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Abstract Seismicity at active volcanoes provides crucial constraints on the dynamics of magma systems
and complex fault activation processes preceding and during an eruption. We characterize time‐dependent
spectral features of volcanic earthquakes at Axial Seamount with unsupervised machine learning (ML) methods,
revealing mixed frequency signals that rapidly increase in number about 15 hr before eruption onset. The events
migrate along pre‐existing fissures, suggesting that they represent brittle crack opening driven by influx of
magma or volatiles. These results demonstrate the power of unsupervised ML algorithms to characterize subtle
changes in magmatic processes associated with eruption preparation, offering new possibilities for forecasting
Axial's anticipated next eruption. This analysis is generalizable and can be employed to identify similar
precursory signals at other active volcanoes.

Plain Language Summary Our research used observations of small earthquakes to understand the
dynamic behaviors of magma and fault systems before and during a volcano eruption. Specifically, we used ML
techniques to search for patterns in the waveforms that may inform us of their associated physical processes. At
Axial Seamount, an active underwater volcano, we discovered distinct patterns in earthquake signals preceding
and during the 2015 eruption. Based on event spectral patterns, we identified signals of mixed‐frequency
earthquakes that rapidly increase in number about 15 hr before the eruption starts and migrate along pre‐existing
eruptive fissures. The spectral pattern involves a mixture of low frequency energy following the first arrivals,
which we interpret to represent opening of cracks and being filled with magma or gases. Our study demonstrates
that we can use ML algorithms to detect subtle changes in volcanic signals and help us better understand the
processes leading up to an eruption. This may help us in forecasting Axial's upcoming eruption and can be
applied to other active volcanoes too.

1. Introduction
Seismic observations can provide important constraints on the structure of a volcano and its dynamic behavior in
volcanic cycles (Benz et al., 1996; Gudmundsson et al., 2016; Tan et al., 2019; Thurber, 1987; Wilcock
et al., 2016; Wilding et al., 2023). Questions remain on how magma moves in the subsurface preceding an
eruption and how soon before an eruption this process begins. Recent advances in unsupervised machine learning
(ML) methods (Cotton & Ellis, 2011; Holtzman et al., 2018, 2021; Jenkins et al., 2021; Sawi et al., 2022; Seydoux
et al., 2020; Yoon et al., 2015) offer the opportunity to mine large waveform archives to find subtle differences in
the spectral content of seismic signals. These differences can be interpreted with respect to changes in source
characteristics and the volcano‐tectonic processes that drive brittle failure, providing a time‐dependent image of
physical processes that lead up to an eruption.

Axial Seamount is a well‐instrumented, active submarine volcano on the Juan de Fuca Ridge (Figure 1) with a
long record of geophysical data that covers the last three eruptions in 1998, 2011, and 2015 (Nooner & Chad-
wick, 2016; Wilcock et al., 2016, 2018), including documentation of the eruptive fissures and lava flows of the
recent 2015 eruption (Chadwick et al., 2016), and 3‐D images of its shallow magma chamber (Arnulf et al., 2014).
Beginning five months before the most recent eruption in April 2015, seismicity at Axial Seamount has been
recorded by a local, cabled, 7‐station ocean bottom seismometer (OBS) network operated in real‐time by the
Ocean Observatories Initiative (OOI) (Kelley et al., 2014). The OBS array records signals from a variety of
sources generated in both the solid Earth and the ocean (Wilcock et al., 2016), making the detection and iden-
tification of earthquakes difficult. Here we combine supervised and unsupervised ML methods to discriminate
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between earthquakes and other sources, and analyze spectral variation in
earthquake signals in the 4 months leading up to the 2015 eruption. We find
precursory signals with characteristic spectral patterns which we interpret as
representing the movement of magma or volatiles during eruption
preparation.

