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Abstract Lava rheology and effusion rate are critical fac-
tors in determining the evolution of lava flows. However,
direct and accurate field measurements are difficult to carry
out, and estimates are usually based on measurements of
the flow’s surface velocity and assumptions of sub-surface
geometry. Using numerical flow models, we show that the
potential for error due to geometry uncertainty is minimized
if a semi-elliptical cross-sectional channel shape is assumed.
Flow is simulated for isothermal Newtonian, temperature-
dependent Newtonian, and isothermal power-law rheology
lavas. For isothermal Newtonian lava, we find that the error
in channel shape alone can make apparent viscosity esti-
mates ∼3.5 times too large (e.g., for inappropriate use of
the Jeffreys equation on a narrow semi-elliptical channel).
For a temperature-dependent rheology, using an analyti-
cal approximation for Newtonian flow in a semi-elliptical
geometry yields apparent viscosity and flux values that are
more accurate than estimates which assume a rectangu-
lar geometry, for all channel shapes considered, including
rectangular channels. Viscosity calculations for real chan-
nels on Mauna Loa and Mount Etna show that for a
Newtonian rheology, a semi-elliptical analytical solution
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gives an approximation three times closer to the actual vis-
cosity than a rectangle with the same depth while, if the lava
is shear-thinning (power law exponentm = 0.6), a rectangu-
lar approximation is 15 % more accurate. Our results can be
used to bracket possible viscosity and flux estimates when
channel topography is poorly constrained.
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Introduction

Lava flows on Earth, other planets, and moons record
ancient eruption conditions and thus hold key informa-
tion about planetary thermal and chemical evolution and
the creation of new crust (e.g., Zimbelman 1998; Hauber
et al. 2009; Jaeger et al. 2010). On Earth, although lava
flows represent a more localized hazard than explosive erup-
tions, they can result in significant damage to infrastructure
and property (e.g., Behncke et al. 2005; Kauahikaua 2007;
Crisci et al. 2008). Two important factors that control flow
behavior (such as advance rate and maximum flow dis-
tance) are the lava effusion rate and the lava rheology (e.g.,
Walker 1973; Crisp et al. 1994; Pinkerton and Wilson 1994;
Kilburn 2000; Harris and Rowland 2001). The instantaneous
effusion rate, defined as the volume flux of erupted lava that
is feeding a flow at a particular point in time (Lipman and
Banks 1987), can be calculated by multiplying the average
flow velocity by the cross-sectional lava flow area. When
the flow is constrained within channels or tubes (Fig. 1), the
area is often taken to be a simple multiplication of the visible
flow width by its assumed depth, which inherently assumes
a rectangular cross-section. Average flow velocity estimates
can be made from measurements of flow surface velocity
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Fig. 1 Photos of lava flowing in channels. a Mauna Loa 1984. Photo
taken by R.W. Decker. Source: USGS HVO website. b Etna 2004. A
shaded relief 3D view of the laser scanning digital elevation model

(DEM) made by Mazzarini et al. (2005). Highlighted area shows the
September 2004 flow and channel. Illumination from the north

but such calculations also require knowledge of channel
geometry and an assumption of the appropriate rheological
model.

Lava, however, is a complex fluid, comprising of liquid
melt, solid crystals, and gas bubbles, with volume ratios,
number densities, and orientations all reflecting the flow
history. Lava rheology depends on melt viscosity and the
shape, distribution, and volume fraction of crystals and bub-
bles, all of which vary with the shear and thermal history
over the duration and length of the flow. This complexity
and time and space variability make it difficult to accu-
rately apply rheological laws obtained in the laboratory
or from theoretical calculations, to the bulk behavior of
natural flows. Attempts have been made in the past to
measure lava viscosity directly during flow emplacement,
using viscometers (Shaw 1969; Pinkerton 1978); such direct
measurements are extremely difficult to perform. In addi-
tion, point measurements provided by viscometers may not
be representative of the effective bulk flow viscosity. For
sample, they may use a strain-rate that is less than the
characteristic strain rate of the flow (Spera et al. 1988).
It is, therefore, valuable to be able to estimate the effec-
tive viscosity of flowing lava indirectly, whether in situ
using observations of flow velocity and structure or from
the geometry of solidified flows, in order to provide rheo-
logical information for predictions of flow advance, hazard
mitigation, and geologic interpretation.

