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Supplemental Material

Axial Seamount, an extensively instrumented submarine volcano, lies at the intersection
of the Cobb–Eickelberg hot spot and the Juan de Fuca ridge. Since late 2014, the Ocean
Observatories Initiative (OOI) has operated a seven-station cabled ocean bottom seis-
mometer (OBS) array that captured Axial’s last eruption in April 2015. This network
streams data in real-time, facilitating seismic monitoring and analysis for volcanic unrest
detection and eruption forecasting. In this study, we introduce a machine learning
(ML)-based real-time seismic monitoring framework for Axial Seamount. Combining both
supervised and unsupervised ML and double-difference techniques, we constructed a
comprehensive, high-resolution earthquake catalog while effectively discriminating
between various seismic and acoustic events. These events include earthquakes gener-
ated by different physical processes, acoustic signals of lava–water interaction, and oce-
anic sources such aswhale calls.We first built a labeledML-based earthquake catalog that
extends from November 2014 to the end of 2021 and then implemented real-time mon-
itoring and seismic analysis starting in 2022. With the rapid determination of high-res-
olution earthquake locations and the capability to track potential precursory signals
and coeruption indicators ofmagma outflow, this systemmay improve eruption forecast-
ing by providing short-term constraints on Axial’s next eruption. Furthermore, our work
demonstrates an effective application that integrates unsupervised learning for signal
discrimination in real-time operation, which could be adapted to other regions for vol-
canic unrest detection and enhanced eruption forecasting.

Introduction
Earthquakes hold fundamental information about the struc-
ture and dynamics of active volcanoes and the processes that
control eruptions. Submarine volcanoes, in particular, are good
cases for studying volcano dynamics because they erupt in
short intervals (Rubin et al., 2012; Sinton et al., 2002) and
active source seismic profiling allows for detailed imaging of
subseafloor structures (Park et al., 2007; Arnulf et al., 2014;
Chrapkiewicz et al., 2022). However, seismic monitoring using
ocean-bottom seismometers (OBS) is technically challenging
and expensive, and the continuous waveforms include signals
from various seismic sources and ocean noise. At Axial
Seamount, an active submarine volcano located 1400 m below
the sea surface at the intersection of the Juan de Fuca ridge and
the Cobb–Eickelberg hot spot, the Ocean Observatories
Initiative (OOI) operates a seven-station cabled OBS array
(Kelley et al., 2014). This OBS array records various signals
from earthquakes, marine mammals, and airgun shots from
active seismic experiments, among other sources. The

earthquakes have significantly contributed to the understand-
ing of the structure and inner workings of the volcano, which
last erupted in April 2015, about four months after the network
started recording. A complex ring fault system is imaged
(Wilcock et al., 2016; Waldhauser et al., 2020) above a shallow
magma chamber (Arnulf et al., 2014). The OBS recordings are
complemented by other geophysical, chemical, temperature,
and video camera measurements onsite (Chadwick et al.,
2016; Smith et al., 2018; Wilcock et al., 2018) operated by
the OOI, making Axial Seamount one of the best-instrumented
submarine volcanoes.
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In the four months before and during the eruption of
Axial volcano in April 2015, the OBS array recorded ∼136,000
earthquakes. Identification and classification of these events is
challenging due to both the high spatial density and the high
rate of seismicity, and the diverse nature of brittle failure lead-
ing up to an eruption. In addition, eruption-specific non-earth-
quake signals, such as acoustic signals generated from hot
lava reaching the sea floor that help map areas of lava flow
(Tan et al., 2016; Wilcock et al., 2016; Le Saout et al., 2020),
need to be identified and separated from regular earthquakes.
The detection, classification, and characterization of seismic
sources, and especially precursory signals, would have to be
performed rapidly, ideally in near-real time, if the information
gained from the analysis is to be used in forecasting future
eruptions for hazard mitigation purposes.