2. Unsupervised ML for Event Discrimination
We use the earthquake catalog of Wang, Waldhauser, Schaff, Tolstoy,
et al. (2024) which was derived by combining supervisedML techniques (Zhu
& Beroza, 2019; Zhu et al., 2022) with cross‐correlation‐based double‐
difference methods (Waldhauser & Ellsworth, 2000; Waldhauser
et al., 2020) and a 3D velocity model (Baillard et al., 2019; Lomax
et al., 2000). The catalog includes 240,000 earthquakes (M = − 1.74 to 3.45)
for Axial Seamount from 2014 to 2021 (Wang, Waldhauser, Schaff, Tolstoy,
et al., 2024) that illuminate the caldera ring faults and the fissures that were
active during the 2015 eruptions (Figure 1) (Waldhauser et al., 2020; Wilcock
et al., 2016).

We apply an unsupervised ML method (SpecUFEx, Holtzman et al., 2018) to
the 4 months of pre‐eruption data (67,767 earthquakes recorded at station
AXCC1 (Figure 1)) to characterize spectral patterns in the waveforms.
SpecUFEx is an unsupervised spectral feature extraction algorithm originally
developed using ML methods for audio pattern recognition (Cotton &
Ellis, 2011) and has been adapted to characterize seismic waveforms of
earthquakes (Holtzman et al., 2018), acoustic emissions (Holtzman
et al., 2021), icequakes (Sawi et al., 2022), and repeating earthquakes (Sawi
et al., 2023). It takes event spectrograms as input and applies nonnegative
matrix factorization (NMF) and hidden Markov models (HMM) to reduce the
dimensionality of the spectral features and remove features that are common
to all signals.

For each earthquake in the 4 months of activity leading up to the eruption on 24 April 2015, we calculate a
fingerprint matrix by counting the number of state transitions in the state sequence matrix from the HMM output.
The fingerprints are condensed representations of the original earthquake spectrograms while still keeping their
time‐dependent spectral information. We further compress the fingerprints by principal component analysis
(PCA) and finally apply K‐means clustering to identify earthquake clusters that share common spectral features
(Holtzman et al., 2018). We use waveform data from broadband OBS station AXCC1 and learned the feature
dictionary from a representative subset of ∼9,000 events in the week before the eruption. We then use the feature
dictionary to calculate features of the ∼4 months of seismicity starting from the beginning of 2015 until the
eruption onset.

3. Clustering of Spectral Fingerprints
K‐means clustering of the fingerprints separates the events into two main groups with small but distinct differ-
ences in spectral features in the waveforms between the groups (Figures 2a and 2d). To investigate which
characteristic spectral features might contribute to the separation of the two earthquake clusters, we examine the
representative patterns of the condensed fingerprints. By stacking the top 100 representative fingerprints in each
cluster (Figures 2b and 2e), we identify the active states (bright spots in stacked fingerprints). These active states
are the characteristic features that define the spectral feature space. We project these characteristic features in the
fingerprints back onto the HMM and NMF mappings (emissions matrix in Figure S2A in Supporting Informa-
tion S1 and spectral dictionary in Figure S2B in Supporting Information S1) to solve for their frequency‐
dependent sensitivity kernel (Figure S2C in Supporting Information S1). Comparing the frequency de-
pendency of the characteristic features in the two clusters, we find that one cluster has events with a lower
frequency wavetrain coming in shortly after the direct arrivals. We call the earthquakes in this cluster mixed‐
frequency earthquakes (MFEs) and the events in the other cluster regular earthquakes (EQs). The spectral

Figure 1. Heatmap of earthquake density at Axial Seamount from Nov 2014
to Dec 2021. Mixed‐frequency earthquakes (MFEs) one day before the
eruption are shown as light blue dots. Also shown are the caldera rim (white
solid line), the 1.5 km depth contour of the Axial magma chamber (AMC)
(dashed white line), eruptive fissures (orange lines), and lava flows (yellow
lines) of the 2015 eruption and the OBS array (white triangles). The heatmap
shows the number of earthquakes in each bin (bin size 25 m × 25 m).
Locations of OBS station AXCC1 and two Bottom Pressure Recorders
MJ03E and MJ03F are marked on the map. Earthquake catalog from Wang,
Waldhauser, Schaff, Tolstoy, et al. (2024).
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differences can also be seen in the stacked spectrograms (Figures 2c and 2f) of the top 100 representative events
and their waveforms (Figures 2a and 2d).