Early estimates of lava viscosity from velocity mea-
surements were carried out for Etnean flows by Walker
(1968). Hulme (1974) used measurements of flow veloc-
ity and dimensions to estimate viscosities of terrestrial

lava flows. Fink and Zimbelman (1986) reported detailed
measurements for four lava flows in Hawai’i and used them
to estimate rheological parameters along the flow length.
Similar calculations were carried out by Moore (1987), who
estimated lava viscosity and yield stress for several Mauna
Loa flows, finding values comparable to those measured in
experiments. Advances in visible-light and infrared photog-
raphy and videography in recent years allowed the scientists
to make more detailed estimates of flow geometries, veloc-
ities, and temperature, and use those to infer flux and
rheological parameters. For example, James et al. (2007)
used infrared time-lapse photography of the September
2004 flow on Etna to estimate mass flux and rheology.

A common feature in all the above viscosity and flux
estimations is the use of equations that assume a simplified
channel geometry. The frequently used Jeffreys equation
(Jeffreys 1925; Nichols 1939; Hulme 1974; Baloga et al.
1998) relates the viscosity η and the flux rate Q of a Newto-
nian fluid inside a channel to the lava density ρ, maximum
velocity V , thickness h, half-width a, ground slope α, and
gravitational acceleration g:

η = ρg sin(α)h2

2V
(1a)

Q = ρg sin(α)h32a
3η

(1b)

Jeffreys equation assumes a wide channel (i.e., much wider
than it is deep), yet it is often used in scenarios where this
assumption is not necessarily valid (see Table 1 for nota-
tion). Following Batchelor (1967), Tallarico and Dragoni
(1999), Sakimoto and Gregg (2001), and others utilize a
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Table 1 Notation and symbols used in the text

Symbol Meaning Units

a flow half width m

f body force N/kg

g gravitational acceleration m/s2

h flow thickness, channel depth m

m power-law rheology exponent

p pressure Pa

t time s

ts solidification time s

K V-shaped channel factor

(Takagi and Huppert 2007)

Q volumetric flux tate m3/s

R hydraulic radius m

Ra Rayleigh number

Re Reynolds number

Pe Pèclet number

T temperature ◦K
Te eruption temperature ◦K
Ta ambient temperature ◦K
Ts solidification temperature ◦K
u velocity vector m/s

V, Vmax velocity magnitude, maximum m/s

α ground slope degrees

β, γ geometrical factors in Eqs. 2 and 3

δ thermal boundary layer thickness m

' Gamma function

ε emissivity

ε̇ strain rate 1/s

η viscosity Pa s

) non-dimensional temperature

ϑ flow and crust morphology parameter

(Griffiths et al. 2003)

κ thermal diffusivity m2/s

λc convective time scale s

λr radiative time scale s

ρ density kg/m3

σ stress tensor Pa

σb Stephan-Boltzman constant

. ratio of advection to solidification timescales

formulation for velocity–viscosity relation for such finite-
width rectangular channels:

η = ρg sin (α)h2

2V
× β (2)

where β = 1 − 32
π3

∑∞
n=1,3,5,...

1
n3 (−1)(n−1)/2sechnπ2a

4h .
Hereafter, we refer to β as the “finite-width factor.” The
above studies examined the influence of assuming an

infinitely-wide flow, a finite-width geometry, and a semi-
elliptical geometry on the Newtonian and Bingham rhe-
ological parameters estimated from surface velocity and
dimensions of both natural and laboratory flows, and found
differences of up to 90 % for some flows. In addition,
both Tallarico and Dragoni (1999) and Sakimoto and Gregg
(2001) provide an expression for the mass flow rate in a rect-
angular channel given the channel dimensions and the lava’s
maximum surface velocity:

Q = 4
3
V ah × γ

β
(3)

where γ = 1 − 384
π5

∑∞
n=1,3,5,...

1
n5 tanhnπ2a

4h . We call γ the
“finite-width flux factor”.

Moore (1987) used an equation for Newtonian flow in a
semi-elliptical channel:

η = ρg sin(α)
V

×
{

h2

2[(ha )2 + 1]
+ 1

2
[(h
a
)2 + 1]

}

(4)

We note that Moore (1987) based this work on a more
general relationship applicable also to Bingham fluids
(Johnson 1970). Although the generalization was later
found to be erroneous (Johnson and Rodine 1984), the
Newtonian variant (Eq. 4) is correct. Robertson and Kerr
(2012a) provide a detailed method for estimating the rheo-
logical parameters of a Bingham fluid given the maximum
velocity and the flow depth or rate. Their method is based
on iteratively searching for a numerically-calculated veloc-
ity which provides the best fit to the observed velocity.
Like most others, their work assumed a rectangular channel
cross-section.

