for thermodynamic variable X
X Distance of separation between ions
X Distance parameter
X M o l e f r a c t i o n

^cquil Equilibrium distance of separation between ions
X F u n c t i o n o f f r e e v o l u m e

X i Partial molal variable (X) for substance i
z Compressibility factor
z Number of collisions per second per cubic centimeter in a gas
ZA Anion charge
Z c Cation charge

S u b s c r i p t s

A Component, compound, element, molecule, phase, or system
B Component, compound, element, molecule, phase, or system
c C r i t i c a l
C C o l d

c p x Clinopyroxene
c r i s t C r i s t o b a l i t e

c rys t Crystal
D Debye
E E i n s t e i n

equil Equi l ibr ium
e x t E x t e r n a l

/ F u s i o n
G Glac ier
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Heavy
H o l e
H o t
I n t e r n a l
Other substances
Light
L iqu id
L i t h o s t a t i c
Mechan ica l m ix tu re
Ratio of partial pressures
Constant pressure
Phase boundary
Pe rmanen t
P r o d u c t

Quartz
R e d u c e d
Reaction (or reactant)
R e v e r s i b l e
R o t a t i o n
S o l i d
S o l u t i o n

Solubility product
S t a n d a r d

Surroundings
System
I s o t h e r m a l
Translation and indistinguishability
Translat ion for x direct ion
T o t a l
T r a n s l a t i o n
U n i v e r s e
Constan t vo lume
V i b r a t i o n
C o n s t a n t x
E x c e s s

Ground state

S u p e r s c r i p t s
a b A l b i t e
a n A n o r t h i t e
fl  F l u i d

n e p h N e p h e l i n e
x l C r y s t a l
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G r e e k

a Separation constant for isotope reactions
a Thermal-expansion coefficient
/3 Isothermal compressibility
7 Activity coefficient for liquids and solids
7 Cp/Cv
7 * Apparent activity coefficient for ions in aqueous solution
r Activity coefficient for gases
8 Change in isotopic composition
A Xproducts — Xreactants
e Energy
6 Characteristic temperature
6D Debye temperature
BE Einstein temperature
X Decay constant
X Wavelength
M Chemical potential
l i Ionic strength
It- R e d u c e d m a s s
V Frequency
V i Coefficient in chemical reactions
n P r o d u c t

p Density
<p P o t e n t i a l

Space part of Schrodinger equation
W a v e f u n c t i o n
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free energy, 107, 132
heat capacity, 53
internal energy, 50
mixtures, chemical potential of, 133,

1 3 7
quantized energy levels, 82-85
reactions of, 132-139

isotopic fractionation in, 151-160
multicomponent equilibria, 139-142
nonideal: chemical potential, 142-143

mixtures, 145-146
rate of reaction, 114-116
reactions of, 130-149
standard state, 174-175

Gast, P. W., 128-129, 185
Geothermal gradient, 195-196, 221-222
Glacial loading, 197-200
Gold, D. P., 170
Goldsmith, J. R., 217
Goldstein, J. I., 257, 260
Gottfried, D., 185
Green, D. H., 217, 218, 235
Greenland, L. P., 185
Greig, J. W., 229, 235
Grover, J. E., 260

Hiikli, T. A., 178-180,185
Half-life, 126-127
Hanson, G. N., 128-129
Haskin, L. A., 185
Haskin, M. A., 185



I N D E X 3 1 5

Hayatsu, R., 149
Heat capacity, 13, 32, 39-48,190-192

at constant pressure, 52-56, 78
at constant volume, 39-48
and gas-releasc reactions, 207-210
of gases, 42-45
of ions in solution, 282
and isotopic fractionation, 161-163
of oxides, 48-50, 78
from partition function, 92-93
principal, difference between, 53-56,

3 0 1
rotational, 39-45
solids, 45-50, 78
temperature dependence of, 40-42,

4 5 ^ 7
translational, 39-45
vibrational, 39-48

Heat engine, Carnot, 74-76
Heat exchange, 38-39

entropy of, 100-101
Helgeson, H. C., 280-281, 283-284, 294
Henry's law, 173, 175-176,178, 181, 248
Hermann, A. G., 182-185
Holland, H. D., 185
Hollister, L. S., 185
Holser. W. T.. 182-183, 185
Hostetlier, P. B., 294
Hydrogen, heat capacity of gas, 43

Ionic strength, 264, 269
I o n s :

activity, 262-263
activity coefficient, 263-265
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