4. Spatio‐Temporal Distribution of MFEs
The separation based on spectral characteristics reveals differences in the spatiotemporal evolution of the
earthquakes in the two groups (Figure 3, Movies S1 and S2). Approximately 24 hr prior to the eruption, the MFEs
begin to occur on the eastern margin of the caldera along the southern segment of the eruptive fissures (Figure 1).
These MFEs locate close to the roof of the Axial magma chamber (∼1.5 km; 15). ∼15 hr before the eruption, a
distinct burst of MFEs migrates from the caldera center northward along the eastern margin of the caldera at a
speed of 4.4 km/hr (arrow in Figure 3b). The peak hourly moment release of the MFEs during that burst is about
two orders of magnitude above background, and 40 times that released by all regular earthquakes in the same
period. After this initial burst, the MFEs activity subsides for a couple of hours and then, about 3.5 hr before the
eruption, a second burst of MFEs occurred, reversing the path of the previous burst and migrating southward (at a
speed of 1.1 km/hr) and eventually upward toward the location where the lava first erupted on the seafloor
(Wilcock et al., 2016) (Figure 3b). After that point and for the next hour, the MFEs spread out across the entire
fault system during the course of the eruption. The second MFE burst is characterized by a steep increase in
seismic moment release starting about 4 hr and peaking 1 hr before the eruption onset. Peak hourly moment
release is about 30 times that of the first burst, while the moment release from regular earthquakes leading up to
the eruption is comparably insignificant. Once the eruption starts, MFEs moment release continuously decreases,
while that from regular earthquakes increases. The MFEs rate remains low in the years following the eruption but
they continue to comprise 10%–40% of the overall seismicity over time (Wang, Waldhauser, Schaff, Tolstoy,
et al., 2024).

Different from the MFEs, the regular earthquakes locate primarily in the southern part of the caldera (Figure S4 in
Supporting Information S1). They occur on both the eastern and western walls of the ring fault, which suggests
that the spectral fingerprints are not sensitive to event location relative to the seismic station. The regular
earthquake cluster also includes events during the pre‐eruption inflation period as well as the rapid deflation
period after the eruption started, that is, when the fault slip motion on the caldera ring faults reversed from normal
faulting to thrust faulting (Wilcock et al., 2016). This suggests that the fingerprints are also not sensitive to the
reversal of fault slip motion.

Tidal triggering of earthquakes is observed at Axial seamount, especially prior to the eruption (Scholz et al., 2019;
Tan et al., 2019; Tolstoy et al., 2002; Wilcock et al., 2016). Here, we compare the temporal correlation between
the two spectral clusters we identified and the ocean tide to understand their driving mechanisms. We find that the

Figure 2. Spectral characteristics of events in the two main clusters. Waveform examples of one representative event in each
cluster (a and d), stacked fingerprints (b and e), and stacked spectrograms (c and f) using 100 events in each cluster. P‐ and S‐
arrivals and reflections in the water column are marked. The water depth is ∼1.5 km so the reflections between the seafloor
and the sea surface arrive ∼ 2 s after the direct seismic arrival. More waveform examples on three components are shown in
supplementary Figure S7 in Supporting Information S1. The stacked fingerprints and stacked spectrograms are color scaled
by their maximum value. Blue arrows in B and E point to the characteristic states of EQs andMFEs (Figure S2 in Supporting
Information S1). ① and ② in F mark the impulsive P arrival and the low‐frequency tail.

Geophysical Research Letters 10.1029/2024GL108631

WANG ET AL. 3 of 7

 19448007, 2024, 19, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
108631 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [02/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