Takagi and Huppert (2007) expanded the range of con-
sidered channel shapes by employing similarity solutions
to investigate the influence of confining boundaries on vis-
cous flows driven by gravity. They looked at semi-circular
(a = h) and V-shaped channels, and provided analytical
expressions for flow velocity–viscosity relation depending
on channel shape. Following the formulation of Eqs. 1a–4,
Takagi and Huppert (2007) defined η = ρg sin(α)h2/V ×
K , where K depends on the V-shape opening angle or the
semi-circle curvature (K = 1

2 yields the Jeffreys equation).

For a V-shape channel, K ≈ 0.137(a/h)3

1+(a/h)2 , and for a semi-

circular channel, K = 24
105 = 0.23.

Our goal here is to build upon these past works and
further expand the discussion of the influence of channel
shape on flow observable to include more complex channel
geometries. This will enable us to provide a range of possi-
ble solutions to bracket field estimates of viscosity and flux
when channel geometry is poorly constrained. Our approach
is to carry out numerical simulations of flows in a variety of
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channel geometries and determine the viscosity values that
would be estimated in the field from surface measurements
alone, using the equations above. We consider Newtonian
and non-Newtonian fluid rheologies, including isothermal
and non-isothermal cases.

Methods

We constructed a suite of finite element numerical mod-
els with varying rheologies and channel geometries to
assess the influence of channel shape on the rheologi-
cal and flux parameters inferred from observed surface
velocities. We assumed a steady-state, laminar flow, and
solved for the instantaneous velocity field for different
geometry, rheology, and temperature combinations. For all
models, lava density was set to 2,400 kg/m3, and ground
slope is assumed to be 33 degrees for all models. The
flow is controlled by the equation of conservation of
momentum:

ρ

(
∂u
∂t

+ (u · ∇)u
)

− ∇ · σ = ρf (5)

and the equation of continuity for an incompressible fluid:

∇ · u = 0 (6)

where u is the velocity vector, σ is the stress tensor, and f
a body force. We assume a steady-state, which implies that
∂u
∂t = 0.

To solve the flow equations, we use the open-source
finite element package ELMER, developed at the Center for
Scientific Computing, Finland (http://www.csc.fi/elmer/).
The system of equations was solved iteratively using the
biconjugate gradient stabilized method (e.g., Barrett et al.
1994, p.24–25), with ILU(2) (Incomplete LU factorization
of level 2) preconditioning to promote convergence. Flows
were driven by an applied gravitational body force equal to
ρg sin(α), and we applied no-slip boundary conditions (u =
0) at the bottom and side walls of each channel. Flow at the
surface was unconstrained and could move in any direction.
Meshes were refined near boundaries and tested to ensure
the solution was independent of mesh resolution (i.e., solu-
tions did not change with further mesh refinement) while
balancing computational cost. The accuracy of the solutions
calculated by ELMER could be assessed by comparing the
numerical results with equivalent analytical solutions where
available. Supplementary material Fig. S1 shows the results
from such comparison for a rectangular and a semi-elliptical
channels using Eqs. 2 and 4.

Channel geometries

A total of 13 different channel geometries were considered
(Table 2, Fig. 2), 8 of which were straightforward geo-
metric shapes, not intended to accurately represent natural
channels, but to cover geometrical end-members:

• two rectangular open channels, one ‘shallow,’ and one
‘deep’ (models 1 and 2)

• three semi-elliptical open channels of varying aspect
ratios (models 3, 4, and 5)

• a truncated elliptical channel (i.e., partially-filled tube
or a channel with levees starting to converge towards
the surface) (model 6)

• a V-shaped open channel (model 7)
• a trapezoid open channel (model 8)

For simplicity, we keep our models dimensional and ascribe
a width of 1 m to all geometric channels, to maximize
similarity. The truncated elliptical channel (tube-like) is
truncated at 5/6 of its height and has the same minor axis
length as the medium semi-elliptical model. Nonetheless,
the results give intuition for behavior in channels of dif-
ferent sizes, through examining the channel aspect ratio
(width/depth) and departure from a rectangular or semi-
elliptical shape.