Here, we take advantage of recent advances in both super-
vised and unsupervised machine learning (ML) methods
(Holtzman et al., 2018; Bergen et al., 2019; Beroza et al., 2021;
Mousavi and Beroza, 2023) to significantly improve the event
detection and discrimination capabilities in a monitoring frame-
work. This work builds on current monitoring efforts at Axial
that use standard detection and location methods (Wilcock
et al., 2016) and correlation-based double-difference relocation
(Waldhauser et al., 2020).We present a suite of tools that rapidly
process and analyze continuous waveform data to produce high-
precision, deep-magnitude event catalogs in near-real time.
Specifically, the new system is trained to detect potential precur-
sory signals of mixed-frequency earthquakes (MFEs), which
have relatively lower-frequency content compared with the vol-
canotectonic earthquakes, presumably caused by the movement
of volatiles or magma as opposed to brittle failures triggered by
stress changes on faults (Wang et al., 2024). These signals were
discovered using an unsupervised spectral feature extraction
method (Holtzman et al., 2018) (Details in Data and
Methods section) before the last Axial eruption in 2015, where
they emerged from background seismicity about 15 hr before
the lava reached the sea floor (Wang et al., 2024). The method
also detects acoustic signals that are generated when hot lava
reaches the cold sea floor after an eruption (Tan et al., 2016;
Wilcock et al., 2016; Le Saout et al., 2020; Tepp et al., 2020),
allowing for rapid tracking of lava flow in time and space.

Data and Methods
Data and current monitoring
We use the continuous seismic data from the OOI–OBS array
available through the EarthScope Consortium DMC as an
input to our workflow. The cabled OBS array comprises
two broadband stations and five short-period stations on
top of Axial seamount (Fig. 1b), all data sampled at 200 Hz.
Currently, the data are automatically processed in near-real
time at the University of Washington (Wilcock et al., 2016)
using standard routine analysis with a Kurtosis phase picker
(Baillard et al., 2014) and the HYPOINVERSE (HINV)

location algorithm (Klein, 2002). Each newly detected and
located earthquake is then automatically relocated at the
Lamont–Doherty Earth Observatory with respect to a high-
resolution earthquake (base) catalog using the near-real-time
double-difference relocation system (DD-RT) (Waldhauser
et al., 2020; Waldhauser, 2009). The base catalog was com-
puted from a simultaneous double-difference inversion of both
Kurtosis picks and precise correlation delay times (Waldhauser
et al., 2020), with initial locations derived from a grid-search
analysis (NonLinLoc [NLL], Lomax et al., 2000) of the Kurtosis
picks in a 3D earthquake tomographic P- and S-wave model
(Baillard et al., 2019). Earthquake magnitudes are calculated by
estimating a seismic moment for each phase arrivals and using
the median value for all arrivals to compute a moment mag-
nitude (Wilcock et al., 2016).

New processing
Here, we replace the current routine processing step with a
supervised ML method (QuakeFlow, Zhu et al., 2023) to detect
and characterize seismic events, and an unsupervised ML
method (SpecUFEx, Holtzman et al., 2018) to discriminate
between various seismic sources. Our ML-based framework
is illustrated in Figure 2. Wang et al. (2024), in a retroactive
analysis, applied these tools to 4 months of continuous
waveforms leading up to the April 2015 eruption to develop
a catalog of diverse, labeled seismic source types, including pre-
cursory MFEs and impulsive signals generated by lava reaching
the cold seafloor (Wilcock et al., 2016). This analysis provides
the foundation for our ML-based processing.

Base catalog
We developed a new base catalog (2014–2021) for the DD-RT
system, essentially following Waldhauser et al. (2020), but using
PhaseNet (Zhu and Beroza, 2019) for picking P- and S-phase
arrivals in the continuous waveforms, and GaMMA (Zhu
et al., 2022) for associating them into seismic events (minimum
of five picks required for each event). SpecUFEx (Holtzman
et al., 2018) is then used to discriminate between the various
types of signals and their underlying sources (details explained
in the next subsection), including separating earthquakes from
all other seismic sources such as whale calls (Wang et al., 2024).
The ML phase picks are then used to locate events with a
grid-search method, NLL (Lomax et al., 2000), in a local 3D
seismic velocity model (Baillard et al., 2019). The ML catalog
is relocated using cross-correlation (Schaff and Waldhauser,
2005) and the double-difference method (Waldhauser and
Ellsworth, 2000) using parameters similar to the ones described
inWaldhauser et al. (2020). Close to 1.4 billion correlation delay
times are computed on pairs of filtered (4–50 Hz) seismograms
with correlation coefficients Cf > 0.8 and hypocentral separation
<2 km. The correlation data together with the delay times
formed from the ML picks are inverted for relative locations
using the hypoDD algorithm (Waldhauser, 2001) to obtain a
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high-precision earthquake catalog to be used as base catalog in
the DD-RT monitoring system (Waldhauser, 2009; Waldhauser
et al., 2020).

