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Optimizing Correlation Techniques for Improved Earthquake Location

by David P. Schaff,* Götz H. R. Bokelmann, William L. Ellsworth, Eva Zanzerkia,
Felix Waldhauser,* and Gregory C. Beroza

Abstract Earthquake location using relative arrival time measurements can lead
to dramatically reduced location errors and a view of fault-zone processes with un-
precedented detail. There are two principal reasons why this approach reduces lo-
cation errors. The first is that the use of differenced arrival times to solve for the
vector separation of earthquakes removes from the earthquake location problem
much of the error due to unmodeled velocity structure. The second reason, on which
we focus in this article, is that waveform cross correlation can substantially reduce
measurement error. While cross correlation has long been used to determine relative
arrival times with subsample precision, we extend correlation measurements to less
similar waveforms, and we introduce a general quantitative means to assess when
correlation data provide an improvement over catalog phase picks. We apply the
technique to local earthquake data from the Calaveras Fault in northern California.
Tests for an example streak of 243 earthquakes demonstrate that relative arrival times
with normalized cross correlation coefficients as low as �70%, interevent separation
distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern
California Seismic Network are more precise than relative arrival times determined
from catalog phase data. Also discussed are improvements made to the correlation
technique itself. We find that for large time offsets, our implementation of time-
domain cross correlation is often more robust and that it recovers more observations
than the cross spectral approach. Longer time windows give better results than shorter
ones. Finally, we explain how thresholds and empirical weighting functions may be
derived to optimize the location procedure for any given region of interest, taking
advantage of the respective strengths of diverse correlation and catalog phase data
on different length scales.

Introduction

Two principal sources of error for any earthquake lo-
cation problem are arrival time measurement error and errors
arising from unmodeled velocity structure, subsequently re-
ferred to as model error. Progress in reducing both these
error sources, most recently using the combined strengths of
waveform cross correlation measurements and the double-
difference location approach (Waldhauser and Ellsworth,
2000), has been realized on the Calaveras, Hayward, and
San Andreas Faults with a reduction of 1–2 orders of mag-
nitude in location error at small length scales (Rubin et al.,
1999; Waldhauser et al., 1999; Schaff et al., 2002). In these
applications, initial earthquake locations from manual phase
picks have all been dramatically improved using cross cor-
relation measurements. In this article, we present the meth-
ods we used to enable more high-quality correlation mea-

*Present address: Lamont–Doherty Earth Observatory, Columbia Uni-
versity, Palisades, NY 10964.

surements to be utilized for the improvements in the case
study on the Calaveras Fault (Schaff et al., 2002). The gen-
eral methodology should apply to other regions where cor-
relation measurements are used to improve earthquake lo-
cation.

The utility of waveform cross correlation together with
relative location techniques is well established (Poupinet et
al., 1984; Fréchet, 1985; Ito, 1985; Frémont and Malone,
1987; Deichmann and Garcia-Fernandez, 1992; Got et al.,
1994; Dodge et al., 1995; Shearer, 1997), but it is only re-
cently that relative location techniques have been applied to
large numbers of events at spatial scales of more than a few
kilometers (see Table 1) (e.g., Rubin et al., 1999; Waldhau-
ser et al., 1999; Rowe et al., 2002; Schaff et al., 2002). The
reason for this is in part historical. Earlier work concentrated
on small clusters of earthquakes such as foreshocks (Dodge
et al., 1996) or repeating events (e.g., Poupinet et al., 1984)
that were certain to have extremely similar waveforms due
to separations on the order of 100 m or less. Recently, large
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Table 1
Examples of Progress for Correlation-Based Relative Relocation over the Years

Group Year Region Events Relocated

Poupinet et al. 1984 Doublets in Alps and Calaveras Fault �2
Got et al. 1994 South flank fault on Big Island, Hawaii �200
Rubin et al. 1999 Creeping section of San Andreas Fault �3,200 (75%)
USGS/Stanford 2000 Hayward, Calaveras, San Andreas, Landers �20,000 (90%)
USGS/Stanford/Lamont 2002–present Entire northern California catalog �250,000 (99%)

volumes of waveform data have become readily accessible
at earthquake data centers, facilitating the processing of
larger and more diverse waveform data sets (Neuhauser et
al., 1994).

An important step in applying waveform cross corre-
lation to earthquakes at larger spatial scales is the recognition
that correlation data can be a significant improvement over
catalog data under more general circumstances than was pre-
viously appreciated. In this study, we use the postfit relative
arrival time residuals from the double-difference location
algorithm to assess independently the errors in the two data
sets. From this quantitative comparison, we find that cross
correlation measurements can be used with great success to
much lower similarity thresholds than have been previously
applied. For seismicity recorded by the Northern California
Seismic Network (NCSN) instrumentation and telemetry, we
find that, on average, cross correlation measurements pro-
vide more precise measures of relative arrival time differ-
ences than catalog picks at separation distances of up to
2 km.