The remaining five models were derived from field data
on the

• two cross-sections from the Mauna Loa 1984 flow,
Hawai’i, taken at altitudes of (A) 2,333 m and (B)
2,198 m (models 9 and 10)

• three cross-sections from the September 2004 flow on
Mount Etna, Sicily, taken at altitudes of (A) 1,729 m,
(B) 1,723 m, and (C) 1,719 m (models 11,12, and 13)

Channel structure for the Mauna Loa 1984 flow was
extracted from an airborne LiDAR data collected over the
flow area in June 2009 (data are publicly available via NSF’s
OpenTopography portal). Channel geometries for the Etna
2004 flow were derived from the photogrammetric survey
of James et al. (2007) which imaged the channel under
conditions of near complete drainage.

Rheological models

Within the above channels, flows with three different rheo-
logical constitutive laws were considered:

• a Newtonian viscosity fluid
• a power-law viscosity fluid defined as η = η0ε̇

m−1,
with ε̇ the strain rate. We use an exponent of m = 0.6,
following laboratory estimates for basaltic lavas (e.g.,
Sonder et al. 2006), and
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• a temperature-dependent Newtonian viscosity fluid,
with viscosity defined as log10(η0) = −A+B/(T −C)

(Fulcher 1925). We set the parameters A, B, and C using
the values that the GRD model (Giordano et al. 2008)
predicts for the composition of the Etna 2004 flows:
A = 4.55, B = 5596, and C = 499.

This approach to temperature-dependent viscosity was
aimed at illustrating first-order temperature effects on bulk
rheology, but neglects complexities such as crystals fraction
variability, which can have significant effects down flow
(e.g., Chevrel et al. 2013). For the natural channels (mod-
els 9–13), we multiply the pure-melt viscosity calculated by
the GRD model by a factor of 30. This factor accounts for
the higher viscosity expected due to approximately 30 %
bubbles and 40 % crystal fraction (Harris and Allen 2008),
and elevates the effective viscosities in these models to lev-
els comparable to those measured in the field (Lipman and
Banks 1987; James et al. 2007).

For models with a temperature-dependent viscosity, we
imposed a temperature field within the channel to be used
by the viscosity law. The temperature field was calculated in
advance for each channel geometry by solving the equation
of heat conduction within the fluid, assuming an initial tem-
perature of Te = 1, 100 ◦ C and an upper surface boundary
of 900 ◦C (i.e., temperatures similar to those measured at
Etna in 2001 by Bailey et al. (2006) using thermocouples).
The fluid cooled by radiation from the free surface (using
an emissivity value of ε = 0.95 (Patrick et al. 2004)) and
through conduction to the solid boundary (using a thermal
diffusivity κ = 5 × 10−7 m2/s for both the fluid and the
channel, and a fixed temperature of Ta = 300 ◦C for the
channel wall material).

We ran the cooling model for 1,000 s, by which time the
top thermal boundary layer reached a thickness δ = 10 cm
for all geometries.This is a relatively thick thermal bound-
ary layer—∼2.5 times that expected by considering the
Rayleigh number (Ra) of the flow and using the theoret-
ical relationship δ = 1.7hRa− 1

3 , and Ra = ρgα(Te −
Ts)h

3/κη. However, flows with thinner thermal boundary
layers will be increasingly well approximated by the isother-
mal case. Therefore, our models can be thought of as end
member scenarios for the effect of thermal structure and
temperature-dependent rheology. Vertical profiles of tem-
perature taken at each channel’s center are shown in Fig. 3a.
The simple nature of the cooling model, which neglects
any heat advection due to down-flow shear or across-flow
velocity components, limits analysis to first-order thermal
effects. Nevertheless, this represents a reasonable starting
place for examining the effects of a temperature-dependent
rheology, with the 900–1,100 ◦C range giving viscosities of
5,660–71 Pa/s (models 1–8) and 7.2 ×104–1,770 Pa/s (mod-
els 9–13) at the flows’ surface and interior, respectively.
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Fig. 2 Geometries used for numerical forward models. a–h Geo-
metrical shapes of models 1–8 (width is always 1 m): a A narrow
rectangular channel (also used for testing against analytical solu-
tion); b A shallow rectangular channel. c–e Semi-elliptical channels,
width depths of 0.25, 0.375, and 0.8 m; f A V-shaped channel with