Unsupervised ML for event discrimination
We use the unsupervised ML method SpecUFEx (Holtzman
et al., 2018) to discriminate between various types of seismic
events recorded by the Axial OBSs. This spectral feature extrac-
tionmethod was originally developed for audio signal recognition
(Cotton and Ellis, 2011) and has been adapted to characterize
seismic signals in various settings, such as earthquakes in geother-
mal fields and along crustal faults, acoustic emissions in lab
experiments, and icequakes and seismic noises at glaciers
(Holtzman et al., 2018, 2021; Sawi et al., 2022). SpecUFEx gen-
erates low-dimensional fingerprints for each signal that represent
the spectral patterns of the original spectrograms. These finger-
prints are then clustered to find groups of similar signals (Fig. 2).

Following Holtzman et al. (2018), we converted the wave-
forms of each event in the base catalog into spectrograms.
We use vertical-component recordings and cut the event win-
dow from 1 s before the P arrival to 3 s after it. This window was
chosen to capture the main features of the events (initial arrival,
coda, and reflections in the water column, see Fig. 3) while min-
imizing excessive background noises that may hamper perfor-
mance.We set the spectrogram frequency range from 4 to 50 Hz
to avoid high-frequency instrumental noise and low-frequency
microseism noise at the OBS stations. We followed Wang et al.
(2024) in prepossessing the spectrograms; however, here we
used a catalog of all event types (earthquake and non-earthquake
signals) as opposed to a subset of pre-eruption earthquakes in
their study. We also integrated information from multiple sta-
tions and performed array-based analysis in this study, whereas
their work focused on single-station clustering.

After generating the event spectrograms, we proceeded with
a two-stage feature extraction process (Holtzman et al., 2018)
with nonnegative matrix factorization and a hidden Markov
model (HMM). These two stages of data compression reduce
data dimensionality and eliminate features that are common to
all signals. From the output of HMM, we computed event fin-
gerprints by counting state transitions. These fingerprints are
low-dimensional representations of the original event spectro-
grams while preserving the key features of the time-variant
spectral patterns. We then performed principal component
analysis (PCA) and retained the top principal components that
explain 80% of the total variance, followed by K-means clus-
tering on the principal components. Here, we built feature dic-
tionaries and fingerprints on a single-station basis to eliminate
the effect of station-dependent noise on clustering. Figure 3a
shows some examples of event spectrograms at a broadband
station (AXCC1) and two short-period stations (AXAS1 and
AXEC1). At these OBS stations, we observe station-dependent
background noises that trigger especially during phase arrivals.

Figure 1. Histograms of different types of sources automatically
characterized during seismic monitoring and their locations.
(a) Earthquake rate within 5-day wide bins. Bars of earthquake
rates are colored by the percentage of mixed frequency earth-
quakes (MFEs) in each bin. The main figure shows activity before
and during the 2015 eruption. The gray dashed line marks
the eruption onset. The inset shows a zoom of the
post-eruption period fromMay 2015 to the end of 2021. (b) Map
of earthquake density in log scale. Eruptive fissure and lava flow
locations of the 2015 and 2011 eruptions are plotted with
colored contours, showing approximate locations of the impul-
sive seafloor events. (c) The blue and brown bars show whale
calls and impulsive seafloor events rate, respectively. The color
version of this figure is available only in the electronic edition.
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This noise is observed at all times for the five short-period
stations while being absent at the two broadband stations.
In Figure 3a, we show triggered noise at around 36.5 Hz for
station AXAS1 and 33.5 Hz for station AXEC1. Based on their
characteristics, we think these station-dependent noises are

Figure 2. Overview of (a) machine learning (ML)-based workflow
for catalog construction and (b) unsupervised event discrimina-
tion. The color version of this figure is available only in the
electronic edition.
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likely due to resonance within the instrument after excitement
by any incoming waves.