At larger spatial scales, arrival time picks in the catalog
provide essential information, and without them it would be
impossible to relocate all of the seismicity. Thus, combining
the two data sets is important. By using postfit residuals from
the location algorithm to develop a rational data weighting
for both the catalog and cross correlation arrival time mea-
surements, we obtain locations that take advantage of the
strengths of both data sets.

Time-Domain Cross Correlation versus Cross
Spectral Approach

Typical standard errors for catalog hypocentral loca-
tions in northern California range from hundreds of meters
to a kilometer horizontally and about twice that vertically,
which can lead to location scatter that obscures important
details of fault behavior. The largest source of error arises
from unmodeled earth structure, but errors in individual ar-
rival time measurements also contribute significantly to the
problem. In most cases S-wave picks are not made, and thus
the constraint they provide on hypocentral locations, par-
ticularly in depth, is not available. Arrival times based on
correlations, however, only need to be centered on a window
of energy, even if the first breaks of the S-waves are not
discernible and therefore not picked.

Arrival time data for a set of events considered simul-

taneously (the “catalog”) can better constrain the relative
locations between events. In the hypoDD algorithm of Wald-
hauser and Ellsworth (2000), this was done by converting
the arrival times into time differences between common
phases of different earthquakes recorded at the same station.
Because the phases traverse similar paths if two earthquakes
are close to one another, their travel-time difference will not
be affected by unmodeled structure for the parts of the prop-
agation path that are common to the two events. Those
travel-time differences can therefore be used to obtain pre-
cise relative location estimates by reducing velocity model
error. To reduce the measurement error of the time differ-
ences, time-domain cross correlation or the cross spectral
technique may be employed. The principles of delay esti-
mation using these two methods are illustrated in Figure 1
(see also Jenkins and Watts [1968]). Time-domain cross cor-
relation is defined as

c(s) � n u (t)u (t � s)dt (1)1 2�
for seismograms u1(t) and u2(t) and with the normalization

. The delay, s, for which the2 2 1/2n � 1/[� u (t)dt � u (t)dt]1 2

correlation coefficient, CC � max{c(s)}, occurs measures
the delay between the two seismograms (Fig. 1c). The Fou-
rier transform of c(s) is equivalent to the cross spectrum

C( f ) � n �U ( f )U*( f )�. (2)1 2

Its absolute amplitude, |C(f )|, after smoothing across adja-
cent frequencies, is called the coherence, and the delay, s,
can also be estimated from the slope of the phase (Fig. 1b,
d), for example, in a regression weighted by the coherence.

Directly measuring arrival time differences by cross
correlation requires the choice of windows around previ-
ously specified approximate arrival times for a pair of events.
These must be estimated visually (catalog pick), by an au-
tomatic detector, or, alternatively, as a theoretical arrival
time if the location is roughly known. In each case the win-
dow may be grossly misaligned and contain only a fraction
of the true similar waveform needed for a useful comparison.
We have encountered this problem even for the nearly iden-
tical waveforms of repeating events, where a particularly
noisy day at a station may obscure the first arrival for one
of the events. For this reason, we need to be able to recover
initial window offsets as large as approximately 1 sec (100
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Figure 1. (a) Principle of delay estimation for two traces using (c) time-domain
cross correlation and (b, d) the cross spectral approach. Similarity measures are cross
correlation coefficient (CC) and mean coherence. The computed lag is s. CC�CC and
mcoh�mcoh.

samples for the NCSN) to maximize the total number of ob-
servations.

Time-domain cross correlation and the cross spectral
approaches differ substantially in their performance in re-
covering large delays. This is shown in Figure 2, which il-
lustrates an attempt to recover lags of up to 1 sec for iden-
tical, noise-free seismograms using 256 sample time
windows for a variety of offsets. The similarity measure used
in the time domain is the correlation coefficient (CC) and in
the frequency domain the mean coherence (mcoh), the latter
taken over a limited frequency band from 2.5 to 12 Hz. The
lag, s, should be the diagonal line y � x, and the similarity
measure should equal 100% for each run. The cross spec-
trum technique shows a marked decay in mcoh with increas-
ing delay due to the necessary averaging in the complex
domain. Such an averaging over a series of complex num-
bers with rapidly varying phase biases the result toward zero

(Jenkins and Watts, 1968). Note that a more sophisticated
implementation for estimating the delay from the cross spec-
trum using only the first few prolate spheroidal eigentapers
reduces this tendency (Aster and Rowe, 2000). This and
problematic phase unwrapping at large lags lead to a recov-
ery of the true delay for lags only up to eight samples for
the simple cross spectrum technique. Clearly, time-domain
cross correlation is more robust and reliable for recovering
large lags. CC, however, is also seen to decrease with in-
creasing lag due to the fact that a smaller fraction of the
waveforms are identical in the offset windows. Although an
associated large lag may be correct, the observation may be
discarded due to a low CC value. Therefore we employ a
two-step procedure: first align to the nearest sample, then
compute to subsample precision and a more accurate CC

value. A similar methodology was used by Aster and Rowe
(2000) and Rowe et al. (2002), except that they computed
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a) b) Figure 2. Comparison of the performance
for (a) time-domain cross correlation and (b)
cross spectral approaches for measuring time
lags as a function of offset. The window length
is 256 samples. CC�CC and mcoh�mcoh.

to subsample precision in the frequency domain, whereas
we fit a parabola in the time domain in the vicinity of the
peak of the cross correlation function. For the first step we
both compute the integer sample cross correlation function
by multiplying in the frequency domain and then taking the
inverse Fourier transform.