a depth of 0.5m; g A trapezoid channel, width a depth of 0.4m. h A
partially-filled elliptical tube with a minor axis radius of 0.375 m; i-j
Cross-sections from the Mauna Loa 1984 flow, extracted from LiDAR
data by Hannah Diettriech. k–m Cross-sections from the Etna 2004
flow, taken from James et al. (2007)
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Fig. 3 Vertical cross-sections at the center of each channel of the a
temperature and b velocity for models with a temperature-dependent
viscosity. The velocities are normalized by each model’s maximum
velocity and the depth are normalized by the thickness of the channel

Post-processing procedure

We calculate the viscosities that an observer would cal-
culate for the flowing lava given its surface velocity, the
modeled channel height and width, and assuming either the
Jeffreys equation (Eq. 1a), a finite-width rectangular chan-
nel (Eq. 2), or a semi-elliptical geometry (Eq. 4) and the
same flow thickness h used in the numerical simulation. For
Eqs. 2 and 4, the half-width a is that used in the numer-
ical model as well. For models with power-law rheology,
we report an effective input viscosity value calculated as
η = η0ε̇

m−1, where ε̇ is an average strain rate magnitude
in the model, η0 is a reference viscosity, and m = 0.6.
For temperature-dependent viscosity models, we estimated
an effective input viscosity for the lava in each model by
taking the geometric mean of the viscosities at n equally
distributed nodes along a vertical slice through the channel((

n∏

i=1
ηi

) 1
n

)

.

We quantify the error introduced to viscosity and flux
estimations when assuming an inappropriate channel geom-
etry by reporting the ratios between the viscosity calculated
using the simplified analytical relationships (Eqs. 1a, 2 and
4), and the actual effective viscosity used as input in the
numerical forward models. For each model, we also calcu-
late the “misfit” value, defined as (1− inferred

input )2. In addition
to viscosities, we also compare flux estimations an observer
would make using Eqs. 1b and 3 with the simulated fluxes
in the channel.

Applicability to natural channels

For simplicity, our models were constructed using spe-
cific channel dimensions, yet their broader applicability
can be illustrated through the non-dimensional parameters
Re (Reynolds number), Pe (Péclet number) . (Fink and
Griffiths 1990), and ϑ (Griffiths et al. 2003), as given in
Tables 3, 4 and 5.

The Reynolds number Re expresses the relative sig-
nificance between inertial forces and viscous forces. For
an open channel, Re is defined as ρRV

η , where R is the
hydraulic radius of the flow, which is the ratio of the cross-
section area to the length of the flow’s wetted perimeter.
For a half-circle channel, the hydraulic radius equals half
the channel depth. Flow in an open channel is considered
laminar for Re <500 and turbulent for Re >2,000. We
find that all the flows in our models are clearly laminar,
with Re << 500. The Péclet number Pe gives the ratio of
advection to diffusion of heat, and a measure of the relative
thickness of the thermal boundary layer to the characteris-
tic length scale. All Péclet numbers in our models are much
greater than 1, meaning that advection dominates.

The non-dimensional parameter . represents the ratio
between the amount of time required for a crust to form
at the flow surface (ts) and the time it takes to advect
heat to a distance equivalent to the flow depth, calculated
as the maximum velocity divided by the depth (Fink and
Griffiths 1990; Gregg and Fink 2000; Gregg and
Keszthelyi 2004). . values have been found to correlate
with flow morphologies in both field and laboratory scenar-
ios (Fink and Griffiths 1990; Gregg and Keszthelyi 2004):
high . values correspond to more disrupted flow struc-
tures and surfaces, with . > 30 corresponding to leveed
flows and . > 9 to cracked and broken lava toes. Low .

values correlate with tube formation and inflated toes. We
calculate . values using the following set of equations and
definitions (Robertson and Kerr 2012b):

. = Vmax
h × ts

ts = λc
2 ×

[
1−)s+)a

()s−)a)
4
3 +1

1
2 ()4

s−)4
a)

]