After obtaining the single-station-based event characteriza-
tion and classification models, we combined the clustering labels
across the network and employed self-training (Yarowsky, 1995)
to retrain these single-station classification models. Details of the
retraining process are described in the next section. The final
retrained models for event characterization and spectral feature
clustering are saved for use in the real-time system.

Results
Our objective in this study is to distinguish between different
event sources in the catalog so that we can perform refined seis-
mic monitoring of different sources during real-time operation.
Here, we chose the number of clusters for each station through a
trial and error process. Several classic clustering evaluation
metrics were tested, including summed squared distances
(Nainggolan et al., 2019), Silhouette coefficient (Rousseeuw,
1987), Davies–Bouldin index (Davies and Bouldin, 1979), and
Calinski–Harabasz index (Caliński and Harabasz, 1974).
However, these metrics did not reveal a sharp elbow (a turning
point on the performance versus cluster number graph) that
could clearly define the optimal cluster numbers (Nainggolan
et al., 2019). Therefore, we opted for evaluating clustering per-
formance through visual inspection of the results, aiming to
identify the minimum cluster number that effectively separates
the signals of interest in the feature space.

Our results show different levels of clustering in the spec-
tral feature space. On a first order, we identified three main
clusters that share common spectral patterns across the

network. The three clusters are a group of earthquakes, a
group of whale calls, and a group of seafloor impulsive events
(Figure 4). These three main clusters define the first-order
structure of the feature space, effectively separating events
into earthquakes and non-earthquake sources. Further
analysis within the earthquake cluster reveals higher-level
subgroupings. The higher-level clusters reflect subtle
differences in the spectral patterns, which help separate seis-
micity generated by different physical processes during the
eruption. The temporal distribution of signals in different
classes is shown in Figure 1a,c.

To improve on the single-station clustering approach used
by Wang et al. (2024), we employed self-training techniques
for model retraining (Yarowsky, 1995). We started by creat-
ing an initial training dataset that was composed of only
events with consistent labels across the network. With this
dataset, we trained an initial model and predicted pseudo
labels using the initial model. High-confidence predictions
from these pseudo-labels were incorporated back into the
training set for iterative retraining. This iterative process
allows the model to gradually improve by learning from its

Figure 3. (a) Examples of event spectrograms at broadband sta-
tion AXCC1 and two short-period stations AXAS1 and AXEC1.
Arrows mark initial arrival and reflections in the water column.
Station-dependent noise on the initial arrival and reflected ones
marked by the white dashed ellipses. Contingency matrix of
cluster labels at two OBS stations AXCC1 and AXID1 for
(b) single-station models and (c) retrained models. The color
version of this figure is available only in the electronic edition.
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predictions. By integrating clustering information from
other stations in the network, we significantly improved
the coherence and accuracy of the single-station cluster labels.
Figure 3b,c illustrates this enhancement. The contingency
matrix between station AXCC1 and station AXID1, which
measures the relationship between two sets of cluster labels,
shows a notable improvement in label coherency after the
retraining process.

Having consistent labels across the network demonstrates
that source effects dominate over path effects in event cluster-
ing. We show that we effectively discriminate signals from dif-
ferent sources, as shown in Figure 4.

The initial ML catalog includes 200,891 earthquakes, 53,018
whale calls (predominantly fin whales), 12,406 seafloor impul-
sive events generated by lava–water interaction during the
eruption in 2015, and 7,508 unlabeled events. We see consis-
tent spectral patterns and fingerprints within each of the three
primary event classes. It is worth noting that the earthquake
class shows more variability in spectral patterns compared
to the two non-earthquake classes, suggesting they are gener-
ated by complex physical processes. Further exploration of the
earthquake class revealed two subgroups that have different
spatiotemporal behavior and correlate with different physical
processes: tidally modeled earthquakes predominantly on the
caldera ring faults and precursory mixed frequency earth-
quakes (MFEs) associated with pre-eruption magmatic proc-
esses (Wang et al., 2024).