We chose a time-domain cross correlation approach
since root mean square (rms) misfits are slightly smaller than
for the cross spectral approach and computations can be sig-
nificantly faster. We also employ window lengths of 256
samples to retrieve as many large offsets as possible and to
obtain the most observations for the relocation. Longer win-
dows have the added benefit that they have a greater chance
of capturing coherent energy if the waveforms are initially
misaligned or if the signal-to-noise ratio is low.

Residual Analysis and Observation Criteria

Relocating earthquakes using relative arrival times re-
quires measurements that connect earthquakes with other
nearby events. This is feasible for closely spaced earth-
quakes with similar waveforms (discussed later). It becomes
more problematic as waveforms become less similar, for ex-
ample, due to larger source separations. Differences in earth-
quake mechanism, heterogeneous Earth structure, and ef-
fects from source finiteness also contribute to waveform
dissimilarity.

To obtain precise locations for the entire earthquake cat-
alog, we seek to maximize the number of reliable correlation
observations. This can be achieved in two ways. First, the
correlation function itself can be made more robust to pro-
vide better measurements, as discussed in the previous sec-
tion. Second, as described in this section, threshold criteria
may be relaxed so as to allow more measurements to be
retained. We have used two measures of similarity, the nor-
malized cross correlation coefficient (CC) and the mean co-
herence (mcoh), and we compare their performance later. Not
every correlation measurement yields useful information for
the relocation. Less reliable data and outliers with unac-
ceptably large errors need to be excluded. After we have
iterated the linearized inversion process and converged on a
solution, it is also possible to use the size of the residuals to

identify inconsistent and therefore probably less reliable
measurements.

Figure 3 displays a connectivity plot as an example of
interconnectedness for a set of earthquakes using only cor-
relation data. This data set includes 1494 relocated events
on the Calaveras Fault where the observation criteria are
mcoh � 90% and CC � 70%. The connections between earth-
quakes in this figure demonstrate that many of these events
could be relocated with correlation data alone. These events
represent about 95% of the seismicity in the catalog for this
section of fault. It is not clear, however, how reliable the
measurements underlying these connections are compared
with the catalog data over these length scales and ranges of
magnitudes.

For this purpose, we use the double-difference reloca-
tion program (Waldhauser and Ellsworth, 2000) and analyze
the residuals of the relative arrival times after relocation. The
residuals convey information on how errors vary with cross
correlation coefficient, mean coherence, interevent distance,
and magnitude. Equating the postfit residuals with the size
of the measurement error assumes that the model on which
they are based (velocity model and travel-time calculation)
is correct. This is never strictly true, and hence the residuals
will not entirely characterize the true error. However, we
can estimate the measurement error from repeated measure-
ments, obtained from sequences of repeating earthquakes. In
the following, we focus on the total error due to both mea-
surement error and unmodeled velocity structure, which we
assume is identical to the postfit residuals for this over-
determined problem.

Figure 4 illustrates the distribution of 926,571 S-wave
residuals as a function of CC. These arise from a single lo-
cation run for the 1494 events on the Calaveras Fault using
CC � 70%. We observe more scatter (represented in terms
of the standard deviation of the residuals) for lower values
of the cross correlation coefficient.

Analyzing residuals is advantageous because the resid-
uals map a variety of parameters with different units to a
common system in which they may be compared directly.
For instance, the nominal cutoff of 90% often employed for
CC and mcoh has no direct meaning in terms of location.
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Figure 3. Constraint from correlation data with mcoh � 90% and CC � 70% for
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Figure 4. Distribution of 926,571 S-wave
differential travel-time residuals from the 1494
Calaveras Fault earthquake relocations as a
function of correlation coefficient. Contours
shown for integer standard deviations. CC �
CC.

Residuals in units of milliseconds are more directly tied to
location uncertainty.

Figure 5 shows the standard deviations of the residuals
and the number of observations as a function of both CC and
mcoh for the 1494 events on the Calaveras Fault. Note that
in Figure 5b, the maximum ridge of the surface is shifted to
the right of the diagonal line CC � mcoh. This indicates that
mcoh is a less stringent measure of similarity; the threshold
value of 90% (shown by a gray line) would accept 275,000
measurements as observations for mcoh, whereas CC would
allow only 160,000.

We expect our most reliable measurements to have both
high CC and mcoh, which is substantiated by the location
residuals (Fig. 5a). Many observations, however, with 90%
mcoh have only 70% CC and therefore are somewhat suspect.