1 = λc
λr

λc =
(

ρc
ρacaJa

)2
κ

(Te−Ta)
2
3

λr =
(

ρc
εσb

)2
κ

(Te−Ta)6

Ja = 0.1
(
gρaαaκ

2
a

ηa

) 1
3

(7)

where the subscript a refers to the properties of the ambi-
ent air, subscript e refers to eruption conditions, and
subscript s to solidification conditions. θs , θa , and θe
are non-dimensional temperatures formed by dividing by
(Te −Ea), i.e., θs = Ts/(Te −Ta). The solidification time ts
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is 67 s for the temperatures used in our geometrically shaped
models (Te = 1100 ◦C, Ta = 20 ◦C, and Ts = 730 ◦C). .

values for all our models are in the high-., broken-surface
regime, supporting our examination of them as open chan-
nels. A related characterization is given by Griffiths et al.
(2003), who define the parameter ϑ = .(Ra/R0)

1
3 , where

Ra is the Rayleigh number, and we take R0 to be equal to
100. ϑ < 25 indicates a likely development of a solid roof
and a tube regime, while ϑ > 25 leads to a mobile crust and
an open channel flow. For all our models, ϑ > 25, thus they
are all within the mobile crust regime.

Results

We summarize our observations in Tables 3, 4, and 5, which
list the measured velocities and flux rates for all our for-
ward models, the derived non-dimensional parameters, and
the results of the comparison with analytical predictions.
Figure 4 shows cross-sections in the velocity fields across
the geometrical channels.

Apparent viscosity and flux for isothermal models

Our results for the isothermal, Newtonian rectangular, and
semi-elliptical channels agree with those predicted by the
respective analytical solutions (Eqs. 2 and 4), confirming
the validity of the numerical solution.

For Newtonian isoviscous models, the ratio of inferred
viscosity to input viscosity ranges between 1.17 and 3.55,
both occurring when using the Jeffreys equation. Consid-
ering a rectangular channel with a finite width leads to

overestimations up to 102 % (ratio of 2.02). Using Eq. 4
(semi-elliptical) gives ratios of between 0.85 and 1.71.

We note that two of our numerical flow solutions—
namely for V-shaped and medium-depth semi-elliptical
channels—disagree with predictions made by the analytical
solution of Takagi and Huppert (2007), using the equa-
tions we listed at the end of Section “Introduction.” For
a V-shaped channel, Takagi and Huppert (2007) predict a
factor K = 0.0685, giving Vmax = 0.24 m/s, compared
with our measured 0.39 m/s. For a medium-depth semi-
circular channel, Takagi and Huppert (2007) use a factor of
24/105 = 0.229, leading to a maximum velocity of 0.8 m/s,
17 % greater than both the analytical solution by Moore
(1987) and our numerical solution (0.68 m/s).

To estimate the influence of channel shape assump-
tions when a power-law rheology is used, we first have to
calculate the effective viscosity of the model by finding the
highest strain rate within the channel and using it in the
constitutive relation described in the Methods section. Our
results indicate that the inferred viscosity can be up to 3.7
times larger than the effective viscosity (using the Jeffreys
equation for a deep and narrow semi-elliptical channel), and
down to a factor of 0.30 (the Jeffreys equation for a shallow
semi-elliptical channel).

Temperature-dependent models

Figure 3 shows vertical cross-sections of the temperature
and the velocity magnitude taken at the center of each chan-
nel. Table 5 lists the observed maximum velocities at the
channel surface and in the interior, along with the viscosi-
ties inferred from these velocities assuming a finite-width

Fig. 4 Profiles across the
velocity field at the surface of
all our geometrical channels.
Top row Velocity (m/s), Middle
row Velocity normalized by
maximum velocity for each flow,
Bottom row Velocity normalized
by the square of the each
channel’s depth. Left column
Isothermal Newtonian; Center
column Temperature-dependent
models; Right column power
law. Channels with similar
shape and varying depth (e.g.,
all semi-elliptical ones) share a
color, with varying darkness
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rectangular channel geometry. The velocity profiles and
table values indicate that surface velocity may be as low
as just 65 % of the interior velocity (for a tube-like and
a rectangle channel), in agreement with field observations
(Pinkerton and Sparks 1976). For a shallow semi-elliptical
channel geometry, the maximum velocity is found very
close to the surface.