Although we successfully classified most events into three
main classes, a few remain unlabeled after retraining with
self-training (examples shown in Fig. 4). These events either
had inconsistent labels across the network or were weak signals
with picks at less than two stations. Upon examining these
unlabeled events, we found that they form a few event classes
that are less frequently seen in the dataset, such as calls from
different species of whales (as shown in Fig. 5b,c) and ship
noise. Fin whales are the most common species that pass by
the OBS array every year during the winter season and thus

makeup one of the three main clusters after event clustering.
Their calls are sinusoidal signals in the 15–20 Hz range, as
shown in Figure 5a. Some can have a higher frequency note
of around 30 Hz (Weirathmueller et al., 2017). In contrast,
Sei whales and Blue whales are less common, less than a tenth
of Fin whale calls. Thus, it is challenging to classify them with
unsupervised methods. However, they have spectral content
distinct from the other event classes (examples in Fig. 5b,c).
Based on their spectral features, we designed a simple fre-
quency-dependent classifier that computes energy ratio in
the 30–50 Hz frequency band relative to the 4–50 Hz band
to identify them during real-time operation.

The DD-RT base catalog, obtained after relocating the ML
catalog of 200,891 earthquakes, includes 144,329 precisely
located events constrained by 1.7 million ML P and S picks
and 400 million correlation delay times. The mean root mean
square of the delay times is 25 ms for picks and 4 ms for the
correlation data. Relative location errors from a bootstrap
analysis (Waldhauser and Ellsworth, 2000) are 39 m laterally
and 53 m vertically for events within the network (see
Waldhauser et al., 2020, for details) The relocated earthquakes
image the Axial ring fault structures and the intersection/inter-
action between the Juan de Fuca ridge and Axial volcano on its
eastern side. The overall structures are similar to previous cat-
alogs, although this new catalog has higher precision picks and
more correlation measurements that contribute to higher res-
olution locations. In real-time operation, any new detection
will be correlated with its neighboring events in this base cata-
log to allow rapid relocation with the double-difference algo-
rithm (Waldhauser, 2009). Note that the computational cost of
the DD-RT process is small and does not scale with the size of
the base catalog.

Figure 4. Examples of (a) spectrograms and (b) corresponding
fingerprints for different clusters. The color version of this figure is
available only in the electronic edition.
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Discussion
The quality of the base catalog is crucial in double-difference
monitoring because it determines the accuracy of future events
(Waldhauser, 2009). We have an opportunity to compare the
newest catalog presented here to previous catalogs (Wilcock
et al., 2016; Waldhauser et al., 2020) with respect to differences
and robustness of arrival time measurements and hypocenter
locations. Both the Wilcock et al. (2016) and the Waldhauser
et al. (2020) catalog used the same set of phase picks generated
by a Kurtosis phase picker, with events in the Wilcock et al.
(2016) catalog located using HINV and those in the
Waldhauser et al. (2020) catalog relocated using correlation-
based double differences. Here, we make the comparison by
matching the individual P and S wavepicks in our new ML-DD

catalog to the Kurtosis picks in the Wilcock et al. (2016) and
Waldhauser et al. (2020) catalog. We match two picks if they
are within 0.05 s and of the same phase type. Then we select a
set of events with all picks matched to the same event ID in the
other catalog. This subset of matched IDs includes a total of
104,522 events. Figure 6 plots the differences between the

Figure 5. Examples of spectrogram and corresponding waveform
for different earthquake and non-earthquake sources: (a) Fin
whale, (b) Sei whale, and (c) Blue whale; (d) volcanic earth-
quakes, (e) precursory MFEs, and (f) coeruption impulsive sea-
floor events. The spectrograms are plotted with 100 samples
(0.5 s) window length and 90 samples overlap. The color version
of this figure is available only in the electronic edition.
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matched P and S wavepicks by the ML picker and the Kurtosis
picker. The comparison shows that the differences between
the matched picks are generally less than 0.02 s, while showing
systematic biases in the pick times for both P and S waves.
The Kurtosis picker consistently picks earlier on S waves
compared to the PhaseNet picks, whereas it tends to pick later
on P waves for 60% of the picks but with a distribution that
is skewed to the earlier side. The delay in the P picks for
the Kurtosis picker may be due to its nature of measuring
distribution change in a window, and the differences in S wave-
picks might be related to complications caused by the P coda
and S to P, P to S conversions before the S arrival. The effect of
consistently picking converted phases on hypocenter location
is minimized during double-difference relocation (Waldhauser
and Tolstoy, 2011).