This is confirmed by their higher postfit residuals. We
choose a double selection criterion, CC � mcoh � 170%,
since it captures most of the measurements that have stan-
dard errors at or below the sample rate (10 msec). This cri-
terion was employed in the study of Schaff et al. (2002)
based on these initial tests on a subset of the Calaveras Fault
seismicity. If only a single parameter is desired, CC provides
a more robust means of identifying good-quality observa-
tions than does mcoh. For example, at the 90% level, the
standard deviations of the residuals are �10 msec for CC,
whereas for mcoh, they range from 5 to 30 msec. In other
words, the similarity measure CC corresponds more closely
to the location prediction error.

Applying both criteria, we obtain many more observa-
tions (600,000) than by applying either one alone at the 90%
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Figure 5. (a) Standard deviation of residuals (msec) for the 1494 events as a func-
tion of similarity measures. (b) Number of data measurements per unit bins of CC and
mcoh. CC�CC and mcoh�mcoh.

level. Previous studies have used more strict thresholds,
from 80% to 90% (e.g., Poupinet et al., 1984; Got et al.,
1994; Dodge et al., 1995; Rubin et al., 1999; Waldhauser et
al., 1999). We find that for our application, those selection
criteria are overly conservative, and we instead pose the
practical question of when the correlation measurements are
better than the corresponding catalog phase data. For ex-
ample, catalog picks will never be more precise than the
sample rate (10 msec in this example). We find that much
lower thresholds may be applied for the purposes of earth-
quake location, provided weighting of the observations is
carefully done.

Estimating Measurement Error

A reasonable way to estimate correlation measurement
error for a cluster of similar events follows from the internal
consistency of the measurements. The measurements pro-
vide a constraint on an overdetermined set of equations (t13

� t12 � t23, where tij � tj � ti). However, this condition
is not sufficient to estimate true measurement error of the
correlation data, as we illustrate in a simple example in Fig-
ure 6. Consider two multiplets recorded at one station, as
seen in Figure 6a. Internally, their waveforms are very simi-
lar, but between the multiplets they are dissimilar, as is re-
flected by the correlation coefficient matrix in Figure 6b with
CC � 50% on a 50-sample-long window. The corresponding
delays in Figure 6c for these low-coherence areas are con-
sistent, but they are in error. This is because of their opposite
polarities; the troughs are aligned by cross correlation, caus-
ing the first breaks to be offset by about six samples, in
accordance with the delay matrix. Based on the internal con-
sistency of these measurements, the error would be incor-
rectly estimated as quite low. This problem occurs when

inverting at only one station and arises from the difficulty in
defining appropriate similarity clusters. By performing the
inversion at several stations (i.e., solving for the location),
the biases between clusters will be inconsistent, which will
be reflected in the residuals. This approach captures more of
the true measurement error than measuring the internal con-
sistency, but it relies on the assumptions that the problem is
overdetermined and that the locations are well constrained.

By estimating the measurement error from location re-
siduals, we are also able to compare two very different data
types and discriminate under which conditions one is better.
The residuals are computed based on the best final locations.
It is unlikely that they depend strongly on the details of the
location algorithm used. The double-difference technique is
our method of choice because of its advantages in reducing
velocity model error and inclusion of correlation data to de-
termine locations.

Another advantage of the double-difference algorithm
is that there is no need to define clusters of events. We want
to estimate errors as a function of event separation distance
and magnitude, which would be more difficult if events had
to be clustered. Finally, there is no way to estimate catalog
pick error based on internal consistency at a single station.
The differential arrival times are perfectly consistent, imply-
ing zero error, which is false.

Interevent Distance

Correlation measurements, unlike arrival time pick
measurements used in catalog locations, are known to de-
grade with interevent separation distance. This is because
waveform similarity breaks down due to increasingly dif-
ferent earth structure sensed by waves from more widely
separated events. A Fresnel zone argument suggests that
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Figure 6. (a) Two multiplet clusters aligned by
correlation, true arrival times reflected by arrows. (b)
Corresponding CC matrix and (c) delay matrix. Sim-
ilarity between clusters is low, but delays are all con-
sistent. The peaks and troughs from the opposite po-
larities have become aligned, causing a biased
half-cycle offset between the two clusters.

waveform similarity should hold at separation distances of
up to a quarter of a wavelength (Geller and Mueller, 1980).
More uncertain is the reliability of correlation measurements
for kilometer-scale separation distances, as seen in Figure 3.

To examine this question, we consider a subhorizontal
streak of earthquakes from �1 to 1 km along strike at 8 km
depth for the Calaveras Fault seismicity illustrated in Figure
3. Figure 7 shows the location results for the streak using
catalog phase data only (Fig. 7a) and correlation measure-
ments only (Fig. 7b). For both calculations, the same
299,642 observations are employed (identical event pairs
and stations). In the latter case these are measured directly
from correlation data and in the former case calculated from
arrival time differences of visually estimated picks (catalog
data). In this way, relative measurement error between the
two data types can be compared. Every other aspect of the
inversion is the same. Although still unknown, the velocity
model error is fixed and common to both. To obtain the most
matching observations for the catalog data, we use all cor-
relation measurements (CC � 0). The window length is 256
samples (2.56 sec). Qualitatively, the correlation data span-
ning length scales between 0 and 2 km and for this range of
magnitudes (0–3.5) yields a much better definition of the
streak.