Discussion

After quantifying the inaccuracy introduced into viscos-
ity and flux estimates by using an idealized geometric
shape, the question arises as to which geometric approxi-
mation should be used when channel shape is not known.
To answer this question, we evaluate the overall appro-
priateness of each approximation equation and channel
shape by calculating the total misfit between inferred
and input viscosities for the isoviscous models, where fit

is defined by
( ∑
models

(
1 − ηinf erred

ηinput

)2
) 1

2

. For Newtonian

fluids, total misfit values are 4.9, 1.86, and 1.42 for the
Jeffreys equation, finite-width rectangle, and semi-elliptical
channels, respectively. For models using a power-law fluid
rheology, total misfit values were 22.99, 9.32, and 7.51, and
for temperature-dependent Newtonian rheology: 12.3, 4.0,
and 3.05. It appears, therefore, that when channel shape is
not known, it is safest to use Eq. 4 and assume a semi-
elliptical shape. For volumetric flux rates, the estimates
obtained by using a finite-width approximation were overall
closer (lower total misfit) than those obtained by the Jeffreys
equation.

Channel shape versus alternative sources of inaccuracy

It is useful to compare the magnitude of flux and viscos-
ity estimation errors resulting from assuming an inaccurate
channel shape with errors stemming from uncertainties in
flow depth. As discussed in length by Harris et al. (2007),
field measurements of flow depths are difficult and assump-
tions are often made such that flow depth equals levee rim
height. Similarly, velocities can naturally only be measured
at the surface of the flow and might not represent the inte-
rior. It is also difficult to measure velocities if flow is within
a tube with limited viewing points.

Examining Eq. 1a, one can see that an over/under
estimation of flow depth by 10 % would lead to an
over/underestimation of the viscosity by 20 %. If observers
use Eq. 2 instead, an error in depth leads to an additional
error in the “finite-width factor” β. The magnitude of this
error depends on the aspect ratio of the channel, as can be
seen from Fig. S2. The error in β is negligible for wide flows

(Width/Depth>8) and comparable to the error in depth for
narrow channels (Width/Depth<2).

As mentioned earlier, the overestimation of viscosity
for an isothermal fluid with a Newtonian rheology due to
employment of inappropriate analytical approximation can
reach a factor of 3.5, and for the natural cases tested here
the overestimation ranged from 16 to 40 %. Errors intro-
duced by using an idealized channel shape equation such as
Eqs. 1a, 2 or 4 are therefore comparable to or larger than
those caused by inaccuracies in flow thickness.

Influence of temperature

Since lava viscosity depends strongly on temperature, vis-
cosity is usually greater and velocity can be slower close
to the surface relative the flow interior. This difference
between surface and interior velocities has been observed in
the field—for example, Pinkerton and Sparks (1976) esti-
mated that during the 1975 Etna eruption, crusts moved
30 % slower than the interior. Our results for a rectangular
channel agree well with this observation. Thus, using sur-
face velocity measurements to estimate the viscosity of the
entire flow can lead to an error. Our models highlight the
fact that the difference between surface and interior veloc-
ity depends not only on the temperature difference, but also
on the channel shape. The largest contrast was found for a
narrow rectangular channel and the lowest for a wide semi-
elliptical channel. We find that viscosities inferred from the
surface velocities were as high as 8.2 (Eq. 1a on a nar-
row rectangular channel) and as low as 1.34 (Eq. 4) times
the effective viscosity in the model. Once again, the semi-
elliptical approximation (Eq. 4) provides the closest fit, even
for a rectangular channel.

Our simulations illustrate the similarities between the
influence of the channel geometry and the channel thermal
structure on the observed surface velocity field. In essence,
the cooler edges influence a flow in a similar manner to a
narrower channel for an isoviscous material. This is evident
in the example given in Fig. 5, where we plot the normalized
cross-channel velocity profile for flow in a rectangular chan-
nel with a temperature-dependent viscosity, which is almost
identical to the profile of isoviscous material in a channel
with a trapezoid cross-section. Therefore, a stronger viscos-
ity difference between the flow boundaries and core will
produce velocity profiles similar to those from a shallow
channel.