rate of regular earthquakes closely follows the tidal cycle over the observation period (Figure 3d, Figure S5 in
Supporting Information S1). Given their locations and the temporal correlation with the tides, we infer that these
earthquakes generally occur on critically stressed ring faults and are triggered by small stress changes. The MFE
cluster, during the same period, shows rather sparsely distributed bursts of events (Figure S3A in Supporting
Information S1) which mostly lie along the eastern edge of the caldera to the north (Figure S6 in Supporting
Information S1). Among these bursts, we do not observe a clear migration pattern over long distances (Figure S6
in Supporting Information S1) as seen in the two very active bursts that relate to the north‐south migration ∼15 hr
and ∼3.5 hr before the eruption onset (Figure 3b). The timings of the MFE bursts correlate with the tides in many
cases (Figure S3 in Supporting Information S1), but they locate further to the north compared with the tidal driven
earthquakes (Figure 3). We do not observe any systematic offset between the timing of the MFE bursts and the
peak of regular earthquakes. This suggests that the underlying driver for the two different types of earthquakes
may be the same (e.g., magma pressure), or that the drivers respond to the tidal forcing in a similar way.

5. Discussion and Conclusion
Two possible explanations of the difference in spectral features between the MFE and EQ groups are path effect
and source effect. Spatially variant attenuation patterns, especially in local complex volcanic structures, may
cause differences in frequency content if observed along different paths. However, we find that the same clus-
tering analysis carried out at other stations (AXAS1, AXEC2) in the OBS network gives similar groupings
(Supplementary materials, Figure S1 in Supporting Information S1). If path effects were causing the clustering,
we would expect different event groupings at stations that sample different source‐receiver paths. It is also
possible that attenuation or velocity changes occur in a region that is local to the source. However, we find that
closely located and timed events from the two groups still show different spectral behavior at a common station.
Therefore, we infer that the spectral difference between the two groups is likely caused by differences in the
source mechanisms.

Figure 3. Pre‐eruption temporal evolution of the two spectral clusters. The MFEs (top panels) and earthquakes (bottom
panels) spatiotemporal distributions in∼1 week (a and c),∼2 days (b and d), and 8 hr (e and f) time scale. The top and bottom
panels are plotted with the same time axis for MFEs (a, b, and e) and earthquakes (c, d, and f) activity. The red and blue
curves (a–d) are hourly seismicity rates. Gray curves (a–f) show volcano inflation represented by detided differential uplift
measurement between two bottom pressure recorders (BPRs) at sites MJ03E and MJ03F (Figure 1) (Chadwick et al., 2022).
Dashed red and blue curves (e and f) show the binned seismic moment of the MFEs and earthquakes during the eruption. The
dashed black vertical line (a–f) marks the time of eruption onset at 8:01 when the lava first reaches the seafloor (Wilcock
et al., 2016). Arrows in panel (b) point to northward and southward migration of MFEs prior to the eruption. The dashed gray
vertical line (e and f) marks the time of maximum inflation at 7:03 (e and f).
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There are many possibilities that can explain source differences, including
differences in fault stress state, faulting mechanisms, or the effects of fluid.
Wilcock et al. (2016) detected southward migration of pre‐eruption seismicity
along the east wall in the hours before the eruption and associated it with
southward dike propagation and opening of eruptive fissures. It is possible
that the MFEs are tracking magmatic processes associated with opening
cracks and thus include non‐double‐couple components from the crack
opening mode in contrast to simple shear failures of earthquakes on the ring
faults (Foulger et al., 2004). In this process, the low‐frequency content in the
MFE waveforms might be generated by magma or volatiles filling the crack,
as observed in studies at other volcanoes (Chouet & Matoza, 2013; Cui
et al., 2021; Song et al., 2023; Woods et al., 2018).

When comparing the moment release of MFEs with available differential
elevation data (Nooner & Chadwick, 2016) we find that the peak moment
coincides with the peak in inflation about 1 hour before the eruption (gray
curves in Figure 3e). Moment release for the earthquakes, on the other hand, is
highest during the time of rapid deflation after lava erupted. This suggests the
MFEs are associated with magmatic processes during the pre‐eruption

inflation process, while the regular earthquakes are triggered by the stress change on the ring faults as the
magma chamber deflates. In the pre‐eruption period, the MFEs in the north also correlate with the region of
maximum uplift observed in deformation measurement (Nooner & Chadwick, 2016), illuminating the segment of
the eruptive fissure where the following eruption started.