Figure 8 examines more quantitatively the effect of
event separation on the measurement error by plotting the
median and standard deviation of the residuals as a function
of separation distance. Each statistic is computed for bins of
12,000 observations. Extreme outliers are removed if they
differ from the mean by more than 10 times the median
absolute residual. At near-zero separation distances, the re-
siduals reflect only measurement error for the two data types
in the ideal case, which amounts to approximately 3 msec
for the correlation measurements and approximately 11
msec, or just over one sample, for the catalog measurements
(Fig. 8a). Thus the correlation data are fit much better than
the catalog data. In fact, the latter cannot be more precise
than 10 msec, the sampling interval. The increase in resid-
uals with distance for the catalog data is due to model error,
that is, uncertainty in the travel-time predictions from the
earth model. For the correlation data, it is a combination of
both increased measurement and increased model error with
separation distance. Note, however, that the increase in re-
siduals for the cross correlation data with increasing event
separation is quite slow, at a rate comparable to the increase
for the catalog data. This indicates that the increase in resid-
uals for the cross correlation measurements is due primarily
to unmodeled velocity structure, rather than measurement
error. The average residuals from the correlation measure-
ments for this streak are at least a factor of 2 smaller than
the catalog data up to separation distances of 2 km.

We also have some independent information on the
quality of each observation for both the catalog and corre-
lation data. For the catalog observations, this information
consists of a subjective quality measure ranging from good
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Figure 7. Comparison of measurement error between (a) original catalog only and
(b) correlation only data consisting of 299,642 identical observations (model error
fixed) for the relocation of a 243-event streak.

(0) to poor (3). For computed differential times, the average
weight can thus assume half-integer values. For the corre-
lation measurements, we use the cross correlation coefficient
as a measure of measurement quality. Figure 8c shows that
this prior information largely predicts the level of error as
expressed by the median residuals. At zero separation dis-
tance, the residuals reflect measurement error alone and in-
dicate why the best correlation data (90% � CC � 100%,
�2 msec) result in nearly an order-of-magnitude improve-
ment over average catalog data (weight 1.5, �18 msec). It
is surprising, however, that correlation measurements with
correlation coefficients as low as 40% still appear better than
the best catalog data for this streak, as reflected in the resid-
uals. This typically occurs when a coherent signal exists un-
der poor signal-to-noise conditions, as has been seen for the
case of repeating events.

Magnitude

The same approach may be used to compare the errors
in correlation and catalog data as a function of magnitude.
In Figure 9a, correlation measurement quality decreases with
increasing magnitude, as indicated by increasing residuals.
This most likely due to the effects on seismograms of clip-
ping and possibly also to source finiteness. For the catalog
data, however, measurement quality increases slightly for
the larger events because of a better signal-to-noise ratio.
Still, the correlation data achieve subsample precision and
thus outperform the catalog data for this range of magnitudes
(0–3.5). Moreover, the correlations are able to recover many
more differential time measurments for smaller magnitudes
(by initially aligning on theoretical arrivals), for which only
a few catalog picks are available due to low signal-to-noise
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Figure 9. (a) Median absolute residuals for 25 bins each containing 12,000 obser-
vations as a function of mean magnitude for the 299,642 event pairs (243 events). (b)
Median residuals as a function of magnitude difference. (c) Observation matrix for 88
events at Bear Valley ordered by distance along strike. (d) Same matrix ordered by
magnitude. The observation matrix is related to the correlation matrix but refers to the
number of stations that meet the observation criteria for each event pair.

ratios. Cross correlation measurements remain more precise
than the catalog for the larger events, although the cross
correlation coefficient, which we use to assess measurement
quality, decreases with increasing magnitude. This is pri-
marily a result of waveform clipping. The measurements
remain precise in part because clipping at these levels of
ground motion is due to the limitations of the telemetry sys-
tem, rather than true clipping of the sensor (Ellis and Lindh,
1976). Thus, some aspects of the true ground motion, such

as the zero crossings, should be preserved with fidelity and
hence may continue to give reliable measurements. Rubin et
al. (1999) noted that most of the unrelocated events in their
study were either small- or large-magnitude events when
they used CC values greater than 85%–95%. Our use of
lower waveform similarity enables us to extend cross cor-
relation to larger events. If thresholds are set too high, many
useful observations may be discarded.

Figure 9b displays median residuals as a function of the
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difference in magnitude for event pairs. We expect larger
events not to correlate as well with small events, which the
trend reflects. The catalog residuals also increase with mag-
nitude difference, suggesting that the different signal-to-
noise ratios between the two events introduces error com-
parable, in a relative sense, to that introduced into the
correlation measurements by waveform differences (see also
Fig. 9a). We find that large events within the streak correlate
well with other large events despite minor differences in
location, clipping, and finite-source effects. Evidence to this
effect is also shown in Figure 9c,d, which shows the number
of observations (observation matrices) for a 2-km-long
streak of earthquakes at Bear Valley. The 88 events are or-
dered on both axes in Figure 9c as function of distance along
strike and in Figure 9d as a function of magnitude. Over this
distance scale, events larger than magnitude 1.8 seem to cor-
relate best with other events of like magnitude, rather than
with smaller events in closer proximity. In fact, the large
events often do not even have overlapping source areas. For
smaller events, interevent distance seems to be the control-
ling factor (Fig. 9c).