Effect on flux estimates

Our results indicate that uncertainty in the channel cross-
sectional shape can have a large effect on the reliabil-
ity of flux estimations. In the results table, we com-
pare the measured flux in the channel, calculated by
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with an isoviscous Newtonian viscosity (dashed red). The two profiles
are almost identical, demonstrating the similar influence of tempera-
ture on a temperature-dependent flow to geometry on an isoviscous
flow, on the observed surface velocity field

numerically integrating the velocity over the model’s cross-
section area, with the flux predicted by entering the channel
depth, width, and maximum velocity in Eqs. 1b and 3.
For geometrically-shaped channels, both isothermal and
temperature-dependent, Eq. 3 provides a better fit to the
measured flux than Eq. 1b, while the opposite is true for the
natural channels. For a power-law rheology, Eq. 3 gives a
better fit also for the Hawaiian channels. It may be expected
that the error in flux estimates will be proportional to the
deviation of the shape from a rectangle, which we define as
D = 1 − actual cross sect ion area

width×depth . Figure 6 shows the error
in flux caused solely by the cross-section area being smaller
than the equivalent rectangle (black curve). This error is

calculated as:
∣∣∣1 − f lux calculated using Equation 3×(1−D)

f lux measured in models

∣∣∣
2
.

The relationship between channel shape and flux estimation
error is neither simple nor monotonic, and the shape of the
channel influences the flux estimates differently for differ-
ent rheologies and channels, due to the variable distribution
of velocities within each flow.

Implications for interpreting old flows

The geometry of solidified lava flows is often used for the
estimation of effusion rate and rheology in the absence of
direct observations during flow emplacement. This is espe-
cially the case for submarine flows (Fundis et al. 2010) and
for flows on other planets, where rheology can be used to
infer chemical composition.

For flows on Ascraeus Mons, Mars, Hiesinger et al.
(2007) calculated viscosities in the range of 5.52 × 104 to
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Fig. 6 Error in flux estimations for as a function of the
channel’s deviation from a rectangle. The error is defined as
|1 − f lux calculated using Equation 3

f lux measured in models |2. The horizontal axis gives the
models’ deviation from a rectangle, defined as D = |1 −
actual cross section area

width×depth |. Overall there is a positive proportionality
between the error in flux and deviation from rectangle. However this
relationship depends also on shape and rheology details. The black
curve shows the error in flux caused solely by the cross-section area
being smaller than the equivalent rectangle. This error is calculated as:
|1 − f lux calculated using Equation 3×(1−D)

f lux measured in models |2. The difference between
the markers and the black curve highlight the influence of the different
distribution of velocities within each channel

2.86 × 107 Pa/s, depending on the analytical approxima-
tion used and the selected channel, but always assuming a
rectangular channel. Based on cross-sections derived from
MOLA data (Baloga et al. 2003), both V-shaped and a
semi-elliptical channels are possible on Mars. If, in fact,
the shape of the Ascraeus Mons channels is closer to a
semi-circle, then the viscosities reported by Hiesinger et al.
(2007) are approximately 15 % too high, and if closer to a
V-shape, then the values would be two times too high. Our
results suggest that the potential error would be smaller if a
semi-elliptical channel approximation was used.

Conclusions

The influence of channel geometry on estimates of lava vis-
cosity and mass flux made from measurements of surface
velocity has been assessed using numerical models. Overall,
errors introduced by assuming an inaccurate channel shape
are comparable to, or even larger than those stemming from
uncertainties in flow thickness, which is usually assumed
to be the largest unknown. For Newtonian fluids, we find
that channel shape alone can make the apparent viscosity
of the flowing lava appear to be 3.5 greater (when applying
the Jeffreys equation on a narrow semi-elliptical channel),
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than it actually is. For a temperature-dependent rheology,
a semi-elliptical analytical approximation yields apparent
viscosity and flux values closer to input values than a rectan-
gular analytical solution, for all channel shapes considered,
including for rectangular channels. We also highlight a
trade-off between channel shape and thermal structure, as
both influence the internal velocities.

The analysis of viscosity estimation error for natural
channels from Mauna Loa and Etna shows that if the lava is
of Newtonian viscosity, a semi-elliptical analytical solution
gives an approximation three times closer to the input vis-
cosity than a rectangle with the same depth, while if the lava
is shear-thinning (power law exponent m = 0.6), a rectan-
gular approximation is 15 % more accurate. Volumetric flux
for most natural channels we looked at is best approximated
using an expression for an infinitely-wide sheet flow.

In conclusion, we recommend that our results be used
to bracket possible viscosity and flux estimates when such
values need to be assessed rapidly, for example during an
eruption, and when channel-scale details of pre-eruption
topography are unknown. In addition, the demonstrated
importance of knowing the shape of lava channels implies
further research should be done to characterize the statistical
distribution of channel cross-section shapes and the rep-
resentation of various end-member geometries in different
environments.
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