Improving the measurement side of the double-difference equation: double whammy high-resolution earthquake locations

David Schaff, Felix Waldhauser, Won-Young Kim, and Paul Richards Lamont-Doherty Earth Observatory, Columbia University

Goetz Bokelmann, Greg Beroza, Eva Zanzerkia, Bill Ellsworth Stanford University and U.S. Geological Survey

Study Area for Relocation

Catalog

Relocated

Overview

Motivation

For Calaveras fault one to two orders of magnitude improvement

Theory

2 independent sources of error: velocity model error (double difference) pick measurement error (cross correlation)

Technique

waveform cross correlation quantifying the quality

Application local regional teleseismic

Velocity Model Error

station corrections 3D tomography difference out (double difference)

$$t_{1} = t_{1c} + t_{m}$$

$$t_{2} = t_{1c} + t_{m} + d$$

$$dt = t_{2} - t_{1}$$

$$\underline{d} = \underline{G} \underline{m}$$

Measurement Error

38 different events

events superposed

Correlation Measurement Techniques

time domain

frequency domain

Correlation Data Quality?

Comparison of Measurement Error

Two runs 1) catalog only 2) correlation only

299,642 identical observations (model error fixed)

Inter-event distance dependence

correlation: measurement + model error

Fine-scale structure

Comparison of two streaks

Characteristic vs. random

Seismic vs. aseismic slip

Triggering vs. minimal earthquake interaction

Complementarity with Morgan Hill Slip Model

Stress Inversion

Maximum Compressive Stress Orientation

Slip directions and fault planes known.

Maximum compressive stress is at a high angle to the fault implying that it is weak.

Two Clusters in China

Regional and Teleseismic

Regional Lg waves 750 km away

Teleseismic example in China

SS phases at 51 degrees

bpfilt 30 to 10 sec, stadist = 51 degrees, BHZ component.

Relocation of Underground Nuclear Explositons

150

Phase picks @ ISC/ABCE stations X-corr @ IRIS/array stations

X-correlation at ULHL.HHZ

Aligned on DOE P-wave picks

Double-difference Locations of Lop Nor Shaft Explosions

Most events are GT1

Absolute locations identified from satellite imagery.

Conclusions

Examples with order of magnitude improvement in measurement error local -- interevent distances up to 2 km, 1 to 10 Hz band regional -- interevent distances 5 to 10 km, 0.5 to 5 Hz band teleseismic -- interevent distances 20 to 30 km, 30 to 10 sec band 1/4 wavelength rule more or less holds

Double whammy is when both model and measurement error can be reduced resulting in up to two orders of magnitude improvement in earthquake locations.

The new degree of resolution obtained enables more detailed studies. Calaveras Fault Lop Nor explosions

Double-difference approach is preferred for correlation data because it directly inverts the measured differential travel times.

Future Directions

Differential Tomography model error measurement error

Record sections for Calaveras Fault converting relative travel times to absolute

Northern California correlation database 250,000 events 2.5 billion correlation measurements 10 million correlations per hour

35 km Record Section -

Northern CA correlation database

250,000 events

2.5 billion measurements