We have presented two lines of evidence, the sharpness
of the relocation results and the lower residuals for corre-
lation measurements, to demonstrate that correlation data
can be significantly better than catalog data for relocations
using travel-time differentials, over greater distance and
magnitude ranges than previously assumed. The waveforms
themselves also support this conclusion. Figure 10a shows
the waveforms for the streak shown in Figure 7 at a nearby
station (CCO) aligned on the catalog P picks. Figure 10b
shows the same seismograms aligned by cross correlation
on the high-energy S-wave arrival between 450 and 520
samples. The events are ordered along strike from northwest
to southeast. This is essentially a receiver gather of the kind
commonly used in controlled source seismology. The move-
out for the P wave coming in at around 100 samples is con-
sistent with the 2-km length of the streak. Several features
are interesting to note. Visually, the similarity extends over
the 2-km range for the correlation-aligned data, and it is a
clear improvement over the catalog data. The largest events
appear as black and white horizontal bands because they are
clipped, but since the phase is preserved when the amplitude
is clipped due to the telemetry, the zero crossings allow the
cross correlation to successfully align these events. The mag-
nitude 3.5 event corresponds to trace 119. The seismograms
from 30 to 42 have aligned well and show magnitude 3’s
and 1’s interspersed. Here is evidence that even events of
substantially different magnitude correlate sufficiently well
to be aligned properly. These same events in the upper plot
(Fig. 10a) appear to have interchanging polarities from 450
to 520 samples because they are shifted (mispicked) by up
to half a cycle, roughly a 20-sample error. Because the cor-
relation data are aligned to the nearest sample or better, this
translates to greater than an order-of-magnitude reduction in
the measurement error.

Window Length

Cross correlation measurements are fundamentally dif-
ferent from first-break measurements of arrival time in that
they align a packet of energy of some duration. Thus, an
important parameter in measuring arrival times using cross
correlation is the window length over which the seismo-
grams are aligned. Figure 11 compares 869,345 identical
observations for different window lengths for the streak in
Figure 7. As might be expected, there is a strong tendency
for decreasing correlation coefficients with increasing win-
dow length (Fig. 11a). As a consequence, the number of
observations decreases with increasing window length for a
set observation threshold. However, the rms residuals are
smaller for larger time windows (Fig. 11b). In terms of re-
siduals and the sharpness of the relocations, the longest win-
dow length of 256 samples gives the best results for the
streak. It implies that the slowness of the arrivals at the
source is similar to that of the direct arrival over the entire
window considered. This was previously observed for a
similar data set and suggests that much of the early coda is
generated near the site rather than over a larger scattering
volume (Dodge and Beroza, 1997). If the observation criteria
thresholds are too high, many of these better measurements
may be discarded. Longer windows seem to work best over-
all for the regions we have examined. This observation may
be somewhat biased, however, compared to other seismic
source regions, because of the apparently anomalous abun-
dance of repeating events and streaks for the areas discussed
herein. A more detailed residual analysis, as presented ear-
lier, could help to determine whether longer windows are
valuable for greater separation distances as well.

Empirical Weighting Functions

Residual analysis has provided useful guidance in
choosing appropriate thresholds for the similarity measures,
CC and mcoh, and has helped to justify the application of
correlation data to larger separation distances and higher
magnitudes. The residuals may also be used to develop em-
pirical weighting functions for the location algorithm to re-
fine the results for a region of interest. Taking the inverse of
the standard deviations of the residuals is a natural choice
for weighted least squares.

There are two types of weightings currently used in the
double-difference location algorithm: a priori and dynamic
(Waldhauser and Ellsworth, 2000). The weighting functions
are theoretical and cutoff parameters are typically deter-
mined on a trial-and-error basis. Biweight functions are used
to decrease rapidly the interevent weighting for greater sep-
aration distances, because it is assumed that travel-time error
increases due to an inaccurate velocity model. Empirical
weighting functions may be applied after the best locations
have been obtained using theoretical functions, to optimize
the locations for a particular region. It is important for a
stable inversion to use the theoretical weighting functions
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Figure 10. Unfiltered seismograms at station CCO for the 243 event 2-km streak
ordered by distance along strike (a) aligned according to catalog P-wave picks and (b)
aligned by cross correlation on the S waves (see text). Images show a 3D surface where
peaks are light and troughs are dark. Similarity across the entire streak supports the
notion that useful correlation based arrival time measurements can be obtained over
these distance scales.

first, so that the locations do not heavily depend on a circular
weighting scheme.