We estimate the pick uncertainty by comparing the Kurtosis
and ML phase pick delay times between an event pair with the
corresponding cross-correlation delay time measurements. The
delay time differences for the P picks with respect to the corre-
lation measurements on the vertical component and the S picks
compared to those on the two horizontal components are shown
in Figure 7.We see that theML catalog has more picks andmore
correlation measurements (1–2 orders of magnitude more com-
pared with the Kurtosis catalog). The standard deviations are
comparable for the Cf > 0.8 group, which is the threshold we
use to select correlation measurements for double-difference
relocation. However, the ML picks have much lower standard
deviations with respect to data from highly correlated wave-
forms (Cf > 0.95): 17 ms for P waves, and 40 ms/28 ms for
S waves on east (E)/north (N) components, compared with
35 ms (P) and 51 ms/42 ms (S on E/N components) for the
Kurtosis picks. This suggests that ML picks are of higher accu-
racy than Kurtosis picks, and PhaseNet performs better when

picking low signal-to-noise ratio data (more picks with similar
uncertainty to the Kurtosis catalog).

We also compared the locations of earthquakes in the three
catalogs. To make a straightforward comparison, we plot the
locations of the same subset of events with matched IDs.
Figure 8a shows the comparison between the final double-dif-
ference located ML catalog (this study) and the Waldhauser
et al. (2020) catalog. We see that the high-resolution
earthquake locations in this study delineate sharp-focused
structures, including the varying geometry on the western
wall of the caldera ring faults and the complex structures
on the eastern wall at the intersection with the ridge. The
Waldhauser et al. (2020) locations have similar patterns over-
all, but, are more diffuse. To understand which processing step
contributed to this improvement, we also made comparisons of
the initial locations before the double-difference relocation.
Figure 8b,c shows the differences between the initial NLL
locations in the ML catalog (this study) and the initial NLL
locations in the Waldhauser et al. (2020) catalog (Fig. 8b),
and HINV locations in Wilcock et al. (2016) catalog (Fig. 8c).
The differences between Figure 8b,c shows the contribution
from using a 3D velocity model. We can see that in Figure 8b,
the initial NLL locations of the two DD catalogs match well,
whereas, in Figure 8c, the NLL locations and the HINV loca-
tions show significant differences. This suggests that the use
of a 3D velocity model NLL, as opposed to a 1D velocity
model, contributed considerably to the improvement of the
final earthquake location results. Figure 8b shows the location
differences caused by the absolute picks, whereas Figure 8a
shows the differences after double-difference relocation. In
Figure 8b, the overall pattern of the two catalogs agrees,
and the differences are sharpened in Figure 8a. This suggests
that improvements in pick accuracy and especially the addition
of cross-correlation measurements helped in refining the com-
plex seismicity structure at Axial Volcano.

Since the beginning of 2022, we have been operating
the ML-based seismic monitoring workflow in real-time.
Seismic activity following the last eruption has remained at
a relatively low rate (Fig. 1a). The overall seismicity pattern
is generally consistent with the active faults and structures acti-
vated during the 2015 eruption, with recent seismicity bursts
more concentrated in the southern part of the caldera near the
hydrothermal field International District (Kelley et al., 2014)
(Fig. S2, available in the supplemental material to this article).
As of April 2024, the automatic near-real-time analysis of the
continuous waveform data has identified 37,974 earthquakes
since the end of the base catalog, 30,152 whale calls (93% of
them from Fin whales), 701 misidentified impulsive events,
and 1,700 unlabeled events. We set a relatively tight threshold
during real-time operation to minimize the number of misclas-
sified events. Visual inspection of the unlabeled events shows
that they are either weak events recorded by only a few stations
or have inconsistent labels across the network.