Given that the MFEs locate along the eruptive fissures near the roof of the magma chamber and the documented
high CO2 content at Axial seamount (Dixon et al., 1988), the MFEs are likely caused by brittle crack opening and
subsequent movement of magma and/or volatiles into the zones of weakness created by increasing magma
pressure. In fact, the observation that they distribute widely in space and time suggests they are more likely related
to CO2 release as opposed to magma movement. Because MFEs are detected for months prior to the eruption, it
implies there is an extended period of magma intrusion or volatile release possibly associated with inflating sills.
However, the behavior of early MFE bursts suggests that this magmatic process may also occur at smaller scale at
depth with no clear migration pattern observable along the dike, consistent with the idea of the presence of
volatiles. As the magma pressure builds up, the dike finally forms along the weakened zones and initiates the
southward propagation, which is observed as intense MFE activity starting ∼3.5 hr before the eruption. Figure 4
shows a cartoon summarizing the physical and magmatic processes and associated seismicity at Axial.

Short‐term volcano eruption forecasting has long been a challenging task due to the lack of clear and reliable
precursory signals. Common prediction metrics include long‐term deformation measurement, changes in tidal
triggering, and short‐term seismicity increase (Barberi et al., 1992; Chouet, 1996; Chouet et al., 1994; Nooner &
Chadwick, 2016; Wilcock et al., 2016, 2018). In this study, unsupervised ML revealed the rapid increase of a
precursory signal defined as MFEs. These signals differ substantially from volcano‐tectonic (VT; Lahr
et al. (1994); Chouet et al. (1994)) or long‐period (LP; Minakami (1974); Shimozuru and Kagiyama (1989);
Chouet et al. (1994)) earthquakes or tremors (Chouet, 1996; Julian, 1994; Koyanagi et al., 1987; Shimozuru &
Kamo, 1966), as they contain both short and long period waves. Although they may resemble some of the
previously reported hybrid frequency earthquakes (HFE; Lahr et al. (1994); Harrington and Brodsky (2007); Yu
et al. (2021); Coté et al. (2010); Cui et al. (2021)), our observations suggest that their mechanism might be
different. Interpretations of previously observed hybrid earthquakes include path effects caused by strong
attenuation or low‐velocity layers, and source effects due to low stress drop, slow rupture speed, or fluid reso-
nance. Our analysis indicates that the characteristic spectral features of the MFEs likely originate from source
effects rather than path effects, making them a potential precursory signal to track volatile and/or magma
movement during eruption preparation. This precursory MFE activity intensifies ∼15 hr before the eruption and
peaks ∼1 hr before the magma reaches the seafloor, which offers an opportunity to improve short‐term eruption
forecasting on time scales of hours to days. With the capability to identify such precursory signals in real time
(Wang, Waldhauser, Schaff, Tolstoy, et al., 2024), we can now monitor these signals as Axial is preparing for its
next eruption predicted to occur within the 2025–2030 time period (Chadwick et al., 2022). More importantly, the

Figure 4. Cartoon summarizing observations. Tidal‐driven earthquakes
occur on caldera ring faults while the MFEs track movement of volatiles and
magma prior to the eruption. Inset shows possible mechanisms of the MFEs.
① and ② correspond to the crack opening (brittle onset in Figure 2F) and
volatile/magma influx (low‐frequency tail in Figure 2F) processes.
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novel use of unsupervised ML opens up a new opportunity to investigate whether such precursory seismic signals
exist at other active volcanoes.

Data Availability Statement
Seismic waveforms used in this study were downloaded from the EarthScope Consortium Data Management
Center (DMC) (https://ds.iris.edu/ds/nodes/dmc/data/) (Rutgers University, 2013). The earthquake catalog
(Wang, Waldhauser, Schaff, Tolstoy, et al., 2024) is available on Figshare (https://doi.org/10.6084/m9.figshare.
25130162.v1) (Wang, Waldhauser, & Schaff, 2024a). The earthquake catalog is also available at our Axial
Seamount real‐time monitoring website (https://axialdd.ldeo.columbia.edu) (Wang, Waldhauser, &
Schaff, 2024b). The SpecUFEx package can be accessed at https://github.com/Specufex/specufex (Holtzman
et al., 2024).
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