After the best locations have been derived, the postfit
residuals provide information about the distribution of errors
in the data and modeling. The approach currently taken in
hypoDD to achieve the best initial locations using mixed

catalog and correlation data seeks to exploit the strengths of
the two different data types (Waldhauser, 2001) and is sum-
marized as follows. The first several iterations place all the
weight on catalog phase picks to remove the influence of
velocity model error over long distance ranges. As the lo-
cations improve and interevent distances become more ac-
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Figure 11. The 869,345 identical observations for different window lengths for the
243-event streak. (a) Longest windows (256 samples) have lower correlation coeffi-
cients but (b) produce sharper locations and better rms misfit for the streak.

curate, the correlation data are given increasingly greater
weight because of their superior measurement precision for
shorter distance ranges.

Because we observe that a priori parameters such as CC

can be mapped into the postfit residuals, we can better char-
acterize the errors for the inversion by converting the simi-
larity measurement into an empirical weighting factor to be
used for subsequent runs. The standard deviations obtained
as a function of CC (as in Fig. 4, for example) may be used
for this purpose (Fig. 12a). Figure 12c compares an empir-
ical weighting function calculated from Figure 12a as r�2

(normalized from 0 to 1) with a linear weighting function
and the commonly used Hannan–Thomson weighting func-
tion. Since this function is likely to vary from region to re-
gion, an appropriate scheme may be derived by first iterating
on the locations, performing the residual analysis, and then
relocating using a more appropriate weighting for the region
under study.

The second type of weighting is applied dynamically
during the inversion. Perhaps most important is the inverse
weighting with interevent distance. For catalog phase data,
this is essential to accommodate model error over larger sep-
arations. It is also important, however, for correlation data
since the delay measurement itself also becomes less reliable
with increasing distance. Figure 12b,d illustrates the con-
version of residuals to distance weighting functions for both
catalog and correlation data for the 1494 events in Figure 3.
As noted earlier, residual analysis has the useful property
that it can compare very different aspects of a problem in a
common frame of reference. Mapping everything to units of
time allows for direct, quantitative comparisons. For exam-
ple, Figure 12b suggests that catalog weight zero and cor-
relation data should probably be given equal weight at about
500-m separation distance. At zero separation, the correla-
tion measurements should have 5 times the weight of the
best catalog measurements. Beyond 2 km, the correlation
data are sparse and have substantially more error than weight
1 data from the catalog, so perhaps those observations should
be removed. Note also for this data set of 1494 events that

correlation data are not better than catalog phase data at dis-
tances up to 2 km, in contrast with the example of Figure
8c; this confirms that optimal weighting functions for dif-
ferent sets of seismicity will vary.

This also raises the issue of thresholds versus weighting
functions. A benefit of weighting functions is that no hard
cutoff needs to be determined, and so concerns of not having
enough connectivity or observations are reduced. Weighting
functions assign a unique value to each data point from a
continuous spectrum according to its error. The value of
thresholds, on the other hand, is that they reduce the size of
problems that might otherwise be too large, so that only the
best data are retained. Thresholds also eliminate severe out-
liers, which could unacceptably degrade a solution.

Spatial and Temporal Variability
of Waveform Similarity

The success of waveform correlation measurements in
providing improved data for earthquake location and related
applications depends entirely upon the similarity of the
waveforms (low measurement error). We have demonstrated
a quantitative means of assessing this improvement and have
extended correlation measurements to less similar events. It
is useful, however, to understand the factors that affect the
similarity of waveforms. As discussed earlier, waveform
similarity depends upon interevent separation distance. More
completely, though, it also depends upon differences in the
3D seismic phase velocities, when ray paths diverge. It may
also change temporally if the properties of the medium
change over time. Moreover, waveform similarity is also
reduced when source properties differ. Colocated sources
may give rise to dissimilar waveforms if the source mech-
anisms are different, and, for large events, waveforms arising
from dissimilar source-time functions will naturally also
differ.

Figure 13 displays the CC matrices for seven nearby
clusters of repeating events and how these matrices vary by
station, depending on station location. The order of the CC
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Figure 12. (a) Standard deviation of 926,571 residuals (1494 events) as a function
of CC (same as Figure 4). (b) Standard deviation of residuals as function of interevent
distance for different data types. (c) Example weighting functions based on data quality.
(d) Empirical weighting functions taken as the inverse variance normalized from 0 to 1.

matrix is arranged so that the clusters appear as highly simi-
lar white blocks on the diagonal. At some stations, such as
HCB, there is little waveform similarity between clusters.
However, at other stations, such as HKR, most event–pair
combinations have high CC values. In other words, wave-
form similarity does not depend only on a simple 1D sepa-
ration distance relation, or quarter-wavelength rule (Geller
and Mueller, 1980). It is also affected by the degree and
distribution of velocity heterogenity between the paths trav-
eled by seismic waves for an event pair. In a homogenous
half-space, we would expect waveform similarity to have no
dependence on event separation, whereas waveforms tra-

versing a region with a very complex, heterogeneous veloc-
ity structure should correlate well only for events with very
small separation distances, such that their travel paths are
largely similar.