Figure 6. Histograms of the differences between matched
Kurtosis and PhaseNet picks. The pick time difference is plotted
as Kurtosis pick time and PhaseNet pick time. The color version of
this figure is available only in the electronic edition.
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Since the 2015 eruption, Axial Seamount has been contin-
uously inflating and has recovered 90%–95% of its previous
eruption level (Chadwick et al., 2023). However, its inflation
rate has gradually decreased over the past few years and leveled
out in the last year, deviating from the steady inflation pattern
observed in previous cycles (Chadwick et al., 2016, 2022) (the
inflation rate seems to start picking up again in early 2024).
This irregular behavior makes it challenging for eruption fore-
casting solely from the deformation data. In this study, we
demonstrate an ML workflow to track different types of seis-
mic events, including short-term precursory events, in real-
time. Our current real-time process operates on an hourly basis
during periods of low activity. The real-time ML-DD catalog
can be accessed at Data and Resources. In routine ML-based
processing, continuous seismic data are fed into the workflow
in 15 s overlapping windows, and the window size will decrease
to 6 s during high-seismicity-rate periods. This allows us to
achieve near-real-time operation, such as every 5 min, when

we approach the next eruption. It should be noted that in
real-time operation, precursory events and eruption signals
will be classified from the initial catalog before running the
relocation step, further saving computational time for seismic
monitoring. This system, with its high-resolution earthquake
catalog and real-time analysis capability, complements the cur-
rent deformation-based long-term forecasting methods by pro-
viding valuable short-term constraints. It may enhance
eruption forecasting at Axial Seamount and potentially other
volcanoes in submarine or terrestrial environments.

Figure 7. Histogram of differences between pick and correlation
delay times, shown for three correlation coefficient thresholds
(light gray: cf > 0.8; gray: cf > 0.9; black: cf > 0.95). Differences
are shown for Kurtosis picks (a–c) and PhaseNet picks (d–f) for
the three components. The standard deviations of different cross-
correlation coefficient groups are labeled on each subplot.
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Figure 8. Comparison of earthquake locations derived in this study
and those in the catalogs of Wilcock et al. (2016) and Waldhauser
et al. (2020). Comparison between (a) theML-DD catalog (this study)
with theWaldhauser et al. (2020) catalog, (b) ML-NLL initial locations
with the Kurtosis-NLL initial locations in the Waldhauser et al. (2020)
catalog. (c) ML-NLL initial locations with the Kurtosis-HINV initial

locations in the Wilcock et al. (2016) catalog. The three plots are
earthquake density differences between the catalogs in log-scale
counts. The red and blue colors show where the ML catalog has
more and fewer events compared to the other catalog. The bin size is
25 m × 25×m in (a) and 50 m × 50 m in (b) and (c). The same
comparisons with overlaid density plots are shown in Figure S1.

2660 Seismological Research Letters www.srl-online.org • Volume 95 • Number 5 • September 2024

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/95/5/2651/6918620/srl-2024086.1.pdf
by Columbia University user
on 03 October 2024



Furthermore, new data from a temporary OBS array may
improve our ability to constrain event locations outside the cur-
rent array’s coverage. Future plans include extending our ML
workflow using the new OBS and terrestrial array stations and
migrating the system to the cloud for more accessible operation.

Conclusions
Our real-time seismic monitoring framework effectively integra-
tes automated ML- and double-difference analysis for high-pre-
cision, deep-magnitude catalog production. This framework not
only handles routine seismic processing and earthquake location
that are available in existing monitoring systems but is also
equipped with new modules that classify various event types
in real-time without human assistance, using our pretrained
semisupervised models. These unique modules are tailored for
complex submarine volcanic environments such as Axial
Seamount with characteristic sources that may be indicative
of eruption-related processes. Beyond routine seismic monitor-
ing, we are now able to discriminate and track different types of
seismic events as they occur (Fig. 1), including precursory MFEs
(Fig. 5e) that potentially indicate the preparation of an eruption
(Wang et al., 2024) and seafloor impulsive events (Fig. 5f) that
can be used to track magma outflows during an eruption (Tan
et al., 2016; Wilcock et al., 2016; Caplan-Auerbach et al., 2017).
This may help improve the short-term eruption forecasting for
Axial Seamount’s next eruption and eruptions at other subma-
rine and possibly terrestrial volcanoes.

Data and Resources
The seismic data used in this study are downloaded from the
EarthScope Consortium Data Management Center (DMC) with net-
work code “OO”. The continuously updated earthquake catalog is
available on our Axial Seamount real-time monitoring website
https://axialdd.ldeo.columbia.edu (last accessed June 2024). The sup-
plemental material for this article includes earthquake catalog com-
parisons and real-time earthquake locations until April 2024.
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