Seismic properties of the medium may also change with
time. These may manifest themselves as changes in the
waveform over time, including velocity changes, a break-
down in coherence, or attenuation (Baisch and Bokelmann,
2001; Schaff, 2001). We illustrate in Figure 14a the effects
of the M 7.1 Loma Prieta earthquake on the waveforms of
a repeating event sequence on the San Andreas Fault ordered
in time. Note that the pre–Loma Prieta event (the first) is
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Figure 13. Spatial variability for the CC matrix of seven multiplet clusters located
at the origin. Multiplets can be discerned as highly similar blocks along the diagonal,
at HGW for example. This variation between stations poses a challenge in determining
a fixed threshold for the observation criteria applied across all stations. Map axes in
kilometers.

most similar to event 14, the last event in the sequence, and
is least similar to the event that immediately follows it. This
is an effect of time-dependent changes in the medium dis-
torting the waveform due to the effects of the 1989 Loma
Prieta earthquake (Schaff, 2001).

Conclusions

We have presented a general approach to quantify un-
certainties in relative arrival time measurements and mod-
eling using postfit residuals. This approach allows us to set
data thresholds and weighting functions and to assess
quantitatively the benefits and limitations of correlation mea-
surements compared to catalog data. The scaling relations
between waveform cross correlation measurements and in-
terevent separation distance, magnitude, and window length

are discussed for a local network (NCSN) and for signal fre-
quencies from 1.5 to 12 Hz; they need not necessarily apply
elsewhere. These parameters also depend on the geologic
structure of the crust. The appropriate scaling relations may
be empirically derived for other regions of interest using the
steps outlined here. The process is an iterative one in which
postfit residuals can be used from each iteration to fine-tune
the results of subsequent runs.

We believe that the combined waveform correlation
double-difference scheme can have a similar, 1–2 orders of
magnitude, improvement for other regions with dense seis-
micity, regardless of station geometry, 3D velocity structure,
seismicity type, or data quality. These issues are common to
all earthquake location problems. The most dramatic im-
provement in locations arises when both model and mea-
surement error can be substantially reduced. Relative relo-
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Figure 14. (a) Waveforms for a repeating event
cluster that have been altered by the 1989 Loma Prieta
earthquake. (b) CC matrix reveals the first event (pre–
Loma Prieta) is more similar to the last events. Events
2–5 after Loma Prieta, conversely, are more similar
to each other (see text).

cation techniques using differential travel times reduce much
of the model error that limits absolute travel-time formula-
tions. They are also able to directly invert correlation data,
retaining the greatest redundancy using the maximum avail-
able observations. When waveforms exhibit sufficient sim-
ilarity, correlation can achieve subsample precision, which
catalog data cannot do. If the input measurements to a lo-
cation algorithm are improved, the output relocations are
sure to be better. It remains to be seen how useful correlation
data will be at different spatial scales. Since the waveforms
must be similar for correlation measurements to be of use,
the method will likely work best where earthquake density
is high relative to the length scale of the problem, be it min-
ing seismicity or teleseisms.

Acknowledgments

We are grateful to Doug Dodge for helpful discussions and devel-
opment of the codes. We also benefited from conversations with Allan
Rubin, Keith Richards-Dinger, and Cliff Thurber. We thank Lisa Block,
Charlotte Rowe, Doug Wiens, and an anonymous reviewer for their com-
ments. This work was supported by NSF Grant Numbers EAR-9725238 and
EAR-0102803 and USGS Grant Number 00HQGR0062.

References

Aster, R. C., and C. A. Rowe (2000). Automatic phase pick refinement and
similar event association in large seismic datasets, in Advances in
Seismic Event Location, C. Thurber and N. Rabinowitz (Editors), Klu-
wer, Hingham, Massachusetts, 231–263.

Baisch, S., and G. H. R. Bokelmann (2001). Seismic waveform attributes
before and after the Loma Prieta earthquake: scattering change near
the earthquake and temporal recovery, J. Geophys. Res. 106, 16,323–
16,338.

Deichmann, N., and M. Garcia-Fernandez (1992). Rupture geometry from
high-precision relative hypocentre locations of microearthquake rup-
tures, Geophys. J. Int. 110, 501–517.

Dodge, D. A., and G. C. Beroza (1997). Source array analysis of coda
waves near the 1989 Loma Prieta, California, mainshock: implications
for the mechanism of coseismic velocity changes, J. Geophys. Res.
102, 24,437–24,458.

Dodge, D. A., G. C. Beroza, and W. L. Ellsworth (1995). Foreshock se-
quence of the 1992 Landers, California earthquake and its implica-
tions for earthquake nucleation, J. Geophys. Res. 100, 9865–9880.

Dodge, D. A., G. C. Beroza, and W. L. Ellsworth (1996). Detailed obser-
vations of California foreshock sequences: implications for the earth-
quake initiation process, J. Geophys. Res. 101, 22,371–22,392.

Ellis, J. R., and A. Lindh (1976). Linearity of VCO-discriminator playback
system with respect to zero crossing times, U.S. Geol. Surv. Open
File Rept. 76-873, 8 pp.
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